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Samenvatting

Sinds het wereldwijde akkoorop het limiteren varde opwarming van de aarde ofl,5¢C

ten opzichte van het prendustrieel tijdperk, zijn overheden gestart met het stimuleren van
duurzanme maatregelendoor middel van subsidies en wetgeving. Een van de belangrijkste
focus gebieden voor deze maatregelsde gebouwde omgeving. Gebouwen in het algemeen
zijn verantwoordelijk voor 40% van de wereld wijde energy behoefte en 30% vanZe CO
uitstoot. Dit heeft ertoe geleid dat de toepassing van particulieren hernieuwbare
energieopwekking enorm is toegenomen dégelopen jaren, vooral door middel van
zonnepanelen Dit heeft het energiesysteem veranderddan een centraal naaren
gedecentraliseerd systeenbboordat de hernieuwbare energie variabel aanwezig is, is het
implementeren van energieopslag benodigd om eefledige energietransitie mogelijk te
maken.

Om een energieopslagsysteem slim aan te sturen in het elektriciteitsnet, is nauwkeurige
voorspelling van korte termijn elektriciteit behoefteenodigd Onderzoeken op het gebied

van het voorspellen van de beéfte van energie, hebben nauwelijgefocust op l&ale korte

termijn energie behoefte waarbgokhernieuwbare energie bronnen op locaaanwezig zijn.

Ook is er geen zijn er geen standaard aansturingssystemen voor opslagsystemen om
overtollige hernieuwbee energie te delen. Het doel van dit onderzoek is het bieden van een
methode om voor een woonwijk de lokale korte termijn elektriciteitsbehoefte te voorspellen.
Verder wordt er een opzet voor een aansturingssysteem voor elektrisch energy opslag
systeem worgesteld om efficiént gebruik te maken vinkale hernieuwbare energi®m het
zelfvoorzienendrermogente vergroten

Voor 70 gerenoveerde woningea voor twee jaar aarlektriciteitsverbruik gegevensgan
slimme meter data beschikbaar gestelohet metingsintervallen van vijftien minuterDe
woningen, gelegen in het midden van Nederland, hebben geen gas aansluiting, en zijn
voorzien van zonnepanelen, warmtepomp en hoogwaardige isolatie. De gebouw
karakteristieken van de woningen suggereren de mddedid om, met behulp van een
elektrisch opslag systeem, grotendeels zelfvoorzienend te worden.

De keuzeom een o geschikt mogelijk machine learning motkekelecterenis gebaseerd op

een literatuur studie en empirische testen van verschillende macleaening modellen.
Hieruit is geconcludeerd daenrandom forest regressor geschikivoor het voorspellen van
korte termijn elektriciteitsverbruik van een woonwijoorafgaand aan de predictie, zijn de
elektriciteitsverbruik profielervan de woningemeclusterddoor middel van kneans cluster
algoritme, welke de variantgebinnen de clusters minimaliseert. Het voorspellend model
gebruikt 38 variabelen, waaronder, historisch elektriciteitsverbruik, vrij beschikbare
meteorologischegegevens en tijd gereleerde gegevenszoals indicators voor dag van de
week, maand en seizoen. Hyperparameters van het voorspellend model zijn geoptimaliseerd
door middel van een algoritme wat de beste combinatie van parameter instellingen zoekt door
een groot aantal parametanstellingente testen.
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Om effectief gebruik te @ken van eerelektrischopslagsysteenm een woonwijk, is er een
aansturingssysteem voorgesteld. Om dit voorstel bruikbaar te maken zijn er een aantal
vereiste aan de omgeving waar deze in komt te staam;wbningen dienen direct bi
directioneel verbonden te zijn met het opslagsysteem en het elektriciteitsnet, het
aansturingssysteem dient toegang te hebben tot de slimme m&tardenen tot de uurlijkse
weersvoorspelling voor de komende 24 utienslotte dient het systeem de schakedjenin

het elektrische circuit te kunnen bedieneHet besturingssysteem is gebaseerd op zeven
conditionele regels omde gegenereerde hernieuwbare energy lokaal te gebruiken en
daarmee het zelfvoorzienend vermogen te bevordere

Het gebruikte model behaald,egniddeld over tien validatie dagen, e&score0,77 en een
cv-RMSEvan0.41.De kmeans clustering samen met de random foresgnessozijnin staat

om de uurlijkse trend van de komende&4 uur te voorspellen en het indecte
uitwisselingspotentieel te bepaleie belangrijkste variabele voor het voorspellend model is
het energieverbruik van de vorige dag op hetzelfde tijdséipdere kelangrijke variable zijn

de luchtvochtigheid, temperatuur en elektriciteitsverbruikarnv twee en drie dagen
voorafgaand aan de voorspellif@p basis van de validaiingeschat datje woonwijk zeven
van de twaalf maanden per jaar volledig zelfvoorzienkawzijn bij gebruik van een elektrisch
opslagsysteem van 660kWh, 9,42kWh per huigtem. Wameer er ook gebruik wordt
gemaakt van lange termijnpslag, kan het zelfvoorzienend vermogen zelfs nog vergroot
worden.

Het model is slechts gevalideerd op enkele dagen, wat een tekortkoming is van dit onderzoek.
Wanneer er over langere periodeevplideerd wordt, minimaal meerdere dagen
aaneengesloten, geeft dit een beter beeld van het daadwerkelijke uitwisselingspotentieel
tussen de woningen. Ook kan de madeurigheid van het model waarschijnlijk worden
verbeterd door te experimenteren met extraariabelen zoalsaanwezigheid van bewoners,
appardaen eigendom en zon intensiteit. Verder zou de huidige aanpan het
aansturingssysteem geoptimaliseerd kunnen worden naar de belangen van de eigenaar.
Bijvoorbeeld door bt in ogenschouw nemen vadynamische elektriciteitsprijzen en lange
termijn opslag
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1.Introduction

y transitiogurrently is and will be for the next yearan importantresearch topic

tion ofsustainable developments and improvements in enegljsufficiencywill

lay an important role, not only in academics but also in business and politics. This
contributéo the field of energy demand predictioof residential building®y

new approach which combines a clustering technique aneshsembled
achine learningML) model. Also this research will disclegsplyingenergy

se enegygelfsufficiency of a neighbourhood
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1.1Research context
Similar to most of the countries around the world, the Netherlands has agreed upon pursuing
efforts to limit the temperature increase ta3dC above prendustrial levelgUnited-Nations,
2015) To achieve the goals from this agreemeahergy in general must be used more
efficiently, and more energy must be generated from sustainablerenewablesources.
Buildings account for 40% of the global energy demand30% of global CO2 emissioasd
is therefore one of the most focusd fields for stimulating energy efficiency and sustainability
(Costa, Keane, Torrens, & Corry, 2008png, Wang, Zeng, SrinivasanABrentzen, 2018)
This has led to regulations and subsidies which stimulate investmeetengy efficiency and
sustainability measuresuch asapplying betterinsulation and P\ystems for private and
commercial buildings(Wiebes, Stimulering Duurzame Energieproductie, 20IR)ese
regulations and subsidies did haxesults as the number of wind turbines amghotovoltaic
panel (PV)systems hae grown steadily the previous yearbligh penetration of energy
conversion tebnologies basedon fluctuating renewable energy sourgeshifts the power
systemfrom centralizedto decentralized energy systeamEnergyis no longer generated
centrallyonly usindargepower generationstations andtop-downdistributed from thehigh-
voltage (HV)to the lowvoltage (LV)grid where individuals can tap their desired demand
(Junker, et al., 2018 the decentralized systes) energyis generated, useand distributed
from numerous places across the gri@urrently only a smalportion of the total consumed
energy is generated from sustainabte renewable sources. However, this is expected
increase in the near future, rapidlyhe report of CBS (2018) mentioned that the total share
of renewable energyni the Netherlandswas just 6.6% in 2017, but, the target for 2023 is to
achieve 16%4CBS, 2018)This target demands substantialgrowth of renewable energy
generation, among which will be residential -P\gtallations. The trend report for PV
applications of the International Energy Agency (IEA) state that the Nethetasdgotal PV
capacity of 2,983MW of which 853 MW is installed in the year 2017. Currtémtbe-quarter
of the PV capacity is installed at private dwekingjo reach the renewable energy goals of
2023 there isoom for 1GW of PV capacity installations per y@dasson & Kaizuka, 2018)
This is also acknowledged by the Smart Grids European Technology platform, as they state
that a significant fraction of the generation capacity in 2035 will Is¢éochastic and/or
intermittent (SmartGrids, 2012)
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1.2 Problem defirtion
Most of therenewableenergy sources, especially wind and solar energy, do not adrgh
energy density and are irregularly available. The utilisation of energyhéyindustry,
dwellings, and the work placbave different demandoatterns comparedto the renewable
energygenerationpatterns(Li & Chan, 2017This isalsotrue for P\fsystems on residential
buildings where the solar intensity is at its peak during the day where electricity demand, in
general is low. To use producedrenewable energyeffectivelyand to follow the demand,
energy storage and smart energy disgatechnologes arenecessary(Li & Chan, 2017)
Although this is a clear statement, little applications of energy storage systems are currently
used for residential buildingtlsage otlectricalstoragesystemgESSare notyet established
in the current energy systenMore researctshouldbe conductedo exposethe usability and
feasibility of ESSTo properly use a storage systethe shortterm detailed local energy
demand of residential districts is necessarlgere aremany studies which suggest approaches
to forecastng energy demangdbut little of these are specific for sheterm local residential
buildings (Seyedzadeh, Rahimian, Glesk, & Roper, 2&i@prlmost none consideenewable
energy generation orsite. As the adoption of renewable energy keeps increasing, alsheon
local residential district level, the need for energy storage and efficient energy distridation
increasing.

Thetwo main problems addressed in this research #iethe lackof research towardsocal
short-term residentialenergy demand forecastith renewables orsite, which is needed for
having a proper electricity distribution system, and (ii) the absenceg#reral concept to
improvethe effective usag®ef P\ generated electricityand the energy selufficiencyin a
residential districty utilizingan ESS.
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1.3 Research objective
Thisresearchaims to suggest mapproach to accurately predict local residel electricity
demand with short time intervals based on actual smart meter dat&urrently, most
researches regarding energy demand predictiopthave focused onenormous energy
consuming entities, such a&stire cities and campuse®\sq the predicion horizon of these
studies are often very longsuch asaggregated usge of daily, monthly or even yearly
(Seyedzadeh, Rahimian, Glesk, & Roper, 20H8)ing access to detailed energy demand
profiles have not beemwidely availablebefore the upcoming of smart meter The smart
meter datahasenablel a closer look into the energy demand patterns of individuals, and
might reveal possibilities in improving energselfsufficiency Smart meter data is often
consideredas privacysensitive Therefore, not many studies have been able to use such
detailed energy consumption data of a large sample of househ®ls.suggested approach
should contain a method or combination of methodsichis innovative andhelpsto improve
currently used modeld-urther, the potential of increasing salfifficiency by usingrsESS and
by sharing electricity between dwellings should be determin€kde goal is to accurately
formulate a methodology to achievgrowing lf-sufficiencyfor a gioup of houses.

The research should shoone of the many possible applications that analysntart meter
data makes possibleThe research objectives will add knowledge to the research field of
energy demand prediction sineerarely available dataset sinart meter datawill be analysed

in a way current researches have not done.y€he study should bring energy demand
prediction a step closer to detailed individual household predigtiamichcanhelp efficiently
micro-manage the smart grid areikpose eerrgy saving possibilities.

1.4Research questions
To achieve the desired research objectitree following mainresearch question should be
answered:

How can selbufficiency of a neighbourhood be increased
using electricity exchange amdh electrical storage system,
based on analysed smart meter data?

In order to answer this main research question, 3-gulestions are drawn up:
SQ1 How can the buses with similar electricity demand profiles be clustered?

SQ2 What machine learning algorithm performs best in predictihg hourly electricity
demandone day aheadpor clusters of dwellinga

SQ3 What is the expecteddirect and indirect electricity sharing potential between the
cluster®

24
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1.5Research design
This research is divided into three stages, Begirel: (i) explorative research, (ii) validation
and (iii) reporting. The following three sections will describe the content of each research
stage.

Research questions Research stage

Start Literature study
I Sub questionl l
I Explorative Research |-~~~ Data preprocessing
_-é Sl qUEEiET Empirical study
@
o
<
8 T
o |
(3] I
(%] |
(&) |
x |
1
Sub questior3 Validation ~  [----1 Proof of Concept

S e— o— o— —

[=}

T
|
|
|
|
|
|
|
|
v

m

Conclusionsdiscussion
and recommendations

Reporting ~ F----1

Figurel Research design

1.5.1 Explorative research
The explorative research stage consists of three parts; (i) literature study, (ii) data preparation
and (iif) empirical studyin the literaturestudyrelated scientific papers will be studied to see
what methods and approaches are currently used in the field of resediod.goal of this
literature study is to explore the current state of the art technigues éoergy demand
forecasting The data preparation part is a necessary steptike the receied data usefufor
analysis and modellingn this step the raw datasets will be transformed and processed so
that they can be used for machine learning purpogegivities such as removing outliers and
replacing missing values will be perform&ulring he empirical study part, various machine
learning algorithms will be tested fond empirical evidence fowhich algorithm performs best
on thereceived dataAfter the explorative researckectiona wellgrounded choice can be
made to select suiting moctl for predicting residential electricity demand.
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1.5.2 Validation
In the validatiorsection,the third research question will be answered. The direct and indirect
sharing potential between houses will be determined by means of preditimeglectricity
demand for clustersThe suggested approach aims to predict the electricity demand for one
day ahead anddentify the direct and indirect sharing potential between the clusterbe
validation part willcompare the outcome of the prediction model with the aat values and
discuss theesults

1.5.3 Reporting
During the reporting stage of the research the report will be finalized. This will contain
answering individual research questions, drawing up conclusions, discussing thesiuesall
and giving recommendatics for future related research.

1.6 Reading guide
In chaptertwo, a literaturereview of some close related scientific articles is givenmarily
energydemand predictiorrelated articles will becovered throughout the literature review
Chapter three contains a thorough description of the used methodolodty.includes
explanation of the clustering technique and the prediction model as well as the method to
determine the sharing potentialn chaper four, a description of the datandpre-processing
methods aredescribed. Chapter five presentsthesults of one validation day, and the overall
results of the used approacfihe conclusios a critical discussion of the used methodology,
and recommeadations for future researchrewritten down in chapter six.
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re revieveummarizes scientific publications related to energy demand prediction
ethodscould be implementedwhat kind of data and performaedndices are

t topics need further researcBy reviewing these studies, it becomes clear
done in this field of research, and where additional work is deSiresl.
oints out the necessity and relevancetu$ researchThe covered studies
for the use@pproachin this research.
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2.1 Energy system transformation

The decentralized energy system demanasig solutionsto be implemented whichenables

achieving more energy efficiency and energy flexibility. Energy flexibility is the ability to adapt

the energy profiles without threatening technical and comfort constra(f®eynders, et al.,

2018) Therefore, to achieve aare efficient and flexible energy system, the widely known

trais energeti@a method was adaptedtb five stepsincluding user demand and behaviour and

the effect of energy exchange and storage systéAeskoningDHV, 2018eeFigure2. The

newly added step 16 KA OK Aa a5SaA3dy I OO0O2NRA Y, Belpdd dza S NJ
exploring the required energy flexibilityithout compromising the user comfort. On the other
KIyRE aGSLI nZ aSySNBé& SelsfloyeR@ning tieRyridated NI 3 S
bottlenecks. Even though the method is fully established, further research and exploaation

still needed to idetify the potential of this methodology in different case studies. Therefore,

this research will contribute to the knowledge and applicationstep-four by identifying the

potential for energysharingand storing

1
Design according to user demand & behavior

2
\ Reduce energy demand /
Apply suslamable energy sources /
Apply susnmablc
energy.sources Energy exchange &
storage systems
Use foss:l energy
efficiently

5
/ Trias Energetica method /

Reduce energy
demand

Use fossil energy
efficiently

A\

Figure2 Five step metho(HaskoningDHV, 2018)

\ Five step method

As step four includes storage systems, a short declaration on the necessity of storage systems
in the electricity grid will be giverThere is a broad acknowledgmtethat, due to the
variability of renewable energy sources, energy storage systems must be implemented to
make a complete energy transaction possible. Electrical storage systems can corttribute
variety of mannersfor efficient energy usage. The elecal storage system enables
maximization of PV systems and shared usage of electricity generated by PV systems. When
the electricity is not used by a household with a PV system the electricity can be stored in the
ESS, during daytime when demand is lowd aansumed, by the household itself or another
household in the neighbourhood, when demand is highe decentralisation of the energy
network and the usage of E8Bables consumert® shape their power demand activeljhis
possibly wilincrease the engyy demand flexibility of a smart neighbourhood.
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Other examples of benefits, dependéen the capacity of the storage systeand the time
the electricity is storeddescribed by Barton and Infield (2004) are:

1 Spinning reserve clouds on PV panels andnai power smoothing
1 Standing reserve peak shaving smoothing of loads

1 Smoothing of weather effectsPV, wind, small hydro

1 Voltage and frequency control

The research of Barton and Infield (2004) show that the electrical storage systems can increase
the asorption of renewable energy by 1P5%, dependenbn the storage time, without grid
reinforcement. Some scenarios used in the research are proven to be economically
worthwhile (Barton & Infield, 2004)0Onepossiblestorage system is the lithiusion battery.

Some studies have determined the financial feasibility of such electrical storage systems with
different subsidy scenariogKantor, Rowlands, Parker, & Lazowski, 20{Gjcchiella,

5Q! Rl Y22 9 DFRhe édpfodei o theserstudies suggabat with the current
practices, ESSs areurrently not feasible without governmental suppom these specific
casesHowever, as mentioned earlier, the elecity grid as well as the regulations regarding
feedin electricity are changing rapidly, which makes storage becoming more a feasible
additive to thenetwork.

In order to operate an ESS efficigntaccurate shorterm electricity load forecast is deste
(Lahouar & Slama, 2015Energy load forecasting or energy demand prediction is the
speculation and prediction of what thgower demand for a certain perioth the future will

be, usinghistoricaldata, and itanfluencing fatorsand by applyingnathematical algorithms
(Huo, Shi, & Chang, 201®&nergy demand prediction has always been acknowledged to be a
difficult task. The dependency on weather conditions, building characteristics, operation of
sublevel components (e.g. HVAgstem and appliances), occupancy and user behaviour,
makes it a complex problei@@hao & Magoules, 2012lloweverthe high penetration levels

of intermittent resources in the grid, such as wind and solar energy, increases the degree of
uncertainty even more, due to their namgular behaviour. This is an incentive to extend the
knowledge in this field of researg¢hahouar & Slama, 2018juo, Shi, & Chang, 2018he
technological advancement of communication infrastructures, mathematical modelling
techniques and numerical simulation environments are promisidgvelopments for the
integration of shoriterm electricity load forecasting into the existing grids. This is also true for
storage capacity within the energy networkhich can be achieved by intelligestmand sile
management DSM (Jurado, Peralta, Nebot, Mugica, & Cortez, 20Rsearch has proven
that empirical ML modelling can provideoticeable prediction results and outperform
engineeringbased building energy modelling when the algorithm and settings are
appropriatelychosen(Wang, Wang, Zeng, Srinivasan, & Ahrentzen, 20MB)is generally
referred to as a computer algorithm that learns from existing d@8ayedzadeh, Rahimian,
Glesk, & Roper, 2018Jhe focus bthis study is therefore towards the application of ML
models to forecast shoitierm electricity demand.
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2.2Energy demand prediction

2.2.1 Essence of energy demand forecasting
There aremanyargumentson why improving the accuracy of energy demand modelling is
beneficial. Better prediction of energy demand can lead to a reduction of monitoring
expenses, initial cost of hardware componemtsd longterm maintenance costs in the future
grids(Kuo & Huang, 2018\ccurate forecasting of energy consumption can help to determine
the required storage size, to delay and postpone energy consumption. It can batusady
design stageof renewable energy systesnto seeits impact.It can also help in the DSM, to
forecast the likely future development of electricity demagRbdrigues, Cardeira, & Calado,
2014) Wang et al. (2018) state thdduilding energy demand prediction is becoming more
significant fo improving efficiency due to isssentiarole for implementing energy efficiency
measuressuch as; demand response control, system fault detection and diagnosis, building
energy benchmarking and building system measurement and verificgWamg, Wang, Zeng,
Srinivasan, & Ahrentzen, 2018)ocanu et al. (2016) state that the future grid needs a system
that can monitor, predict, schedule, learnand make decisions regarding local energy
consumption Ryu et al. (2016) state that short term energy load forecasting is becoming
increasingly important. A wide variety of applications is mentioned for accurate prediction
models such as demand response, targeted dynamic pricing, load monitoring, energg storag
operation and peak load reductiqiRyu, Noh, & Kim, 201@)ahouar & Slama, 2015Dther
authors explain that accurate forecasting is vétal issue to support individual and
organisational decisn making(Jurado, Peralta, Nebot, Mugica, & Cortez, 20P3gdicting
energy demand should not only be done on an aggregated level but also individual building
level so thathe distribution of locally generated energy can distributed based on the local
demand. Also, the decomposition of energy demgodally in shorterm time intervalshelps
to analyse energy demand patterns and give insight in potential energy conservation targets
(Mocanu, NguyenGibescu, & Kling, 2016)hese are reasons why much effort is put into
investigating different models and approaches to improve energy demand prediction.

2.2.2 Energy demand forecasting over the years.
Energy demand forecastingas been studiedntensivdy since thel950s (Jurado, Peralta,
Nebot, Mugica, & Cortez, 201Farly researches regarding demand forecastoiten used
methods such as autoregressive integrated moving average (ARIMA), exponential smoothing
non-parametic regressiorand Kalman filte(Taylor, Menezes, & McSharry, 201{Byu, Noh,
& Kim, 2016)In the 1980ghe Kalman filter was especialiftractive an model to forecast
demand due to its computational efficiencyBy the time computing power increased,
researches were able toexplore the complex load data betterThis led to ruldased and
fuzzy logic expert systems to model the complexity in the tietd, using domain knowledge.
Despitethe fact that these approaches were promising, they relied on rules that were
SEGNI OGSR FTNRBY SELSNIAQ FYyR 2LISNIiI2NBAQ AYyR
inconsistencies and therefore not reliab(@aylor, Menezes, & McShgy 2016) Another
promising approach introduced to helihe increase accuracy and reliability of demand
forecastingis neural networks. Artificial neural networK®ANN)made experimenting with
models that can identify complex nonlinear relationshipdata and predict future behaviour.
These models are theoreticalyeakand need rich data since they learn through examples
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which consist of input features and outpuThis learning through examples enables the
potential to discoverfar greater rangef relationships compared to models with pdefined
format (Taylor, Menezes, & McSharry, 201&itificial neural networks aréherefore broadly
usedand have received lotsf not most,of attention and interest in scientific publications
regarding energy demand predicti@nce it was introduced in the building services sector in
the 1990s(Rodrigues, Cardeira, & Calado, 20Mdre recent studies have usemther ML
techniques such as Support Vector Machig@¥M)and ensembled treeand showed that
these models also achieveéghlyaccurateperformanceresults(Zhao & Magoules, 2012)

2.2.3 Commonly usedmproaches and methods
Asthe essence of accurate energy demand forecashag become clear, researches have
started exploringand optimizing al sorts of different approachesMany studies have
O2YLJ NBR 2NJ 4dzZ33SaGSR RAFTFSNBylG YorRGfeai (2
these studies the most important fragments such as theused data typesnumber,
characteristics oprediction variablesperformance indicatorsthe results and conclusions
aresummarized

An important factor for the approachf energy demand forecasting is the forecasting horizon
and corresponding time intervalth generala shorter prediction horizofdays, hours, sub
hourly)is harder to predicthan mediocre (weeks or months) and letigne (manymonths or

a year) horizonssinceshort intervals aremore susceptible for statistical variatiorBesides
the time intervals, the prediction entity sn important factor, for the same reason, as small
energyconsuming entities are more sensi for little variations. Please take this in mind
when reading this review.

Kontokosta and Tull (2018%eda yearlyprediction horizon, which is considered as lofdne
authorsused threeML algorithms, which areordinary least squares (OLS) regressiiiand

SVM to forecast annual building, district and «tale energgemandof New York City, USA.
The authors used a combination of actual building energy consumption and detailed property
and buildinglevel attributes, such as floor area, use typadduilding year. This information

is collected from three sources: (i) Local Law 84 energy disclosure provides building energy

use information, building occupancy and physical characteristics of 20,000 buildings,-(ii) city
scale PLUTO provides parmld physical characteristics, zoning and use type data of all 1.1

million buildings in New York, (iii) zip code energy data set provides aggregated annual energy

consumption data of all 176 zip codes in New York. All types of buildings are included in the
data set, residential, commercial, industrial, etc. For the RF and, 8\édvhyperparameter
settings were optimized by creating a grid of different parameters and stepwise testing all the
different combinations. The best performing combination was eventwailysen to use for

the actual prediction. This optimization step is conducted for both electricity and natural gas
consumption. Fivefold crosalidation is used to overcome the possibility of overfitting. The
model is validated at the building and zipdeolevel using actual consumption data of 2014.
The authors chose to use thmean absolute erroMAE and the mean log accuracy ratio
(meanLAR) to compare the model accuracies. The feature importance is dependent on the
scalelevel, building or zip codevel, and on the energy sourcelectricity or natural gas. In
general, building use, size and layout serve as the most important predictors. The authors
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conclude that, for the OLS model, using more variables decreases the model accuracy. For the
RF andSVM, the firssixfeatures provide thevastmajority of the prediction ability. Overall

the authors conclude that there is little difference in the prediction ability and accuracy of the
three used machine learning models. When looking on the city gncbzle scale, the simple

OLS model performs best, on the building level prediction the SVM has the lowest MAE.
Further, it is concluded that, given the used models, predicting natural gas consumption is
harder than electricity, for both building level aag code level scale. The authors state that

the results have proven that there is a needlfiagherdata transparency and data access from
utility companies, as it is a valuable resource for helping cities to plan and evaluate
sustainability and carboreduction strategiegKontokosta & Tull, 2017)

Robinson et al. (2017lso compared multiplemachine learning models to prediennual
electricitydemand The prediction entities wereommercial buildings. In total 14 different
machine learning models are tested and compared based on tt@mdRthe Mean Absolute
Error (MAE). They used data from the CBECS, published fexeygar by the U.S. Energy
Information Administration (EIA). Ehdataset contains 6720 rowbuildings)of data which
arerepresenative for5.6 million commercial buildings in North America. The data is gathered
by means of a questionnaire to building owners. The models are based on five building and
weather features; (i) number of floors, (ii) square feet, (iii) heating degree days¢cqm)ng
degree days, and (v) principal building activity. This small amount of commonly accessible
features makes applying this approach convenjatsewhere They conclude that gdient
boosting regression models perform the best with a&nsBore of 0.82. They note that they
used the default settings of the models and did not optimize the hyperparameter settings
(Robinson, et al., 2017)

Li et al. (201Ppredicted the annual energy consumption of residential buildings with a SVM
and multiple ANMN, general regression neural network (GRNN), hardpagation neural
network (BPNN)and radial basis function neural network (RBFNWhe models use 16
technicalbuilding featuressuch asbuilding size, window wall ratio, heat transfer coefficient

as well as annual electricity consumption of the buildjrgs prediction featuresStepwise
searching is used to select suitable parameter settings for each nfeatehe neural network
models, the number of neurons in the hidden layers drastically impacts the results,and is
therefore, an important parameter to optimize. The parameters for the SVM are optimized
by using genetic algorithm$he models areomparedbased on theelative errors MSE, and

root mean square errorRMSE The study uses 50 houses for training amke houses for
testing. They conclude that the SVM and the GRNN perform significantly better than the BPNN
and RBFNN given tmene testing sanples(Li, Ren, & Meng, 2010)

A Netzero energy residential test facility is used to test the application of a regression (OLS)
model to predict its energy performance by Kneiffel and Webb (2016). The test facility
contairs a PV system for electricity production and has data acquisition and control system to
collect data and monitor the performance. A heat puarm athermal solar systerare used

for space heating and domestic hot watap natural gas connection is availabFor lightning

and insulation of walls and windowkigh performing materials are used. The installed
instruments measure weather data at the test facility such as temperature, humidity and solar
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insulation, electricity consumption (of the building asvaole, as well as systespecific
values), electricity production. These variables are collected every 3 or 60 seconds, dependent
on the specific measurement. These observations collected one year and aggregated to daily
average values for the analysib€elprediction is separately executed for the consumption and
the production of electricity. The first two weeks of every month were selected to be the
training datawhich contains 14@aily consumption and production values. The RMSE and R
values are usg as performance indicaterfor the prediction model. Also an analysis of
variance (ANOVA) is conducted to determitee significance of the models and their
coefficients. The proposed OLS models are compared with broadly used, pghgsecs
energy perfomance indication models. The authors found that the production model has an
extremely strong linear correlation, while the consumption model shows a more unexplained
variation. The suggested OLS model performs better than the other three tested, enggpeerin
based models. The higher accuracy is, according to the authors, mainly achieved through the
actual n-situ data input of the test facility, where the engineering models work with the
specifications of all materials and applian¢seiffel & Webb, 2016)The sudy does not use

actual occupancy behaviour, which is a major shortcoraitigpugh it is generally recognized

that this plays an important role in the complexity of consumption patt€iisegi &Garay,

2017) by means of opening wind@yvusage of appliances and changing thermostat settings.

Astudyby Xu et al. (2019proposed an integrated social network analysis (SNA) and ANN to
predict multibuilding energy use. Specifically they try to predict the energy use index (EUI),
in kWh per square meter. The SNA is used to determine reference buildings, buildings with
similar energy use patterns, and identify correlations between the total energyeustg
building and that of a reference building and rm@ference building. The data used in this
approach consists of three years of monthly energy use of 17 buildings on the Southeast
University campus in Nanjing, China. The different building typak@weampus are; office,
educational, laboratory and residential. Missing values and erroneous data is replaced by
interpolating according to Lagrange polynomials. Features used in the prediction model
consist of historical energy use, change in energy arsk building characteristics such as
materials, physical dimensions and building yddre model was evaluateand compared

with a regular ANN based three indices; MAE, MAPE, RMSE. The study concludes that the SNA
ANN model predicts the monthly energy uee the building groups, offices, laboratory and
education around 90% accurate and residential dwellings 83.32% accurate. Dependent on the
YySG62N)] &a0GNBy3IGK 0SG6SSy (GKS NBEFSNBYOS odzAf F
standard deviation this isutperforming the regular ANNXu, Wang, Hong, & Chen, 2019)
These long ranging prediction horizons are often very accurate and can be used for more
general capacity planning. There are also studies which focus on meeioergy demand
prediction. Dong et al. (2015) have examined the feasibility and applicability of SVM in
forecasting building loasl monthly They have used weather data such as monthly mean
outdoor temperature, relative humidityand global solar radiatio.he approach is applied to

four, randomly picked, buildings from a business district in Singapore. The used data was
collected from an extended survey started in 1996, where building owners have collected
monthly electricity consumption from the main meterData from October 1996 through
October 1998 anthe year 2000 were used as training data, and 2001 was usadess set.
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Different parameter settings are tested to find the best suitable model for the problem. To
select the best model for each buildjnfour performance indicators are used, the MSE, mean
squared error of scaled value-K&E), aRMSE, and the percentage error (%error). The best
performing models have all very accurate results witlR&WSE of less than 3% and %errors of
under 4% whichis excellent(Reddy, et al., 1997Pong et al. (2015) compare their results
with other researches regarding demand forecasting of commercial buildings and conclude
that their results are superior with the lowest errors and hegt prediction accuracylhe
authors compared their research with studies who ussber, daily or hourly instead of
monthly, time intervals, which makes the comparison somewhat unfair. Nevertheless, the
suggested SVMloes prove to havea very high perfomance in the researched case.
Advantages of SVM are the little parameters that have to be optimized compared to genetic
programming or ANNSs. This study has only optimized two parameters for the prediction
model. A disadvantage of SVM is the large compotatime when applied to largsize
problems. This disadvantage was not relevant in this study since little data, monthly
consumption of four buildings was used. The authors conclude that, due to the good results,
future focus should be on shetérm load data exploration(Dong, Cao, & Lee, 2005)

Another mediocre prediction time horizostudy is conducted by Tso and Yau (2005), who
compaed multiple machine learning modeldor prediction total weekly electricity
consumption of individual dwellings in Hong Kong. Commonly used approaches are selected
to be compared; Stepwise regression, Decision Tree (DT) and ANN (stepwise regression, and
intercept regression were also considered). The comparison is made, base® seasonal
cases, winter and summer. For each case data for prediction variables were collected, by an
extensive survey of over 1000 households. Detailed informadioout the ownership and
usage patterns of applianceseve collected and monitored. The anitoring of the appliance
usage of the householdsaspointed out that the airconditioning consumes on average 59%

of the total electricity in a typical household in Hong Kong. Alsohousing type, household
characteristics data is used as predictvariables. The square root of average square error
(RASE) is used as a performance indicator to compare the three models. The authors conclude
that the DT slightly outperforms the other more complicated methods based on the RASE
score. The ANN performs waty although the differences, based on the RASE score are very
small. For all the models, three variables were proven to hasgegnificant impact on the
prediction; House (flat) size, Number of household members and ownership of air
conditioning, are themost important in the summer period. The winter period indicates,
housing type, number of household members and ownership of electrical water heatbg as
most important prediction variables, which makes sense. The authors remark that the
inclusion of méeorological features should improve the model fitting resulfso & Yau,
2005)

The shortterm prediction horizon, with aggregated data of a maximum of one day, is covered

in scientific publicationBiwas et al(2016) condated a case study to assess the capabilities

YR LI2aadaAroftsS AYLIESYSylGladAazya 27 (@2 NIjmd NRGDS
andaWh dz(i Lz 2 SAIKG hLIWGAYAT FGA2YQ GFENRFYyGd ¢KS
to run the models. Two speciallgrestructed research and demonstratiomvellingson the UT

Tyler campus were used as test facilities. These houses are designed to serve as realistic test
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facilities for developing and demonstrating new technologies related to energy efficiency. Due
to the many energy efficiency measures applicate at these dwellings, the energy usage is
approximaely half of that of a similar regular dwelling. The test buildings only have
electricity connectiorandheating is provided by means of a HP. Every five mirtheesnergy
consumption and weather conditions of three mont{ day3, was collected at the test
dwellings. The houses are however not occupied, which is a major shortcoming of the test
facilities, since user behaviour is known to haaesignificant impat on the energy
consumption profiles. Both ANN models have identical setup and use similar prediction
features, number of days, temperature and solar radiatit®P of the data is used for training

and the remaining 30% for testinftach model is used tpredict the total daily energy
consumption of the dwellingndthe hourly electricity usage of the HP. ThewRs used as a
performance indicator to compare two models. The Levenidegquardt model performs
slightly better than the Output Weight Optimisah model. The authors mention that the
difference is not significant due to the small number of data points used. Further, it is
concluded that the prediction for the electricity consumption of the HP is more accurate than
the total energy consumptiorfBiwas, Robinson, & Fumo, 201&)lthough detailed, five
minute interval energy consumption data is available, the authors chose to test the models
on aggregated daily consumption data.

Most of thestudieswhichsuggest or testhe models for shorterm load forecastingocus on

large energy consuming entitiesyich adDarabellay and Slama (200®ho tested different
models to predict the electricity demand of the entire Czech Republic. These authors
investigated the linear and nonlinear correlation of electric load time series profiles. This is
tested by predcting the short term (four different time horizons of 1h, 12h, 24h and 36h)
electric load by means of a nonlinear model, ANN, and a linear model, ARMAX. Two years of
hourly intervals of electric load of the Czech Republic is collected. From this siate
periodic components have been visually identifigtere is an annual, weekly and daily cycle
visible in the load profile§ he the nature of the correlation between time and electricity load

is investigatedThe autocorrelations of the electric loadentime is determined, by observing

the differences in electric load value over a time interval. The authors found that the nonlinear
correlations were weak, however, they were not sure whether to completely neglect these
correlations in a predictive modeThe data is split into two sets, working days and holidays
For the prediction only the working days are used. One year of data is used for training, and
one year for testing. For the ANN model, the Matlab neural network toolbox was asdd,

the linear ARMAX model is generated by means of genetic programming. For the daily
forecasting, average daily outdoor temperature, which has a linear correlation with electricity
consumption inthe Czech Republi(Darbellay & Slama, 20Q0)s used aghe prediction
variable. The normalized mean square error (NMSE), MAPE and the maximum absolute
percentage error (maxAPE) were used to determine the model accuracy. It is concluded that
the prediction abilities of the linear model are slighsluperior to that of theonlinear model.

This is in line with the earlier conclusions regarding the linearity of the autocorrelations. The
main point of the research is the advice to check whether the problem is indeed nonlinear
before embarking some coplex nonlinear model. The authors have put more effort in
optimizing the ARMAX model compared to the ANN, and mention that experimenting further
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with the ANN model would have resulted in better results, iy@ould have cost them more
time than buildinghe ARMAX moddDarbellay & Slama, 2000)

From the available | iterature on prediction models with hourly interva¢ge that most of
the studies focus here on large energy consuming entities. These studies towardseshort
prediction models arehosen because they amost relevant for this study.

Lahouar and Slama (201%geda random forest for dayahead electric load forecast. A large
dataset of electricity and gas is usedth halt-hourly intervals from 1 January 2009 to 31
August 2014 from the Tunisian power systes a comparison, hourly data from
Pennsylvanidew JerseyMaryland Interconnection, USA, @&so used. Data preparation
consisted of aggregating the data tourly values and, removing missing values, by replacing
them with previous ones. No normalisation is applied, the data consists of real ranges. Special
days, such as public holidays, are intentionally kept within the dataset so that the model could
learn their behaviour.The training set for the prediction model consists of all the available
data up until the prediction day. Model inputs used for the RF concern of autoregressive
features, two previous days at the same hour as well as morning and everaikg pethe
previous day. Further, external factors, month number, day type, maximum and minimum
temperature of the predicted dagire used as featuresdJsing weather data of the predicted

day are not possibleshen predicting a day aheadrherefore, weatheforecast data is used.

Bad weather forecast entails misbehaviour of the prediction. The RF is compared with
extensively used ML models, ANN and SVM. Also, a persistence model, where the prediction
is exactly the same load demand as the previous day,dsdads a reference. For the ANN
and SVM no extensive hyperparameter tuning is conducted, only slight manual adjustments
for optimisation. For each season in 20a3week of hourly electric load is predicted by the
models, for the USA data as well as th@iSia data. A separate prediction iswfor the special

days, with feature selection by an expert on the cultural background of these days. The
combination between the RF and expert input is able to capture complex load behaviour and
can solve special sas that are specific to cultural or religious events, by means of appropriate
inputs. The RF performs overall better than the AlRBpendent on the season and weekday

the RF performs equal, better or worse than the SVM, on both the Tunisian and theetUSA s
(Lahouar & Slama, 2015)

Another study compared a new deep neural network algorithm called DeepEnergy with a
SVM, a Random Forest (RF), a Multilayer Perceptron (MLP) and a Longe®hmoMemory

neural network (LSTM). A datt from the U.S. district public consumption and a dataset of
electric load provided by the Electric Reliability Council of Texas was used. This dataset
represents roughly 90 percent of the electric load of Texas. In this stiaelynodels trained

on 7 dgs of hourly energy loads (168 hours) to predict for 3 days, 72 hours, for the whole
state of Texas. The input for these models is purely the past energy loads. This study compares
the models with Mean Absolute Percentage Error (MAPE) and CumulativéioracgiRoot

Mean Square Error (GRMSE). The authors mention that the RF does outperform the decision
tree and the SVM, which proves that the model ensemble solution is effective in the energy
demand forecasting. On both performance indick®e DeepEnerg model outperforms the

other models, closely followed by the RF and the L&KM & Huang, 2018l is notable that
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the amount of data, used in this study is fewer than comparable studies. The large amount of
electricity consmption appliances creates relatively smooth graphs, which eases the
prediction.

Taylor et al. (2016) have compared silgorithms for forecasting electricity demand;
autoregressive moving average (ARMA), linear regression (OLS) with principal component
analysis (PCA), exponential smoothing, ANN and two sibgrichmark methods. In the study,

two datasets are used, one from Rio, Brasil, which contains hourly electricity consumption of
the whole city, and one from England and Wales which contains thedietetricity used every

30 minutes. They tested all six models on both datasets and compared the results based on
the MAPE. They conclude that the exponential smoothing model performs the best overall,
followed by the PCA linear regressing model. Thistpaut that more simple methods, which
requires little domain knowledge, can outperform sophisticated alternatives, in this case ANN
and ARMA(Taylor, Menezes, & McSharry, 2018)notable remark Taylor et al. (2016) make,
isthat they used a ANN approach very similar to the one Darbellay and Salma (2000) used, but
got different resultgDarbellay & Slama, 2000)aylor, Menezes, & McSharry, 2006) ¢ I € £ 2 NI a
achieved accuracy is significantly lower, which again indicates that the data, on which the
training and prediction is executed, plays an important role in the suitability and quality of the
model.

The study of Huo et al. (2016) compared SVM and RF far-t&mm electric load forecasting.

For prediction variableghe month number, weekday indicator, holiday indicator, minimum
GSYLISNF G§dzNBZ YIFEAYdzY GSYLISNI Gdz2NB 'y R LINBGA 2 d:
as the performance indicator to compare theodels.Hourly electricity demand ata from
different sources is usefrom multiple cities worldwide. This enables investigating the impact
of the nature of the data on the different models. The programs were run in Matlab bridged
with R environment, by M#ab-R link with SVM and R packages installed. For both the SVM
and the RFthe parameters are optimized by step wise changes. The authors conclude that
both models are excellent for shetérm load forecasting. Overall, no significant differences
could beobserved between the two prediction models. The performance of these models is
dependent on the parameter settings, the data and even sessBarameter settings are
more important for the model fitting of SVM than of the BRio,Shi, & Chang, 2016)

The study of Juardo et al. (2013) tested different ML techniques to for-$&ort electric load
forecasting; RF, ANN, SVM, and Fuzzy Inductive Reasoning. Data from three locations are used,
the entire campus of University of Gdbnia, and two office buildings in Barcalona of 260m

and 50n?. For the campus data, a complete year of hourly electricity consumption data is
collected. For the office buildings, approximatelymonths of hourly data is collected. The
input for the mockls only consists of historical energy load behaviboth electricity and gas
Validation of the models for the campus data, is based on four days of data in different
seasons. For the office buildings, three days are used for validating the modelaifiregt set
consists of all the available data up until the prediction day. The number of data points do
differ per validation day. Theormalized root mean square err@dMSE is used to compare

the different models with each other. The authors concludwttthe Fuzzy Inductive
Reasoning model has the best performance based on the NMSE, closely followed by the RF.
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The SVM and ANN show less accurate results, especially compared to the computational
efforts of the models, indicating that these models are tinat best solution for the used data.

The RF and Fuzzy Inductive Reasoning mcatelhandle sudden changes. Further, it is
concluded that the Fuzzy Inductive Reasoning model, RF and ANN are computationally
efficient enough to be used as rethe prediction models. The authorecommend that the

Fuzzy Inductive Reasoning model and the RF should be stadiagsed morein-depth for
short-term electricity load forecastinglurado, Peralta, Nebot, Mugica, & Cortez, 2013)

Another study which has focussed on predicting hourly energy demand is thiéamg et al.
(2018). The authors of this study have used a random forest to predict the hourly electricity
demand for two institutional buildings on the campus of the UniversityFloridg with
surfaces of 47.270 and 72.520 square felet total, elevenprediction variables were used in

the prediction model. Meteorological prediction features such as; temperature, humidity,
wind speed, rainfall and solar intensity, and time tethdata such as indicators for days of

the week were used. Also they used occupancy data of the buildings. The occupancy was
estimated based on the operation and class schedule of the buildings. A data transformation
process was performed to determine theurly occupancy of each building. This is something
which not many other researches have implemented in energy prediction modelling, probably
because such specific information is hard to get. The output, or dependent variable, is the
hourly building leveelectricity usage. The research has used one whole year of hourly data,
consisting of 8760 time stamps. After removing observations with missing values for both
buildings, an acceptable 99% and 95% of the observations were preserved for the prediction
model. Two approaches were used to test the applicability of RF for energy demand
prediction: (i) complete year as a data set, (ii) months as separate sets.latdbementioned
approach they tested three months, February, July and October. The monthtostin
significantly less data pointebwever, the total trend in the dataset will be less variable when
only a month is used, due to the seasons they are in. They used 80% of the data for training
and 20% for testing, by randomly splitting the dattoitwo sets, for both the yearly and the
monthly sets. They compared the RF with a single Regression Tree (RT) and a Support Vector
Regression model (SVR) to see the performance differences. They compared the models based
on the R, RMSE, Performance Ind@X) and MAPE. For both buildings, the RF outperforms
the other two models, in training and testing, on all the performance indicators. Regarding
the variable importance, the authors conclude that for the yearly models, similar variable
importance resultsare observed. The monthly models did differ more, which indicates that
certain variables play a more important role depending on the season. The occupancy feature,
which is not much used in other researches, did have big impact on the prediction results.
Based on this result, it is recommended in this study that future researches should try to
implement more user behaviour in the field of energy demand predidd@dang, Wang, Zeng,
Srinivasan, & Ahrentzen, 2018)

Fan et al(2017) used aleep learning approach to predict 24 hour ahead cooling load of a
large institutional building in Hong Kong. The authors describe deep learning as a collection of
machine learning algorithms which are powerful in revealing nonlinear and corpateens

in big data. A full year of 3@inute interval data is collected for, temperature, humidity,
supply and return chilled water temperature, and the flow rate of the chilled water
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temperature. The cooling load, which is the dependent variable indfidy, is calculated
based on the three latest mentioned variables. Also, time data, e.g. month, day type, and hour
of the day, is used as prediction variable. Lastlg previous 24 hour of cooling load is used

as a prediction variable, adding 48 moeafures, due to 30 minute interval. Seven different
models were used in the same way to see the performance differemaely,Multi Linear
Regression (MLR), RF, SVM, Elastic Net (ELN), Gradient Boositing Machine (GBM), Extreme
Gradient Boosting Machine(XGB), and ANN. The MAE, RMSE afRMSE, are used as
performance indices to compare the model performances. The data set is split into a training,
testing and validation set, with proportions of 70%, 15% and 15% respectively. Stepwise
optimisation forthe hyperparameter settings is used for optimisation. The MLR and ELN,
which assume linearity, have the poorest performance. The XGB has overall the best
performance followed by the other nelinear models. The authors mention that there are
large differances between the performance with basic, default, settings and optimized
settings. The authors conclude that using deep learning approach can provide accurate and
reliable 24 hour ahead building cooling load predict{an, Xiao, &hao, 2017)

Li et al. (2009) have compared SVM and different ANNs to predict the hourly cooling load of
an officebuildingin Guangzhou, Chin#n this study the Matlab 7.0 Neural Network toolbox is
used to train and develop modelBeatures such as meteorological data, relative humidity,
temperature and solar radiation as well as historical data of cooling load are lnsidal six
months of hauirly data is collected for these features. Five months are used for training, and
one for validation.They compard the modelsbased onthe Mean Relative ErrqiMRE)and

the Root Mean Square Err@RMSE)The SVM performs slightly better than the three ANN
models, but # modelshave sufficient accuracyfor engineering purpose$Li, Meng, Cali,
Yoshino, & Mochida, 2009)

Ryu et al.(2016) used two differenDeep Neural Network (DNNjpproachesthat are
suggested to identify thapplicability, (i) the restricted Boltzmann machine, and (ii) rectified
linear unit DNN. Hourly electricity consumption data provided by Korea Electric Power
Corporation. For eight different industrial categories, (Retail; R&D; Healthcare; Networking
busiress; Vehicle and Trailer manufacturing; Electronic component and Computer
manufacturing; and other manufacturing) five consumers are randomly selected. Also,
weather data, such as cloud coverage, solar radiation and temperatagether with
indicators br seasons, monthand date are used as prediction variables. All data, including
the hourly consumption data, is normalized (when numerical values are considered), cleaned
and restructured before used in the prediction models. The focus for the prediction is only on
business days. For each consumer, 750 days of hourly data is gafioethcee years without
holidays. The MAPE and the RRMSE are used as performance indicators. To overcome
overfitting, kfold crossvalidation is used to determining the stopping criteria tioe training
models. The two suggested DNNs are compared with Shallow Neural Network (SNN), ARIMA,
and DSHW to verify the DNNs performance of forecasting energy demand for individual users.
This comparison is executed in three cases; single load typesusaload typesand
aggregated load types. This rather extensive experiment shows that the DNN based models
can be trained well, with up to three years of customer load data for predictiAigo24 load
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profiles dayahead, without overfitting. Both suggesteDNN based models, significantly
outperform the other tested models, based on the MAPE and RERRWMENoh, & Kim, 2016)

Publications with short term energy demand prediction models for individual households are
not present n abundanceOne of the fewer studies which try to forecast hourly electricity
demand for individual households is that of Rodrigues et al. (2014). They have used an ANN
to predict household&electricity usage up to three days ahead. The authors did elelibly

chose not to use weather data, such as temperature, as a prediction variable, to prove the
possibility of obtaining good results without using extended amount of data. Still, the model
uses 16 inputs such as; available electric appliances, apart@mesa and number of
occupants. These input variables are very user specific and rarely used in other researches.
They used 6 weeks of hourly electricity consumption data of 93 households in Lisbon, Portugal.
Twothirdsof the data is used for training anésting, and one third is used for validation. The

Ry a!t9 IYyR (0KS &adlFyRINR RSQOAFGAZ2Y 2F SNNP
performance. The Levenbulgarquardt algorithm was used to simplify and reduce the
computational effort to run the ANNgy means of pruning. This algorithm determines which
units are not necessary for the solution and removes them making the model more efficient.
The conclusion of this study is that their ANN can accurately forecast daily, average and
maximum, and hourly esrgy consumptiorfRodrigues, Cardeira, & Calado, 2014)

Houimli et al. (201pused a ANN to forecast the half hourly electric load demand of Tunisia.
Nine years2000 to 2008pf half hourly electric load demand is used in frediction model.

The first eight years are used for the training and validation of the madelthe last year is

used for testingAs prediction variablesi KS LJ- aid RIFI&8aQ St SOGNROAGER
with meteorological data, minimum and maximum temperatures, and calendar variables,
such as type of day, week, month, year, are ugdtithe used data is normalized, which is
essential for a good AMperformancgHouimli, Zmami, & BeBalha, 2019)A pattern search
optimisation algorithm is used to determine the best number of hidden layers and the number
of neurons in each layeThe proposed ANN, with Levenbevtarquard algorithm, is
compared with two other ANN modethe resilient backpropagation and conjugate gradient

For the evaluation of the model several performance indicator are uses; the MAE, MPE, MSE,
MAPE and RMSEiveaverage day profiles, Monday, Thursdesiday, Saturday, Sunday, from
2008 are used in the final testing of the mod€&he proposed Levenbefdarquardt ANN
outperforms the other two tested models in all caggtouimli, Zmami, & BeBalha, 2019)

The usage of testingn average day profiles of an entire year makes the prediction less
impressive These profiles are completely smoothed out arw sudden changespikesor
whatsoever appeain these profiles.
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Table1l summarizes the global approaches from some of, taeergy demand prediction
related scientific articles, covered in this literature review.

Tablel Literature review ssamary

Authors Models used Performance Time interval Prediction entity Data used
indicators of prediction
(Kontokosta & Tull, | OLS, SVM, RF MAE, MeaALAR Annual Building, zip 1 year
2017) code and city
level
(Robinson, et al., Multiple Tree, MAE, R2 Annual Commercial 1 year
2017) OLS and SVM buildings
based models (6000+)
(Li, Ren, & Meng, ANN, SVM MSE, RMSE Annual Residential 1 year
2010) buildings(59)
(Kneiffel & Webb, | OLS R2, RMSE Annual Individual 140 days
2016) residential
building(1)
(Xu, Wang, Hong, & SNAANN MAE, MAPE, EPI Buildings (17) 3years
Chen, 2019) RMSE
(Dong, Cao, & Lee, | SVM MSE, SMSE, cv  Monthly Commercial 4 years
2005) RMSE, %error buildings(4)
(Tso & Yau, 2005) | OLS, RT, ANN RASE Weekly Individual 6 months
residential
buildings(1000)
(Biwas, Robinson, & ANN R2 Daily Individual 72 days
Fumo, 2016) residential
buildings(2)
(Darbellay & Slama,| ANN, ARMA  MAPE, maxAPE Daily, Hourly Country (Czech 2 years
2000) NMSE Republic)
(Lahouar & Slama, | ANN, PER, RF MAPE Hourly Country (Tunisia 5,5 years
2015) SVM
(Kuo & Huang, 2018 DeepEnerd§l, cw+RMSE, MAPE Hourly State (Texas) 10days
SVM, RF, MLF
LSTM
(Taylor, Menezes, & ARMA, OLS, MAPE Hourly City level 30 weeks
McSharry, 2016) ANN
(Huo, Shi, & Chang,| RF, SVM MAPE Hourly City level Variableper
2016) model
(Jurado, Peralta, ANN, Fuzzy = NMSE Hourly Campugl), 1 year
Nebot, Mugica, & logic, RF, SVM commercial
Cortez, 2013) buildings(2)
(Wang, Wang, Zeng| RT, RF, SVM R2, RMSE, PI, Hourly Large 1 year
Srinivasan, & MAPE institutional
Ahrentzen, 2018) buildings(2)
41
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(Fan, Xiao, & Zhao, | ANN, GBM,  cv+RMSE, MSE, Hourly®! Institutional 1 year
2017) XGB, SVM, RF RMSE building(1)

ELN, MLR
(Li, Meng, Cai, ANN, SVM MRE, RMSE Hourlys! Commercial 6 months
Yoshino, & building(1)
Mochida, 2009)
(Ryu, Noh, & Kim, | ANN(multiple), MAPE, RRMSE Hourly Industrial 750 days
2016) RIMA, and buildings(5)

DSHW
(Rodrigues, ANN R2, RMSE, Daily, Hourly Individual 6 weeks
Cardeira, & Calado, MAPE, SDE residential
2014) buildings(93)
(Houimli, Zmami, & | ANN MAE,MPE, MSE Halthourly Country (Tunisia 9 years

BenSalha, 2019)

MAPE, RMSE.

Some studies focus on electricity, natural gas, or b
HEnergy performance index, thus no quantitative energy consumpit

[ZIANN based model
BIBuilding cooling load

Some studies have reviewguiblications orthe usage of different models to predict energy
demand profiles. Zhao and Magoulés (2012) concludedhah model has its advantages in
certain cases and applications. In general, enginedsasged models are fiicult to create and
show a large variety in prediction accuracy. Basic statistical models are relatively easy to
developbut can be inaccurate anare less flexibleArtificial intelligentmodel, such as ANN

and SVM, are good at solving nonlinear proie which makes them very suitable for energy
demand prediction, as long as the hyperparameters are tuned appropriately. In many cases
SVM have even more superior results than the ANN approaches. Drawbacks of these two
models are that they require suffigié historical data and are complex, which makes
interpretation of results difficult. The authors state that the establishment of databases with
precise and sufficient historical data of different entities is necessary to further research
develop of relial® and effective prediction models. Alsthe optimisation of parameter

settings when using ML models is an important pg#ttao & Magoulés, 2012)

Another, more extensive, literatureeview study is conductedybSeyedzadeh edl. (2018)

Not only did they review the ML models utilised for energy demand predicbahalso
different pre-processing techniques to enhance prediction accuracy are discussed. The
authors conclude that ML has shown great potential for energy modelling and assessment for
different types of buildingdt has been shown that SVM outperforms ANNoad forecasting

and has the potential to build models from limited amount of data. The authors do question
this statement since they mention that the earlier used ANN models were from a simple
structure and might not have the optimal hyperparameter sags. The Gaussian Process
models (GP) are the only ones that have been used with uncertainty assessment. This is
however not the only possible model &pply uncertainty and sensitivity analysis to. The

authors recommend devoting additional research to hese approaches.

is also
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recommended that more thorough research is desired vwatfocus on the tuning of the
models. So that selecting ML models for energy demand forecasting becomes more
convenient. The authors mention, as also brought forward inliteésature study, that some
studies did fairly not compare different ML mode?dscommon mistake is putting much effort

in optimizing one model and comparing it with default versions of other models which gives
an unreliable resul(Seyedzadeh, Rahimian, Glesk, & Roper, 2018)

2.2.4 Model selection
Many studiedhavesuggested andomparel different machine learning models for predicting
energy demand of buildings and point towards the most promising algorithm in their case.
Overallit is challenging to determine the best machine learning model, since the covered
literature concludes thatanymodels can provide decent accuracy when used appropriately,
with sufficient data and optimized parameteMultiple authors agree that there s method
that is clearly better than otheréTaylor, Menezes, & McSharry, 201)is stated that the
choice of the model is determined by the nature of the défarbellay & Slama, 2000)
Therefore,it is essential to analyse the available data and applicatmmetermine which
model suits best in the given situatioffeyedzadeh, Rahimian, Glesk, & Roper, 2018)
Empirically test different prediction modelsdir without optimizing hyperparameters, to see
which model naturally performs better on a given dataset, is useful to select a proper method.
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2.3Research ga
The growing concerns about energy consumption in residential buildings have driven an
interest inlow- and netzero energy buildings and legislation to increase building energy
efficiency (Kneiffel & Webb, 2016)Athough the residential building semt accounts fora
large portion of the growing energy demand in the world today, the majority of the research
is focused on commercial, industrial and transportat{@wan & Ugursal, 2009Residential
energy consumption ighus, underdevelogd for optimal and robust solutiongBiwas,
Robinson, & Fumo, 2016pne of thereasors that residential energy consumption is less
studied, is the lack of financial incentive compared to industrial, commercial and
transportation sectors(Swan & Ugursal, 20Q9)The privacy sensitivity of collecting
K2 dzid S K 2 f Rénsum@ioh Sldtdloes also providan obstacle in such studig¢Biwas,
Robinson, & Fumo, 201@&uthors of different studies have stressed the essencealditenal
research on smart grid solutionshe integrated grid soluti@nare importansincethey enable
other sustainable energy solutions, such as EV, variable renewable sources and demand
responsgKuo & Huang, 2018More research is desirddr enhancing forecasting capabilities
to identify effective and appropriate use of renewable energy and energy st¢Ragrigues,
Cardeira, & Calado, 20143lthough the availability of smart metering data has led to the
expectdion that electricity demand prediction will move toward the individual household
prediction (Fumo & Biswas, 2015nost studies focus on large energy consuming entdies
predict for aaggregateddaily, monthly or annual vales. Consumption of many different
consumers accumulatear large entities in generadften show a more smooth and constant
demand pattern, which makes predicting overall more accurate.

Since many studies have already tested a variety of machine Igammilels, a combination

of methods should be used to add significant value in the field of rese&cltombining
different methods an improvement can be made relative to only running an optimized
algorithm, which most studies have done.

Lastly mostof the studies have not incorporated renewable energy production at the demand
side, when predicting the energy demands this isbecomingmore and more the norm,
FRRAGAZ2YFE NBaSFNOKZ NBIFNRAY3I LINSRAOUAY 3
gereration systems ossite, is desired.
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3.Methodology

ology of tis research containa combination of methodsto predict short term
and of residential buildingso improve the prediction accuracy chustering
un preceding on the ediction model Clustering households based on their
ption profiles could be beficial for the prediction accuracyn operating
ggested to identify opportunitis improving seksufficiency by sharing
clustersTheunderlyingtheoretical principlef the usedmodelswill be
ing three sections of this report.
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3.1 Clustering model
Many studies, as described in the previous chapter, have used different approaches to
improve energy demand prediction accuracies. In this study a new approach is sufgeste
this same objective. Before the prediction model wdlke place the housesin the
neighbourhoodwill be clusteredbased on their electricity demand profileBhe goal of tis
clustering is to group houses with simikgectricity demandoatterns so that the prediction
for these clusters is more accurate and robust.

K-means clustering is a simple and convenient approach to divide a dataset into K distinct, and
non-overlapping groupsThis approach scales well to large number of samples, and has bee

used across a large range of application areas in different fi€lds main principle for the-K

YSIya Ot dzAGSNRAY3I | LILINRBIOK A& (2 YAYAYAT S (K¢
two important properties (i) each observatios) in this case deand profile, belongs to one

of the K clustersii} no observations belong to more than one cluster, thugn-overlapping

clusters The problem that has to be solved to create good clusters according torteaks

method is(James, Witten, & Hastie, 2017)

0 "¢ Q6 Q& Q. (1)
686 @ o

WhereU is the number of clustey 8 6 representall clusters ando 6 is a measure of
the amount by which the observations within the clusters differ from each otiemed;the
within cluster variationThewithin cluster variationsummed over all the clusterbas to be
as small as possihlto create good clusteraccoding tothe kmeans approach.

The within cluster variatiooan be expressed in a number of ways, howevefabthe most
usedmethod involves thesquared Euclidean distancklere,within the cluster variation is
expressed aflamesWitten, & Hastie, 2017)

Y L o o @)
D s,

In Equation 2, corresponding to this research wog sgives the number of houses in th&
cluster.co represents the value of featuréf observation"Qw isthe average observation
value of the cluster, or centroid.

Further, ) stands for the total number of features used, in this case, only one feature is
considered; total gricelectricity demand.To put this equation towords the within cluster
variation for the K cluster is the sum of all the pairwise squared Euclideaamigs between

the observations of the Kcluster, divided by the total number of observations in tHe K
cluster(James, Witten, & Hastie, 2017)
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The two previously described equatior®mbined, gives the optimization probém that
definesk-means clustering

6 86 3 < ® 3)

0 Q¢ Q4 QG P
D s,

In this studyonly one feature is used in thetustering, theoptimization problem can therefore
be simplified as:

e REVEB (4)
080 D Sﬁ
The algorithm that solves consists of two steps.

() Randomly assign a number, from 1 to K, to each of the houses. These serve as
the initial cluster assignments for the houses.
(1 Iterate the following, until the cluster assignment stops changing:
a. For each of the K cluster, compute the cluster centrtlié¢ aserage values
for each observation of the clusteTheK" cluster centroid is the meaaof
the ) featurefor the houses in the Kcluster.
b. Assign each house to the cluster whose centroid is the closest, by using the
Euclidean distance.

Thisalgorithm is guaranteed to decrease the value of the objective function at each step.
However the (local) minimum that is reacheds dependent on the initial assignments of
houses to clusters. Therefore, it is important to run the algorithm multiplesimith different
random initial configurations. So that the best solution, with the smallest outcorie oation

3, can be selecte(lames, Witten, & Hastie, 2017)

This clusteringtechniquewill be executed in Python, by means of the Sdddirn module
Wluster.kmean® @ ¢ K A das Soday gaiarketeys to be set before running it.

n_cluster:  Represents the number of desd clusters

n_init: The number of times the-kneans algorithm runswith different initial
assignment of houses to clusters

max_iter: Maximum number of iterations of the-keans algorithm for a single
run. In the case the clusters keep changing raétéot of iterations, this
is the stopping rule.

When observing the electricity demand profiles of the clusters for a whole year, trends are
very similar.Individual houses can have different energy consumption behaviour in winter
compared to summeiThi causes the clustering algorithm to distribute the clusters unevenly.
In fact, when clustering the houses based on the full 2 years of, daa70 houses are
distributedover four clusteras 67-1-1-1, which adds no value to the approadihen making

47

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY



Machine learning approach to predict the energy sharing potential in a neighbourhood V.B.C. (Vince) Bergkamp

the period smallerthe model can, after a number of iterations, determine clusters with
substantial number of houses in ifo select a suitable period for the clustering model,
multiple time periods are tested, seasons (three months), months and two week. The season
and month periods show similar, although less extreme, behaviour as the two years of data.
Two weeks seems to lzesuitable period for the-kneans clustering approach to create decent
clusters.Each prediction day, a clustering algorithm must be executed.

To determine a suitable number of clustérs clusters) multiple tests have been conducted
six, five and four clusters as shown inAppendix li¢ Cluster sizes When the parameter
n_clusters is set to five or siit,is observed onlyhree clusters have substantial size, the
remaining clusters contain only a few hous&be smallclusters in these casedo not add
value to the overall prediction accuragothey will be added to the second smallest cluster
which makes the effective number of clustermaller Based on this téghe best number of
clusters isselected to bdour, and this will be used to do the clustering.

The number of times the clustering algorithm randomly puts centroids in the data (n_init) is
on default set to 100. This means the model is run 100 times seidcts the cluster
distribution, from these 100 runsyhere the total within cluster variation is the loweSthe
maximum number of iterations (max_iter), which is an early stopping rule for when the cluster
distribution keeps on changing, is set to 100bie default setting of maxer is 300, this is
increased tdl000, tobe sure the best cluster distribution is achieved and the algorithm is not
stopped before the lowest within cluster variation is achieved.

Table2 shows the parameter setting®r the kmeans clustering moddhat will be used
throughout the research.

Table2 Parameter settings clustering model

Parameter Value
n_clusters 4
n_init 100
max_iter 1000
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3.2 Prediction Model

3.2.1 Model selection
The literature has pointed out that multiple models can accurately predict energy demand
when usedunder the right circumstances. To make a well grounded decision, multiple
algorithmsare tested with their default settings to see whichodel naturallyperforms best
on the given dataf individual houses without clusterind his is done by using the built in
Matlab application Regression Learner. This application offers the possibility to test multiple
algorithms on a dataset relatively quickly. In total dforithms are testedpamely, multi
linear regression models, ensembled trees, support vector machines and single prediction
trees Table3 shows the results for théouselD-7056 as an example. In total 5 randomly
picked houses artestedto determine the best performing algorithm empiricallg.the used
Y2RStax Ttz 2F (GKS (62 &SFNBRQ RFOF A& dzaSR
algorithm, the R RMSE, MSE and MAE are generafdte model with the best average values
of the performance indices, of these 5 tests, is selected.

Table3 Algorithm comparisonexample houstb-7056

Model Rsquared RMSE MSE MAE
Linearregressiof! 0.66 0.4160 0.1730 0.2594
Robust linear regressiBh 0.65 0.4248 0.1805 0.2432
Interaction linear regressidh 0.67 0.4137 0.1711 0.2510
Ensemble Boosted trees 0.67 0.4080 0.1664 0.2363
Ensemble Bagged trees 0.67 0.4082 0.1666 0.2421
SVM Lineaf! 0.65 0.4226 0.1786 0.2428
SVM Quadratic 0.67 0.4138 0.1712 0.2293
SVM Cubic 0.65 0.4213 0.1775 0.2343
SVM Fine Gaussian 0.44 0.5367 0.2881 0.2110
SVM Medium Gaussian 0.66 0.4173 0.1742 0.2316
SVM Coarse Gaussian 0.66 0.4170 0.1739 0.2339
Tree Coarse 0.65 0.4228 0.1788 0.2554
Tree Medium 0.61 0.4466 0.1995 0.2736
Tree Fine 0.51 0.4979 0.2479 0.3032
House 7056

[WTheoretically not suitable due to ndimear relationships betweeautoregressive features|
and the dependent variable.

This empirical test points out that thensemble treedave the best performance among the
tested algorithms; highest coefficient of determination dodesterrors terms. The literature
study has clafied that the ensembled trees are performing well when a training set contains
many correlated variablesThetraining set of this researghdoesindeed contain mutually
dependent predictors such as autoregressive and meteorological featsgesection4.2.2

The literature is therefore in line with the empirical test resussmore irdepth review of
ensemble tree based models, and their origin, will be2giin the next section of this report.
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3.2.2 Regression tree
Since the ensembled trees are derivatives of the regression tree a sort explanation of the
regression tree will be givefirst. A regression tree consists of branches nodes and leaves (or
terminal nales) created by a series of splitting rules starting at the top of the tlaees,
Witten, & Hastie, 2017)

The basic principle of regression trees will be explained by medfigufe3, whichshowsan
example of a single regression tree with a dept three.

Temperature <= 15.85

mse = 2.25
samples = 11126
value =-0.14
True/ *ilse
Temperature <= 7.95 Temperature <= 19.65
mse = 1.38 mse =2.5
samples = 8261 samples = 2865

value = 0.3 value = -1.44

mse =2.4
samples = 1135
value = -2.18

mse = 0.98
samples = 4008
value = 0.77

mse = 1.35 mse = 1.98
samples = 4253 samples = 1730
value =-0.14 value = -0.96

Figure3 Example regression tree

Ly GKA& SEFYLX ST | K2dzaSK2f RaQ St SOGNROAGE
temperature on that particular hour. The top node splits the data for which the temperature

is equal or smaller than 15.85 degrees Celsius to the left branchdata for which the
temperature is larger than 15.85 degrees Celsius to the right branch. These first regions are
split ones more, so that four regions are created, Begure3, with each a predicted amount

of electricity used:

T Q0Q
Y SYQAN Qi OpaiyQdan Qi dgdbQ 0 ™ 1QWQ
Y SYQa R Qi & ol &YQan Qi & uR
Y ASYQann Qi wpad uQ W ¢H MAQ

The tree keeps building until a stopping pamteachedletermined by a stopping rule. In this
case the stopping rule isrmax dept of 2the data is split twice. The prediction value for all
the observations within a region is equal to the mean of the response variable of the training
data in that region. Defining the size of the regions< 'Y is based on minimizing the residual

sumof squares (RSS), at the point of splittofghe total tree. The RSS is defined(dames,
Witten, & Hastie, 2017)

-

Y wsYQan Qi wgdb,Q

T80 {6Q

-
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YYYaQ @ E @ (5)

Here'Q is the error of a prediction, this can be described as the difference between the
measured value and the predicted value, defined as:

Q o0 (6)

Here,® is the observed value of th&isample andb is the predicted value of thefisample.

Total minimization formula can be described(dames, Witten, & Hastie, 2017)

0 Q¢ QI QIR &
‘ @)

N

Where, is the mean value of the dependent variable in jfferegion.

Thealgorithm which solveEquation?, consists ofwo steps which create the regression tree
(James, Witten, & Hastie, 2017)

(D The predictor space is divided into J distinct and-pearlapping regios.

(I For every value that falls in a particular region, the same prediction is made. This
prediction is the mean of the dependent variable for the training observations in that
region.

3.2.3 Random Forest
In the previously described example, only one independeartable is used and only four
regions are constructed. Regression trees where vast amount of data is used to train, will have
hundreds of regions andse multiple independent variables. When problems become more
complex,with more independent variablesna nontlinear relationships, a single tree will not
predict accuratgJames, Witten, & Hastie, 2017)

Random forest is an ensemble learning method, consisting of a collection of regression trees.
It is a homogeneous ensemblesthod since the model uses the same algorithm to create its
base models, in this case regression tré&sndom forests consist of multiple trees, where the
prediction value is an averages of all the constructed trees. However now that there are
multiple predictors a rule must be defined to select the predictors for the splitting regions. In
each tree, every time a split in a tree is created, a random sampitepoédictors is chosen as

split candidates from the full set pfpredictors. So only a part ofi¢ predictors is considered
each node. Thgoal of this approaclsthe decorrelaion of the individual trees. Training sets
often contain one, or a few, strong predictors, along with a number of moderately predictors.
When multiple trees are constructed based on the strength of the predictors, the trees will
look very much alike. The predimts of these trees will therefore be highly correlated.
Averaging many highly correlated quantities will not reduce the variance as much as averaging
many uncorrelated quantities. So creating multiple, comparable trees, will not reduce the
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variance over aingle tree. Therefore, random trees try to create uncorrelated predictions by
randomly choosing predictors at each node of each tree. By only using a subset of the
predictors, the strong predictor wilh some treesnot even be considered and the other
predictors have more influence. The average of the predicted values will be less variable and
hence more reliable. Using this random forest with a small value wfll typically be helpful

if a training set has many correlated predict¢dames, Witten, & Hastie, 201The process

of a random forest is visualized kiigure4.

Randomly Sampling with

Replacement
Data Data Data Data
subset 1 subset 2 subset 3 B subsetn

l } } !

Random Feature Selection

! } l l

Base Base Base Base
model 1 model 2 model 3 e model n

Combination Model

Figure4 Random forest procegWang, Wang, Zeng, Srinivasan, & Ahrentzen, 2018)

To measure the impact of each variable on the overall prediction performadaz
permutation is used. By calculating- ior decrease of prediction accuracy resulting from
randomly permuting the values of a variajtlee importance of a variable can be determined.
The larger the difference in prediction accuracy, the mikeimportant of the variable, the
smaller the difference the less the importance of a variable is(Wang, Wang, Zeng,
Srinivasan, & Ahrentzen, 2018)
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3.2.3.1Parameters
The predictionmodel is executedvith the python module Scikiearn. Scikitlearn is an
integrated Python module with a wide range of statkthe-art machine learning algorithms
for mediumscaled supervised and unsupervised problems. This package is, like Pandas and
Numpy, also open source and encouraged to use bothdiensific and commercial purposes
(Pedregosa, et al., 2011 hisprogramis chosen since it allows more flexibility in the fine
tuning of parameter setting. Withhegression learner app frorilatlab, used for the model
selection in3.2.1, only a fewparameters minimum leaf size and number of learnecan be
changed. Where the Scikdgarn random forest regressor has much more possibilities in terms
of parameter settingsseeTable4 (Scikitlearn, 2019)

Table4 Prediction model parameters

Parameter Description Default setting
n_estimators The number of trees in the random forest. 100
criterion The function to measure the quality of a sp YYasa
max_depth The maximum depth of the tree. Wh2yS
min_samples_split The minimum number of samples require 2

to split an internal node
min_samples_leaf The minimum number of samples require 1

to be at a leaf node
min_weight_fraction_leaf The minimum weighted fraction of the sui 0

total of weights (of all the input sample:
required to be at a leaf node.

max_features The number offeatures to consider wher Wi d#i 2
looking for the best split
max_leaf nodes Grow trees with max_leaf nodes in best Yh2yS

first fashion.If None then unlimited numbet
of leaf nodes.

min_impurity_decrease A node will be split if this splinduces a 0
decrease of the impurity greater than «
equal to this value.

bootstrap Threshold for early stopping in tree growt le-7
A node will split if its impurity is above tr

threshold, otherwise it is a leaf.
[1if auto, than max_features=n_feature
(Scikitlearn, 2019)

Besides thenodel specific hypgrarameters given ifable4. There arealsosomeparameters
regarding the hardware usage such as, n_jobs, which indicates the number of jobs to run
paralle| which is limited by the number of processors ugd&tikitlearn, 2019) For these
parameters the default séings are used, they will not be covered or explained further in this
research.
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3.2.3.2Hyperparameter tuning
To optimize the hyperparameter settinga model selection tool from Scilk#arn, called
Wwl YR2YAT SR{SI NOK/ +QX Aa dzaSRd ¢KA&a G22t Syl
gives the parameter settings that have the best results. The randomized search tool creates a
table with inputs fo each predictor and runs all possible combinations of parameters on a
threefold cross validation.

Table5 Hyperparameter tuning input

Parameter Inputs options
n_estimators Start=200, stop=409 5

max_features Wl dAiR BYES Q 2

max_deph MAnE MHNZXZ wMn.4
min_samples_split 2,3,5,10 4
min_samples_leaf 2,3, 4 3

bootstrap W¢ NHzS QX WCIf 2

Total combinations 960
cross validation 3 3

Total runs 2880

[UStart and stop indicate boundaries of the range where the options are distributed

For all the parameters, not includedtime optimisation modelthe default settings are used.

The exact coding and output of this optimization step can be foundppendix V¢
Hyperparameter tuningThe combination with the best area under curve (AUC) score is
considered as the best estimator. The confidence interval for AUC indicates the uncertainty
for the prediction(DeLong, DeLong, & ClafRearson, 1988 his optimiation step has result

in the following parameter settings, see

Table6. These settings will be used for all the validatiofige optimization of paramers is a
one-time effort in this process.

Table6 Result parameter tuning

Parameter Inputs
n_estimators 350
max_features Wh2ySQ
max_deph 120
min_samples_split 3
min_samples_leaf 4

bootstrap W¢ NHzS Q
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3.2.4 performanceof the predictionmodel
There are different manners to evaluate the quality of fit gbradiction model to a set of
observed dataOne of them is the coefficient of determinationqRseeEquation8 (Fumo &
Biswas, 2015)
' Bw
Y p —2 ®
Bw o

Here wis the mean of thelependent variable defined as:

., P ,
® = 9)

Where & is the observed value dhe response variable of the" observation.w is the

predicted value of the-th sample.ThetermsB «» ® andB w « ,inEquations, are
respectively namedsum of squared error@nd total sum of squared error3he value of the
coefficient of determination varies between 0 and 1 (0 and 100 percent). This percentage
indicates how much variability in the dependent variable, is accounted for by the independent
variables. Many software gages have a built irf Ralculation method. It is not necessarily
true that a model with a high?Ralue fits the data well. Specifically for multi linear regression
the coefficient of determination is adjusted and expressed as followEsgtion9:

: : P
Y P P Y ——
E N p (10)
Here, n is the number afbservations and p is the number fefatures, predictive variables
Another performance indicator is thmean absolute erro(MAE) It can be calculated to
evaluate the quality of the model, the MAE is expressefignationl1.
... B wy
060 ———— (11)

Here,w is the observed or measuredata andw is the predicted datayeneratedby the
prediction model n representsthe total number of observations. The MAE has a value
between 0 and 1, where 0 &sperfect fit.

Themeansquarederror (MSE) calculates a risk metric corresponding to the expected value of
the squared error, seEquation 12

W (12)

Here,w is, againthe predicted value of theth sample andb is the corresponding true value,
then the MSE is estimated ovemmmber of observations
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Another parameter that tells something about the quality of fit of the model isrtfzeé mean
square error(RMSE)which is a measure of thscatter in the data around the model. The
equation of RMSE for multi linear regression is writte&dquationl3:

Bw o
YO YO TQ Mo YO (13)

Since themodels will predict clusters of dwellings with a variable number of houses, the error
terms will have different ranges, due to the different cluster sizes.

To compare the error terms of the different models tb@mulative variation of root mean
squared error (c(+RMSE) is used, this is the normalized RMSE. Normalisation is done by
dividing the error term by the mean value of the particutdaservations of theluster.

v e e YD YO
wL YU YO ” (14)
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3.3 Operatingsystem

3.3.1 Framework for operating system
For the proposed operating system, feamework is of some necessary conditions and
requirements is drawn up. Without these conditions, the operating systannot be
applicableFirstly, acomputer systenmust be available which hascesgo all real time smart
meter data of the neighbourhoo@dnd meteorological forecast for one day aheakhe
computer must be able tetore and preprocess thalata andexeaite the clustering algorithm
to create clusters, as well agecute theprediction algorithm to run the predictiorurther,
this computer mustbe able to operate all the switches in the electrical circuit of the
neighbourhood. This computer system isi K G 2 88H@ operation Another requirement is
that al houses arendividuallyconnectedon the LVgrid, to the ES@nd to the other houses
So that they can be connected and disconnected to thgiid/circuit ESSircuit or another
cluster,in the appropriate conditions.

3.3.2 Proposed circuit
A schematic overview of the electric circaftthe neighbourhoods given irFigure5.

MV-grid
l A A A | Transformer MV

to L\igrid

L\Vegrid 4

—

Cluster0 Clusterl | Cluster2 | Cluster3 |
Storage system
L+
[
‘ M ‘ M | N

Figure5 Schematic view of electrical circuit neighbourhood
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In Figure5 the houses are not pictured individually, but as clusterghe circuit, @ch cluster

iIs schematized as \ariable resistorrepresenting theenergy demanding state, and a solar
station, whth can provide electricity to the circuitvhen productionexceeds demandThe
clusters are connected to two switches, one for connecting to thegrid/ and one for
connecting to the ESShe clusters can either be connected to thedr\d, connected to tke
storage systemor completely disconneed. For example,n periods where enough solar
energy is producetb provide thedemanded electricity, or even more, tdhe cluster, it can
be switched off from the LVgrid, and only connect to the storage systeso that it gets
charged.

In cases where direct sharing is possible, the switches are able to create connections between
them. Figure 6 highlightsthe subsystem of interconnected clusters to clarify gréenciple of

the direct sharing circuits. Thesee two-way connections, electricitys able to go towards

and away from edtcluster. This bidirectional connections breaks down the border between
electricity generation and consumption, which is an important characteristic of the smart grid
(Ryu, Noh, & Kim, 2016)

MV-grid
Transformer MV
to L\fgrid

L\Agrid

Cluster0 Clusterl Cluster2 Cluster3

I
| I

Figure 6 Electrical circuit for direct sharing
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3.3.3 Operating rules
Together with theset framework and the proposed circuit, the following rules should be
executed. Cluster 0 is used as examf@milar conditiors andrules are applicable for the
other clustersas well seeTable7.

Table7 Operating rules

Conditions

Operationrules

If ClusterO hagositive demand and Clusterland
Cluster2and Cluster3 havepositive demand and
ESS haso capacity’; execute rule 1 else check
condition 2.

If ClusterO hagositive demand and Clusterland
Cluster2and Cluster3 havepositive demand and
ESS has capagcityexecute rule 2, else check
condition 3.

If ClusterO hapositivedemand and Clusterland/or
Cluster2 and/or Cluster3 havenegative demand
execute rule3, else checkcondition 4.

If ClusterO hasnegative demand and Cluster 1
and/or Cluster2and/or Cluster3 has/haveositive
demand execute rule4, else checkcondition 5.

If negative demandis larger than accumulated
positive demandin other clusters execute rule5,
else checkcondition 6.

If ClusterO hasiegative demand and Clusterland
Cluster2and Cluster3 havenegative demand and
ECGloes havecharging capacity lefexecute rule6,
else checkcondition 7.

If ClusterO hasiegative demand and Clusterland
Cluster2and Cluster3 havenegative demand and
ECCdoes not have charging capacity leftexecute

Usegird power.

Use ESS power.

Use surplus electricity from
other cluster.

Sharesurplus of electricityo
demanding clustgs)

Charge ESS with excess
electricity.

Charge ESS with excess
electricity.

Send excess back to grekll
in demand response
marketlong -term storage

rule7, else checkcondition 1.

WQubstantially charged sdhat it can providethe cluster withelectricity.

These rules covehe main circumstances which céake placen the neighbourhood. There

are many combinations possible for the exact status of each cluster. For example the surplus
electricity, mentioned in operation ral3, can come from any cluster which has a surplas in
specific point in time

The objective is tareate an operation schedule based on the predicted values of electricity
demand in the different clustersThe operation schedule consists of a table wlkburly
operation commands, based on the condition ruleSable7, for the operating systenklease
note that the applicabilityof suchschedule is very dependent dhe prediction accuracyn
cases where the prediction models conditions deviate from the actual state of the
neighbourhood, the operating rules might not be suitable.
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Rule numbei7 inTable7, suggests to use excess electribilylongterm storage when there

is negative demand in the neighbourhood and the ESS is fully charged. Excess energy
generated in summer and spring can be stored to consume during the winter and autumn
when demand is higher. Li and Chan (2017) have summed up widely recognized energy
storage technolgies, besides E®S & Chan, 2017)

Thermal energy storage;

Electrical and mechanical energy storage using flywheels;

Pumped hydroelectric energy storage relying on reservoirs;

Compressed air energy storage;

Electrical energy storage using a combination of electrolysers and hydrogen fuel cells.

Exact applicatiomnd technology bthe longterm energy storage is not further considered in
this study.
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4.Data

coming of smart meter data enables a cldsek into the energy demand patterns of

Is, and possibly revealsssibilities in improvingnergyselfsufficiency Smart meter

en considered as privacy sensitive, therefore, not many studies have been able to
etailed energgonsumption data of a large sample of households. Since this
ompletely built around a provided dataset, it is appropriate to assign a chapter to
is chaptethe origin, source and content of the data will be described. Atso a

w of the datare-processingand feature selection will be given.



Machine learning approach to predict the energy sharing potential in a neighbourhood V.B.C. (Vince) Bergkamp

4.1 Datadescription and analysis
The data used in this research is provided by Royal BAM giltvgrenovated houses are
located in the municipality of Soest,village west of Amersfoonh the province of Utrecht.
The data is considered as privacy sensjtitierefore no exact address information of the
dwellings nor information about the housingrporation is givenNo sociodemographic
information or time schedules of residents is provided for this same reason.

The provided dataset consistsaimmaseparated value@CSV) filesyith data of household?
energyusagefor every 15 minutes of the atwo years (2016, 2017). The data is collected
from renovatedhouses of a social housing corporatidine houses have living surfaad 85

to 120 square meterghis is not known per dwellind\ll housedhave hgh quality insulation
and new windows appd during the renovation Further the dwellings are not connected
with natural gas andccontain PVpanelsand HPsMore exact specificationsgiven by the
provider of the dataset, are shown irable8.

Table8 Technical specifications dwellings

Specification Value
Living surface: 85-110m2
RCscore roof: 6
RCscorewalls: 3.5
U-value windows: 1.1

Hot water buffer: 150L
Heat Pump power: 1.2kW GPR.9)
PV installation capacity: 5-8kW peak
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The dataset contains Mariables,divided over; electricity consumption variables, electricity
production variables, heat pump variables and boiler variabdesh measured every 15
minutes seeTable9.

Table9 Variablesdescriptionof provideddataset

Variable Description

Time stamp 15-minute intervals from2016:01-
1T00:00:00+01:00Amsterdam to
2018-12-31T2:00:00+01:00Amsterdam

Consumed high Gonsumedelectricityon high tariffhours in kWh

Consumed low Consumedelectricityon low tariffhours in kWh

Solar inverter produced Produced solar electricity

Produced solar high Produced and fed bacglectricityon high tariffhours
in KWh

Produced solar low Produced and fed bac&lectricityon low tariffhours
in KWh

Heat pump consumed Consumed electricity by the heat pump in kwWh

Heat pump set point Temperature set point in €bf the heat pump

Heat pump room temp Actual room temperature in €

Heat pump space heating delivered Amount of heating delivered by heat pump in GJ

Boiler hottap water consumed Volume of consumed hot tap water in®m

Boiler set point temperature tap water Set point temperature of boiler iGs

Boiler supply temperature Temperature of hot tap water when consumedGa

In many of theCSMiles, the columns regarding boiler sgbint temperature, actual boiler
temperature and space heating delivereslcompletely empty. These variables are taken out
of the datasets entirely for consistency purposgsgce it isnot desirable to have differences
in the number of variables in the datasdthe variables regarding boiler temperatures will not
be found alywhere further in the research.

Thehouseholds use a dynamic cost pricing for their electricity consumption. Idditene

period, from 06:30 in the morning to 22:30 in the evenintpe high tariff is applicableThe

low tariff is applicable in thaight time, from 22:30 in the evening to 06:30 in the morning.
This could be used to optimize the operation system of the ESS. This research will however
not further analyse any opportunities regarding dynamic pricing

4.2 Feature engineering
The datapre-processingis done in Pythor(PFS, 2019)n the datacleaning proces$wo
modules are used, which enable fast and efficient data preparation in the Python
programming language; Pandas and NumPy. Pandas is a Python data ahedygi$bndas,
2019) Numpy is a Python module for scientific computing with, among many other things,
useful linear algebra and random number capabilitfpf)JMFOCUS, 2019Another used
panda modile is Matplotlib, which is an open source plotting libréHunter, Dale, Firing,
Droettboom, & team, 2019)Matplotlib will be used to visualize pprocessed data and
results.
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4.2.1 Prediction variable
The goal isd predict tre totaldemandthese houses have on the electricity graahd improve
the energyselfsufficiencyby sharing between houses, or clusters of hou$és. totaldemand
on the grid computedd @ & dzYYAy 3 GKS O2yadzyLWiAzy @FNRIOTE
12K KAIKQZQ {fAYYS aSGSNJ Lm O2yadzYSR (2K f2
adzo GNF OGAy3 GKS G20Ff LINPRdAzZOSR St SOGUNROAGE ¥
This new variable © I f NS R YW 2 v ZaddYiillbeittrgs@onsevariable.This variable
contains both positive, when the houses are demanding electiaeitynegative valuesyhen
they have a surplus from electricity generated by the PV panels.

In total 38 predictivdeaturesare created divided overautoregressive variables, categorical
time-related variables and meteorological variables

4.2.2 Auto regressivéeatures
Featuresbased on historical data are used to improve the model accutaais case total
grid consuption will be used to createhe autoregressive features. In total eight
autoregressive features are createseeTablelO.

Tablel0 Autoregressive fdares

1. tot_gridconsumed tslday

2. tot_gridconsumed t2days
3. tot_gridconsumed ts3days
4 tot_gridconsumed tgldays

tot_gridconsumed tbdays
tot_gridconsumed tdays
tot_gridconsumed ts7days
-tot_gridconsumed tsl4days

0 No o

¢tKSaS FSIHGdz2NBa OFy 06S YFIRS o0lFaSR 2y (KS Wiz
tFYyRIFa FdzyOQliA2y WaKATFGO0Q FdzyOluA2yd ¢KAA aKk
where each observation is a period. THél 2NRYRAp O 2 wariaaiSsRifed by the number

of observations to reacprevious day, or days. For example, to reach the previous day the

data must be shiftedby 96 observation$24 hourshas96 observations ofl5 min). This means

that these autoregressevvariables lack data in the first roygnce there is no previous data

for the first day of the datasef2 NJ Wi 2 (i ¢ 3 NAwnRRO tista@ans $hathe (first

1344 observations are not present.

4.2.3 Categorical features
It is recommended biylocanu et al. (2016) that adding extra informaticoncerning the time
such as day and month would improve their mofMbcanu, Nguyen, Gibescu, & Kling, 2016)
Todothisfour F S G dzNBa I NBE | RRSR (R2 eQES YEBHiakk @D QL.
WESIpa2eykBS t I yRIa GellsS W51 GS¢AYSQ ShBaaady Al Sa&
months (Januar¢ December) based on the date and time. Héweo columns are added, one
with a label for the weekday and one with a label faynth. The part of day variable is created
YIydzt tfe& o6& |RRAYy3 ySg 0O2fdzYy Ay GKS RIGI &S
6:00CMHYNNE W FGSNYy22yQ HgNIRESGHPADSYAYHASNIBR NI
18:000-H n Y nn X |y KHaythhb kt@nkali2@06r0R. MK S O NAFof S WaSH az
olaSR GKS YSGS2NRf23A0!If & SJulg! 2dya dz& & @ X 3 V1| didiiAd:
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W{ S LI} -SatobeBNa S Yo SN >
Aprika I @ Q> | OO 2 NUR KM\, 2019)

& A-Jau&rydIS 0 BEDO SIE 6 NI Yy R { LINJ
6KS Yb

For all thepreviously describedategorical features, dumrafgatures are createdThis allows
the modelto recognize these features as a categorical type.do this the Pandas function
which creates dummy vaables This transforms the designated features to dummy features
0 0 Hour Reatwre§ mdrning, aftedhabn evénifig and night
where by means of zeros and onesdicatesif a particular datapoint belongs wwhich part

ForexampleW LJ- NIi 2 F

of the day seeFigure?.

BB features - DataFrame

- O X

2816-81-083
19:00:00
2816-81-83
20:00:00
2816-81-83
21:00:00
2016-01-83
22:00:00
2816-81-83
23:00:00
2016-01-84
68:00:00
2816-81-84
681:00:00
2816-01-84
682:00:00
2016-01-84
683:00:00
INA-AT AL

Index part_of_day_Morning part_of_day_Afternoon  part_of_day_Evening part_of_day_Night

~

Figure7 Example dummy variables 'part of day"

In total 27 categorical featres are creategseeTablell.

Tablell Categorical features

Part of day and day of weel

Months

Seasons

part_of day_Night
part_of _day_ Evening
part_of _day_Morning
part_of day_ Afternoon
weekday Wednesday
weekday_Tuesday
weekday_Thursday
weekday_Sunday

. weekday_Saturday
10.weekday Monday
11.weekday Friday

©Co~NoOG AN PE

12.month_January
13.month_February
14.month_March

15. month_April
16.month_May
17.month_June
18.month_July
19.month_August
20.month_September
21.month_October
22.month_November
23.month_December

24.season_winter
25.season_spring
26.season_summer
27.season_autumn

{2YS 2F (KS&aS OFINAIlIof Saxz

adzOK | a wa

should be taken into account when picking a prediction model.

S

P A2y WoAY
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4.2.4 Meteorologicafeatures
In addition to the features from the provided dataset, flgavailable meteorological data is
gathered from the KNMI databaseln many energy demand prediction models,
meteorological variables are used. The models testedioyo and Biwas (2016pntained
meteorological data such aemperature humidity and solarradiation (Fumo & Biswas,
2015) Also,Mocanu et al. (2016)ecommend usingxtraweather relatedinformation such
as outside temperature would improve their mod®ocanu, Nguyen, Gibescu, & Kling, @01

Weather station de Bilt, with a distance of approximately kilometresis theclosest weather
station from renovation project in Soesthe KNMI has freely available historical data which
can be downloaded online by everyone. For the period f&1#12-2015 to 3112-2018 the

hourly measured data for temperature, relative humidity and dew point temperature is
downloaded. Temperature is measured in 0.1 degrees Celsius, 1.50 meter above ground level.
The relative humidity is measured in percentag&0lmeter above ground level. Dew point
temperature is measured in 0.1 degrees Celsius, 1.50 meter above ground level. These three
meteorological features are numerical and have the notation in the datasetssible imTable

12.

Tablel2 Meteorological features

1. Temperature
2. Humidity
3. Dew point temp

It should be taken into accountvhen selecting a prediction moddhat the meteorological
variables are correlated with eacither (Fumo & Biswas, 2018)hen applying linear models

to this data, the highly correlated variables should be mergddo, these meteorological
variables are actuly measured values. When predicting one day ahead, no certain
information of these variables is available and only weather forecast data can be used.

4.3 Datacleaning

4.3.1 Unwanted strings removal
The provided dataset contains unwantsttingsin numericalcolumns such as unitsyhich
makes it unable to operate the valuethis idecause of the fact thaPythonautomatically
recognizes the data as string®n literal characters are involvethther than the numerical
values they representThe fist column of the dataset indicates the timestamp of the
YSI &dzZNBR @I f dzS & = 201601-3 BOL:30108+@1:0@ Amstérdahdd ¢AAS Y | y R
module is able to recognize time indication when it is displayed according dertain
standard As can be &n the provided timestamgontainssome unwanted information? ¢ Q >
WobnamYnnQ FYR W YAaUSNRFIYQd ¢KS&S aAGNAy3Ia I NB
02 WLI y RI &odpythoil aodgni¥eS @ as a date tin#his is necessary for feature
engineeing later where indicators will be made for date and time related features.
Consumption and production data in tklatasetare consequently displayed with usitéWhQ
0SYLISNI G§dzZNE NBf PAQSRKRI Ay D2KET BFEANFR RKALD OR
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dzal 3S O¥BQd I AKHRa 3V dzyAGa T NBE NBY2OSR WO 1KS ¢
to create editable numerical values.

4.3.2 Replacing outliers
The provided data contains some unrealistic outliers, values a hundred times larger than the
mean. Thealata is inspected visually to see where the threshold for a so called outlier should
be. According to this visual inspection a value of 2kWh is determined to be the threshold for
outliers, every value above will be replaced by a realistic replacenitsrgreceding value
This is done by means ab dzY L2 Fdzy Ol A2y WTF2NBI NR FAf{f Qb {2
preceding on that outlierwill occur twice. To test the whether this threshold of 2kWh is
suitable,arandomsample of5 houses aretested. Asan example,dr houselD-5005 only 20
values are above 2Kh, whichisonly0.028% of the observation$Sincethe amountof values
above the threshold is so small, and the observations just below the threshohigirghe
threshold value is consideree@alisticand suitable for this dataAfter filling the outliersthe
pattern of electricity demanaver timebecomes more visiblesee Figure8.

o

Figure8 Removing outliers, before and after

4.3.3 Replacing mgng values
Forthe sake of the quality and reliability of the mogd@D houses with the least missinglues
are selected. These houses have on avere®®8: YA daAy3a @l fdzSa Ay (KS
variable ranging from 5.2 t029.8%.These missing values diiestly filled by thevalues of
the previous day same time. This makes sense since therdighacorrelation(correlation
value d0.84d> o0SG6SSY Wi2GPaNARyYO2Y a dzWlRE RXyDQ CIKYRA
step does not completely fill all the missing valu@s. places wherenore than a full day of
data is missing, missing values remainilied. The next step is to fill the missing values with
the consumption values of the previous week same time. The correlation between
Wi20GPINRARRYO2yYy adzyLIi A 2 yvndn R IlyeRE QY GRE YIINA RND 2 /K ldzy SR
but still notablewith 0.59.Sill not all missing values are filled, on places where more than a
week of data is missing consecutive the missing values remain. However, the number of left
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over missing values are considered acceptalter filling the missing valuewith the
descrited two stepsthe average amount decreasém 10.8%0 2.91%anging from 1.%
to 14.2%.This is considered acceptablkes a comparisorhe study of Robinson et al. (2017)
removes samples with more than 25% missing va{&ebirson, et al., 2017)The complete
overview of missing values can be seeAppendix k Missing values

4.4 Clustering and prediction sets
After goingthrough the daa pre-processinga clustering set is created. This set only contains
the grid demand of each houssince the clustering will be solely based on the grid demand
profiles of the housesA visualisation of grid demand ftwo years ofa single house is given
in Figure9. The grid demand is often, especially in the summer months, negative. This
indicates that the PV system generates more electritigntused at that specific point in time.
The total grid consumptions, which can be negative, is calcukatedrding taEquationl5.

tot_grid_consumpitan = Slimme Meter p1 consumed kWh high +
Slimme Meter p1 consumed kWh low + Heat pump consumed kWh (15)
Z Solar Inverter Produced kWh

Grid demand 2016-2017 example household

—— Grid consumption of household

grid consumption [KWh]

-2 4

—4 4

- 4
201512 201603 201606 201609 016-12 2017-03 2017-06 2017-09 01712
Date

Figure9 Grid demand 2012017 for example household

It can be visually observed froRigure9 that, currently, large quantities of electricity are fed
back to the grid.Managing this excess electricity by using a ESS could therefore increase the
seltsufficiency of the dwellings.
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For each individual household a prediction set is created, containing all the previously
described features. The prediction set is made hourly and has a shape of 38x17544 with
666,627 data points per prediction set. In total one clustering set and 70 picdgets are
generated.

In this clustering set the rowsepresentan individual house, the columns contain the
timestamps, sed-igurel0. The clustering set consist$ fitteen-minute interval dataand has

a shape o70176¢70, which is4,912,320data points.From this data set is used to extract the
two weeks preceding on the prediction day.

Index 2016-01-03 08:30:00  2016-01-03 08:45:00  2016-01-03 09:00:00  2016-01-03 09:15:00
grid_consumption_4687 B.830808293 8.8500488 8.8300293 8.119873
grid_consumption_4689 B.0683027 8.8200195 2.01600898 0.8197754
grid_consumption_4692 B.8197754 8.850293 -8.8102539 8.8297852
grid_consumption_4696 B.22998 8.298839 8.269775 8.248234
grid_consumption_4698 B.84808391 8.189697 -0.8200195 8.266801
grid_consumption_478@ B.80976562 -8.80976562 8.8200195 -8.9100898
grid_consumption_4781 8.8560488 8.8400391 8.169922 8.27002
grid_consumption_4783 8.200439 @.289795 8.148137 8.259766
grid_consumption_4786 8.249512 @.2998a5 8.230225 8.319824
grid_consumption_4787 8.318859 8.189697 8.26801 0.22998
grid_consumption_4714 8.360229 8.179688 8.349976 8.2008317
grid_consumption_4715 8.199707 8.259766 8.280273 8.296639

FigurelO Clustering seéxample
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5.Results

t part of this results chaptehows the overall results of the 10 validation days. The
sent both weeland weekend days and contain all four seasons. The second part
r focuses on one validation day, May™M®2017. The results and process to get
will be described and explained in detail.
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5.10verall results

Figure1l shows a visual representation of the complete process. This process has to be

worked through for every prediction that is executed.

Data type

_
Smart meter data

—

S —
Time data

—

e —
Meteorological data

Predicted electricity demanc

Per hour

Determine direct sharing

Data preprocessing

Accumulate prediction set:
according to clusters

|

]

Training data

Prediction data

Train random forest modegs

Predict electricity

demand

potential e g
Determine indirect sharing N Operate ESS
potential [ i’ P

Calculate excess electricity
for long-term storagée
demand response

Figurell Research methodology

In total, 10 validation days have been selected throughout 2017Tabé13. The validation
days cover week and weekend days, are all in diffemonths and cover all seasons.

Table1l3Validation days

VALIDATION CLUSTER WEEKS PREDICTIOI DAY # OF
CLUSTERS
1 20-01-2017 to 0302-2017 04-02-2017 Saturday 2
2 09-03-2017 to 2203-2017 23-03-2017 Thursday 3
3 06-04-2017 to 1904-2017 20-04-2017 Thursday 4
4 04-05-2017 to 1805-2017 19052017 Friday 4
5 05-06-2017 to 1806-2017 19-06-2017 Monday 3
6 09-07-2017 to 2207-2017 23-07-2017 Sunday 4
7 01-08-2017 to 1408-2017 1508-2017 Tuesday 3
8 09-09-2017 to 2309-2017 24-09-2017 Sunday 4
9 03-10-2017 to 1610-2017 17-10-2017 Tuesday 3
10 06-12-2017 to 1912-2017 20-12-2017 Wednesday 3
72
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As can be seen ihablel3, some validation days have less than four clusters. Timedns
clustering technique is forced to create 4 cluster, which is in some cases, is not suitable for the
actual patterns in the datalhis can results in a cluster with only one or a few houses. In such
cases, the cluster with the smallest number of houses, is added to the second smallest cluster,
seeAppendix Ik Cluster distributiorSeptember 2017or an example. This approach is used

to keep the prediction accuracy of the clusters high.

Tablel4 shows, for all the validation days, the model accuracy indices. Some noteworthy
observations can be made from these results.

Tablel4 Total validation results

Validation 1 2 3 4 5 6 7 8 9 10
nr.
Date February March April May JunelSth July 23rd  August September October December
3rd 23rd 20th 19th 15th 24th 16th 20th
Cluster | Weekday Saturday Thursday Thursday Friday Monday  Sunday Tuesday Sunday Tuesday Wednesday
R2 0.69 - 0.92 0.73 0.91 0.85 0.80 0.77 = 0.48
R2adjusted 0.68 - 0.92 0.73 0.91 0.85 0.80 0.77 - 0.47
MAE 8.21 - 10.50 16.22 7.14 11.55 9.05 10.33 - 3.47
Cluster| MSE 107.93 - 173.19 | 524.61| 127.27 274.46 161.37 218.06 - 18.07
0 RMSE 10.39 - 13.16 | 22.90 11.28 16.57 12.70 14.77 - 4.25
;f;:”te 27.90 ; 4039 | 41.55 | 3353 3539 | 23.14 25.29 ; 28.89
cv-RMSE 0.36 - 0.33 0.55 0.34 0.47 0.55 0.58 - 0.15
R2 - 0.94 0.90 0.77 0.94 0.76 0.85 0.83 0.89 0.26
R2adjusted - 0.94 0.90 0.77 0.94 0.76 0.85 0.83 0.89 0.25
MAE - 8.51 7.47 7.71 6.05 5.88 8.56 4.18 3.39 3.32
Cluster | MSE 5 120.87 93.60 | 107.17| 66.30 79.66 131.33 40.99 19.46 19.06
1 RMSE - 10.99 9.67 10.35 8.14 8.93 11.46 6.40 4.41 4.37
f‘nbes;r']”te - 3751 | 2616 | 2085 | 32.56 18.17 2474 1%,67 11.77 16.46
Cc+-RMSE - 0.29 0.37 0.50 0.25 0.49 0.46 0.47 0.37 0.27
R2 078 0.89 0.92 0.75 = 0.87 0.86 0.87 0.41 0.48
R2adjusted 0.78 0.89 0.92 0.75 - 0.87 0.86 0.87 0.41 0.48
MAE 8.54 10.86 7.33 9.58 = 5.24 4.05 8.17 7.84 4.33
Cluster| MSE 175.73 | 190.05 | 101.04 | 188.75 - 45.68 38.65 116.41 123.71 30.98
2 RMSE 13.26 13.79 10.05 13.74 = 6.76 6.22 10.79 11.12 5.57
fntf:r']”te 36.68 | 36.65 | 30.31 | 26.07 ; 17.97 14.58 24.74 16.21 31.67
cv-RMSE 0.36 0.38 0.33 0.53 - 0.38 0.43 0.44 0.69 0.18
R2 - 0.90 0.94 0.81 0.62 0.71 - - 0.79 -
R2adjusted - 0.90 0.94 0.81 0.62 0.71 - - 0.79 -
MAE - 7.60 3.84 7.53 8.56 6.63 - - 4.29 -
Cluster | MSE - 98.82 28.41 | 101.94| 181.60 103.37 - 5 29.74 =
3 | RMSE ; 9.94 533 | 1010 | 13.48 10.17 ; ; 5.45 ;
alesellie - 2812 | 19.14 | 21.15| 20.30 20.06 - ; 9.43 -
mean
c+RMSE - 0.35 0.28 0.48 0.66 0.51 - - 0.58 -

All validation days are from 201
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Machine learning approach to predict the energy sharing potential in a neighbourhood V.B.C. (Vince) Bergkamp

The variance of the prediction accuracies from the different validation day is rather large.
Multiple validations have R2 values of over 0.90 which is high, considering that this is a
validation An example of very goaesults is visible ifrigurel2. As can be seen does the
prediction line follow the same trend as the actual measured profifethe middle of the day

when excess electricity is at its peak, the prediction model shows less extreme shapes
especially in cluster 1 and Zhis causes the errors, performance indices,aadther high

kWh Grid Consumption
i

042000 02003 042008

w003 w201z w015
Date: 20th of April 2017

Figurel2 Predicted and measured values validation nurdber
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