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Abstract 
¢ƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ƻŦ ŜƴŜǊƎȅ ǎǘƻǊŀƎŜ ƛǎ ŎǊǳŎƛŀƭ ŦƻǊ ǘƘŜ ŜŦŦƛŎƛŜƴǘ ǳǎŜ ƻŦ  ǊŜƴŜǿŀōƭŜ ŜƴŜǊƎȅΦ Lƴ ƻǊŘŜǊ 

ǘƻ ŀŘƻǇǘ ŀƴŘ ƻǇŜǊŀǘŜ ŜƴŜǊƎȅ ǎǘƻǊŀƎŜ ǎȅǎǘŜƳǎ ƛƴ ǘƘŜ ŜƴŜǊƎȅ ƎǊƛŘΣ ŀŎŎǳǊŀǘŜ ǎƘƻǊǘπǘŜǊƳ 

ŦƻǊŜŎŀǎǘƛƴƎ ƻŦ ǘƘŜ ŜƴŜǊƎȅ ƭƻŀŘ ƛǎ ŜǎǎŜƴǘƛŀƭΦ Lƴ ǘƘƛǎ ǎǘǳŘȅΣ ǘǿƻ ȅŜŀǊǎ ƻŦ όŦƛŦǘŜŜƴπƳƛƴǳǘŜ ƛƴǘŜǊǾŀƭύ 

ŜƭŜŎǘǊƛŎƛǘȅ ŎƻƴǎǳƳǇǘƛƻƴ Řŀǘŀ ƻŦ ǎŜǾŜƴǘȅ ŘǿŜƭƭƛƴƎǎ ƛƴǎƛŘŜ ŀ ǊŜǎƛŘŜƴǘƛŀƭ ŘƛǎǘǊƛŎǘ ƛǎ ŀƴŀƭȅǎŜŘΦ ¢ƻ 

ŘŜǘŜǊƳƛƴŜ ǘƘŜ ōŜǎǘ ǎǳƛǘŀōƭŜ ŜƭŜŎǘǊƛŎƛǘȅ ŘŜƳŀƴŘ ǇǊŜŘƛŎǘƛƻƴ ƳƻŘŜƭ ŦƻǊ ǘƘŜ ƎƛǾŜƴ ŘŀǘŀΣ ŀ 

ƭƛǘŜǊŀǘǳǊŜ ǎǘǳŘȅ ǘƻƎŜǘƘŜǊ ǿƛǘƘ ŀƴ ŜƳǇƛǊƛŎŀƭ ǘŜǎǘ ƻŦ ƳǳƭǘƛǇƭŜ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ƳƻŘŜƭǎ ƛǎ 

ŎƻƴŘǳŎǘŜŘΦ tǊƛƻǊ ǘƻ ǘƘŜ ǇǊŜŘƛŎǘƛƻƴ ŀƭƎƻǊƛǘƘƳΣ ŀ ŎƭǳǎǘŜǊƛƴƎ ƳƻŘŜƭ ƛǎ Ǌŀƴ ǘƻ ƎǊƻǳǇ ƘƻǳǎŜƘƻƭŘǎ 

ǿƛǘƘ ǎƛƳƛƭŀǊ ŘŜƳŀƴŘ ǇǊƻŦƛƭŜǎ ƛƴ ŀ ǘǿƻ ǿŜŜƪ ǇŜǊƛƻŘ ǇǊŜŎŜŘƛƴƎ ǘƘŜ ǇǊŜŘƛŎǘƛƻƴΦ ! ǊŀƴŘƻƳ ŦƻǊŜǎǘ 

ǊŜƎǊŜǎǎƻǊ ƛǎ ǳǎŜŘ ǘƻ ǇǊŜŘƛŎǘ ƘƻǳǊƭȅ ŜƭŜŎǘǊƛŎƛǘȅ ŘŜƳŀƴŘ ŦƻǊ ŜŀŎƘ ŎƭǳǎǘŜǊΣ ƻƴŜ Řŀȅ ŀƘŜŀŘΦ hǾŜǊ 

ǘŜƴ ǾŀƭƛŘŀǘƛƻƴ ŘŀȅǎΣ ǘƘŜ ǇǊƻǇƻǎŜŘ ƳƻŘŜƭ ŀŎƘƛŜǾŜǎΣ ƻƴ ŀǾŜǊŀƎŜΣ ŀ wн ǎŎƻǊŜ ƻŦ лΦтт ŀƴŘ ŀ 

ŎǳƳǳƭŀǘƛǾŜ ǾŀǊƛŀǘƛƻƴ ƻŦ Ǌƻƻǘ ƳŜŀƴ ǎǉǳŀǊŜŘ ŜǊǊƻǊ όŎǾπwa{9ύ ƻŦ лΦпмΦ ¢ƘŜ ƪπƳŜŀƴǎ ŎƭǳǎǘŜǊƛƴƎΣ 

ǘƻƎŜǘƘŜǊ ǿƛǘƘ ŀ ǊŀƴŘƻƳ ŦƻǊŜǎǘΣ ƛǎ ŀōƭŜ ǘƻ ǇǊŜŘƛŎǘ ǘƘŜ ǘǊŜƴŘǎ ƻŦ ƘƻǳǊƭȅ ŜƭŜŎǘǊƛŎƛǘȅ ƭƻŀŘǎ ƻƴŜ Řŀȅ 

ŀƘŜŀŘΣ ŀƴŘ ŘŜǘŜǊƳƛƴŜ ǘƘŜ ƛƴŘƛǊŜŎǘ ǎƘŀǊƛƴƎ ǇƻǘŜƴǘƛŀƭΦ ¢ƘŜ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ ǇǊŜŘƛŎǘƛƻƴ ŦŜŀǘǳǊŜ ƛǎ 

ǘƘŜ ŜƭŜŎǘǊƛŎƛǘȅ ŎƻƴǎǳƳǇǘƛƻƴ ƻŦ ǘƘŜ ǇǊŜǾƛƻǳǎ ŘŀȅΦ hǘƘŜǊ ƛƳǇƻǊǘŀƴǘ ŦŜŀǘǳǊŜǎ ŀǊŜ ƘǳƳƛŘƛǘȅΣ 

ƻǳǘǎƛŘŜ ǘŜƳǇŜǊŀǘǳǊŜ ŀƴŘ ŜƭŜŎǘǊƛŎƛǘȅ ŎƻƴǎǳƳǇǘƛƻƴ ƻŦ ǘǿƻ ŀƴŘ ǘƘǊŜŜ Řŀȅǎ ǇǊŜǾƛƻǳǎΦ .ŀǎŜŘ ƻƴ 

ǘƘŜ ǾŀƭƛŘŀǘƛƻƴǎΣ ƛǘ ƛǎ ŜǎǘƛƳŀǘŜŘ ǘƘŀǘ ǘƘŜ ƴŜƛƎƘōƻǳǊƘƻƻŘ Ŏŀƴ ōŜ ŎƻƳǇƭŜǘŜƭȅ ǎŜƭŦπǎǳŦŦƛŎƛŜƴǘ ŦƻǊ 

ǎŜǾŜƴ ƻǳǘ ƻŦ ǘǿŜƭǾŜ ƳƻƴǘƘǎ ǿƛǘƘ ŀ ǎǘƻǊŀƎŜ ǎȅǎǘŜƳ ƻŦ сслƪ²ƘΣ ǿƘƛŎƘ ƛǎ фΦпоƪ²Ƙ ǇŜǊ ŘǿŜƭƭƛƴƎΦ 

²ƘŜƴ ŀǇǇƭȅƛƴƎ ƭƻƴƎπǘŜǊƳ ŜƴŜǊƎȅ ǎǘƻǊŀƎŜΣ ǘƘŜ ǎŜƭŦπǎǳŦŦƛŎƛŜƴŎȅ ŎƻǳƭŘ ōŜ ƛƴŎǊŜŀǎŜŘ ŜǾŜƴ ƳƻǊŜΦ 

¢Ƙƛǎ ǎǘǳŘȅ ŎƻǾŜǊǎ ǘƘŜ ǇǊŜŘƛŎǘƛƻƴ ƻŦ ǎƘƻǊǘπǘŜǊƳ ŜƴŜǊƎȅ ŘŜƳŀƴŘ ƻŦ ŀ ǎƳŀƭƭ ǊŜǎƛŘŜƴǘƛŀƭ ŘƛǎǘǊƛŎǘ 

ǿƛǘƘ ƻƴπǎƛǘŜ ǊŜƴŜǿŀōƭŜǎΣ ŀƴŘ ǳǎŜǎ ŎƭǳǎǘŜǊƛƴƎ ƛƴ ǘƘŜ ǇǊŜπǇǊƻŎŜǎǎƛƴƎ ƻŦ ǘƘŜ ŘŀǘŀΣ ǿƘƛŎƘ ƛǎ ŀ ƴŜǿ 

ŀǇǇǊƻŀŎƘ ƛƴ ǘƘƛǎ ŦƛŜƭŘ ƻŦ ǊŜǎŜŀǊŎƘΦ /ǳǊǊŜƴǘƭȅ ǘƘƛǎ ǎǘǳŘȅ ǳǎŜŘ ƻƴƭȅ ƛƴŘƛǾƛŘǳŀƭ Řŀȅǎ ŦƻǊ ǾŀƭƛŘŀǘƛƻƴΦ 

±ŀƭƛŘŀǘƛƴƎ ƻǾŜǊ ƭƻƴƎŜǊ ǇŜǊƛƻŘǎ ƻŦ ǘƛƳŜΣ ŀǘ ƭŜŀǎǘ ƳǳƭǘƛǇƭŜ ŘŀȅǎΣ ŎƻǳƭŘ ƛƴŎǊŜŀǎŜ ǘƘŜ ǳƴŘŜǊǎǘŀƴŘƛƴƎ 

ƻŦ ǘƘŜ ŀŎǘǳŀƭ ǎƘŀǊƛƴƎ ǇƻǘŜƴǘƛŀƭ ōŜǘǿŜŜƴ ŘǿŜƭƭƛƴƎǎΦ !ƭǎƻΣ ōȅ ŜȄǇŜǊƛƳŜƴǘƛƴƎ ǿƛǘƘ ŀŘŘƛǘƛƻƴŀƭ ǳǎŜǊ 

ǎǇŜŎƛŦƛŎ ǇǊŜŘƛŎǘƛƻƴ ŦŜŀǘǳǊŜǎ ǎǳŎƘ ŀǎΤ ƻŎŎǳǇŀƴŎȅΣ ŀǇǇƭƛŀƴŎŜǎ ƻǿƴŜǊǎƘƛǇǎΣ ŀƴŘ ǎƻƭŀǊ ǊŀŘƛŀǘƛƻƴΣ 

ƛƳǇǊƻǾŜŘ ƳƻŘŜƭ ŦƛǘǘƛƴƎ ƳƛƎƘǘ ōŜ ŀŎƘƛŜǾŜŘΦ 

YŜȅ ǿƻǊŘǎΥ 9ƴŜǊƎȅ ŘŜƳŀƴŘ ǇǊŜŘƛŎǘƛƻƴΣ aŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎΣ wŀƴŘƻƳ CƻǊŜǎǘΣ ƪπƳŜŀƴǎ ŎƭǳǎǘŜǊƛƴƎΣ 

9ƭŜŎǘǊƛŎŀƭ {ǘƻǊŀƎŜ {ȅǎǘŜƳΣ 9ƴŜǊƎȅ {ƘŀǊƛƴƎΦ 
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Summary 
9ǾŜǊ ǎƛƴŎŜ ǘƘŜ ǿƻǊƭŘπǿƛŘŜ ŀƎǊŜŜƳŜƴǘ ǘƻ ǇǳǊǎǳŜ ŜŦŦƻǊǘǎ ǘƻ ƭƛƳƛǘ ǘƘŜ ǘŜƳǇŜǊŀǘǳǊŜ ƛƴŎǊŜŀǎŜ ǘƻ 

мΦрɕ / ŀōƻǾŜ ǇǊŜπƛƴŘǳǎǘǊƛŀƭ ƭŜǾŜƭǎΣ ƎƻǾŜǊƴƳŜƴǘǎ ƘŀǾŜ ǎǘŀǊǘŜŘ ǎǘƛƳǳƭŀǘƛƴƎ ŜƴŜǊƎȅ ŜŦŦƛŎƛŜƴŎȅ ŀƴŘ 

ǎǳǎǘŀƛƴŀōƛƭƛǘȅ ƳŜŀǎǳǊŜǎ ōȅ ƳŜŀƴǎ ƻŦ ƎǊŀƴǘǎ ŀƴŘ ǊŜƎǳƭŀǘƛƻƴǎΦ hƴŜ ƻŦ ǘƘŜ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ ŦƻŎǳǎ 

ŦƛŜƭŘǎ ƻŦ ǘƘŜǎŜ ǊŜƎǳƭŀǘƛƻƴǎ ŀǊŜ ōǳƛƭŘƛƴƎǎΣ ǎƛƴŎŜ ǘƘŜȅ ŀŎŎƻǳƴǘ ŦƻǊ пл҈ ƻŦ ǘƘŜ Ǝƭƻōŀƭ ŜƴŜǊƎȅ 

ŘŜƳŀƴŘ ŀƴŘ ол҈ ƻŦ Ǝƭƻōŀƭ /hн ŜƳƛǎǎƛƻƴǎΦ ¢Ƙƛǎ Ƙŀǎ ƭŜŘ ǘƻ ŀ ƎǊƻǿǘƘ ƛƴ ǳǎŜ ƻŦ ǇǊƛǾŀǘŜ ǊŜƴŜǿŀōƭŜ 

ŜƴŜǊƎȅ ƎŜƴŜǊŀǘƛƻƴΣ ǇǊƛƳŀǊƛƭȅ ǿƛǘƘ ǇƘƻǘƻǾƻƭǘŀƛŎ όt±ύ ǇŀƴŜƭǎΣ ŀƴŘ Ƙŀǎ ŎƘŀƴƎŜŘ ǘƘŜ ŜƴŜǊƎȅ 

ǎȅǎǘŜƳ ǘƻǿŀǊŘǎ ŀ ƳƻǊŜ ŘŜŎŜƴǘǊŀƭƛȊŜŘ ǎȅǎǘŜƳΦ 5ǳŜ ǘƻ ǘƘŜ ǾŀǊƛŀōƛƭƛǘȅ ƻŦ ǊŜƴŜǿŀōƭŜ ŜƴŜǊƎȅ 

ǎƻǳǊŎŜǎΣ ŜƴŜǊƎȅ ǎǘƻǊŀƎŜ ǎȅǎǘŜƳǎ Ƴǳǎǘ ōŜ ƛƳǇƭŜƳŜƴǘŜŘ ǘƻ ƳŀƪŜ ŀ ŎƻƳǇƭŜǘŜ ŜƴŜǊƎȅ ǘǊŀƴǎŀŎǘƛƻƴ 

ǇƻǎǎƛōƭŜΦ 

!ŎŎǳǊŀǘŜ ǎƘƻǊǘπǘŜǊƳ ŜƭŜŎǘǊƛŎƛǘȅ ƭƻŀŘ ŦƻǊŜŎŀǎǘƛƴƎ ƛǎ ǊŜǉǳƛǊŜŘ ƛƴ ƻǊŘŜǊ ǘƻ ƻǇŜǊŀǘŜ ǎǘƻǊŀƎŜ ǎȅǎǘŜƳǎ 

ƛƴ ǘƘŜ ŜƴŜǊƎȅ ƎǊƛŘ ŜŦŦƛŎƛŜƴǘƭȅΦ wŜǎŜŀǊŎƘ ƛƴ ǘƘŜ ŦƛŜƭŘ ƻŦ ŜƴŜǊƎȅ ŘŜƳŀƴŘ ǇǊŜŘƛŎǘƛƻƴ ŘƻŜǎ ƴƻǘ ŦƻŎǳǎ 

ŜƴƻǳƎƘ ŀǘǘŜƴǘƛƻƴ ƻƴ ƭƻŎŀƭ ǎƘƻǊǘ ǘŜǊƳ ŜƴŜǊƎȅ ǇǊŜŘƛŎǘƛƻƴ ǿƛǘƘ ƻƴπǎƛǘŜ ǊŜƴŜǿŀōƭŜǎΣ ŀƴŘ ƴƻ 

ǎǘǊŀƛƎƘǘŦƻǊǿŀǊŘ ŜƴŜǊƎȅ ǎǘƻǊŀƎŜ ƻǇŜǊŀǘƛƻƴ ǎȅǎǘŜƳǎ ŀǊŜ ŀǘ ƘŀƴŘΦ ¢Ƙƛǎ ǎǘǳŘȅ Ƙŀǎ ǇǊƻǇƻǎŜŘ ŀƴ 

ŀǇǇǊƻŀŎƘ ǘƻ ǎƘƻǊǘπǘŜǊƳ ŦƻǊŜŎŀǎǘƛƴƎ ƻŦ ǘƘŜ ŜƭŜŎǘǊƛŎƛǘȅ ŘŜƳŀƴŘ ƻŦ ŀ ǊŜǎƛŘŜƴǘƛŀƭ ŘƛǎǘǊƛŎǘΣ ŀƴŘ   

ŜŦŦƛŎƛŜƴǘƭȅ ƻǇŜǊŀǘŜ ŀƴ ŜƭŜŎǘǊƛŎŀƭ ǎǘƻǊŀƎŜ ǎȅǎǘŜƳ ǳǎƛƴƎ ƻƴπǎƛǘŜ ǊŜƴŜǿŀōƭŜ ŜƴŜǊƎȅΦ 

¢ǿƻ ȅŜŀǊǎ ƻŦΣ ŦƛŦǘŜŜƴπƳƛƴǳǘŜ ƛƴǘŜǊǾŀƭΣ ŜƭŜŎǘǊƛŎƛǘȅ ǳǎŀƎŜ Řŀǘŀ ŦǊƻƳ тл ǊŜƴƻǾŀǘŜŘ ŘǿŜƭƭƛƴƎǎ ǿŀǎ 

ǳǎŜŘ ǘƻ ǘŜǎǘ ǘƘŜ ǎǳƎƎŜǎǘŜŘ ŀǇǇǊƻŀŎƘΦ ¢ƘŜ ŘǿŜƭƭƛƴƎǎ ŀǊŜ ƭƻŎŀǘŜŘ ƛƴ ǘƘŜ ŎŜƴǘǊŜ ƻŦ ǘƘŜ 

bŜǘƘŜǊƭŀƴŘǎΣ ƘŀǾŜ ƴƻ ƴŀǘǳǊŀƭ Ǝŀǎ ŎƻƴƴŜŎǘƛƻƴΣ ŀƴŘ ŀǊŜ ǇǊƻǾƛŘŜŘ ǿƛǘƘ ŀ t±πǎȅǎǘŜƳΣ ƘŜŀǘ ǇǳƳǇΣ 

ŀƴŘ ƘƛƎƘ ǇŜǊŦƻǊƳƛƴƎ ƛƴǎǳƭŀǘƛƻƴΦ ¢ƘŜ ōǳƛƭŘƛƴƎ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ƻŦ ǘƘŜ ŘǿŜƭƭƛƴƎǎ ǎǳƎƎŜǎǘ ǘƘŜ 

ōǳƛƭŘƛƴƎǎ Ŏŀƴ ōŜŎƻƳŜ Ƴƻǎǘƭȅ ǎŜƭŦπǎǳŦŦƛŎƛŜƴǘ ǿƘŜƴ ŀ ǿƛǎŜƭȅ ŎƘƻǎŜƴ ŀƴŘ ǎƳŀǊǘƭȅ ƻǇŜǊŀǘŜŘ 

ǎǘƻǊŀƎŜ ǎȅǎǘŜƳ ƛǎ ǳǎŜŘΦ 

¢ƘŜ ŎƘƻƛŎŜ ŦƻǊ ǘƘŜ Ƴƻǎǘ ǎǳƛǘŀōƭŜ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ƳƻŘŜƭ ǿŀǎ ŜǎǘŀōƭƛǎƘŜŘ ōȅ ŎƻƴŘǳŎǘƛƴƎ ŀ 

ƭƛǘŜǊŀǘǳǊŜ ǊŜǾƛŜǿΣ ŀƴŘ ŜƳǇƛǊƛŎŀƭƭȅ ǘŜǎǘƛƴƎ ǎŜǾŜǊŀƭ ƳŀŎƘƛƴŜ ƭŜŀǊƴƛƴƎ ƳŜǘƘƻŘǎΦ ¢Ƙƛǎ ƭŜŘ ǘƻ ǘƘŜ 

ŎƻƴŎƭǳǎƛƻƴ ǘƘŀǘ ǊŀƴŘƻƳ ŦƻǊŜǎǘ ǊŜƎǊŜǎǎƻǊǎ ŀǊŜ ǎǳƛǘŀōƭŜ ŦƻǊ ƘƻǳǊƭȅ ƻƴŜ Řŀȅ ŀƘŜŀŘ ŜƭŜŎǘǊƛŎƛǘȅ 

ŘŜƳŀƴŘ ǇǊŜŘƛŎǘƛƻƴ ŦƻǊ ǘƘŜ ǊŜǎƛŘŜƴǘƛŀƭ ŘƛǎǘǊƛŎǘΦΦ ¢ƘŜ ǇǊŜŘƛŎǘƛƻƴ ƳƻŘŜƭ ǳǎŜǎ оу ŦŜŀǘǳǊŜǎΣ 

ƘƛǎǘƻǊƛŎŀƭ ŜƭŜŎǘǊƛŎƛǘȅ ƭƻŀŘΣ ƻǇŜƴ ǎƻǳǊŎŜ ƳŜǘŜƻǊƻƭƻƎƛŎŀƭ Řŀǘŀ ŀƴŘ ǘƛƳŜ ǾŀǊƛŀōƭŜǎ ǎǳŎƘ ŀǎ Řŀȅ 

ǘȅǇŜΣ ƳƻƴǘƘΣ ŀƴŘ ǎŜŀǎƻƴΦ IȅǇŜǊǇŀǊŀƳŜǘŜǊǎ ƻŦ ǘƘŜ ǇǊŜŘƛŎǘƛƻƴ ƳƻŘŜƭ ŀǊŜ ƻǇǘƛƳƛȊŜŘ ōȅ ƳŜŀƴǎ 

ƻŦ ŀ ƎǊƛŘ ǎŜŀǊŎƘ ŀƭƎƻǊƛǘƘƳ ǿƘƛŎƘ ǎŜƭŜŎǘǎ ǘƘŜ ōŜǎǘ ŎƻƳōƛƴŀǘƛƻƴ ƻŦ ƘȅǇŜǊǇŀǊŀƳŜǘŜǊ ǎŜǘǘƛƴƎǎΦ 

tǊŜŎŜŘƛƴƎ ƻƴ ǊǳƴƴƛƴƎ ǘƘŜ ǇǊŜŘƛŎǘƛƻƴΣ ŜƭŜŎǘǊƛŎƛǘȅ ŘŜƳŀƴŘ ǇǊƻŦƛƭŜǎ ƻŦ ŘǿŜƭƭƛƴƎǎ ŀǊŜ ŎƭǳǎǘŜǊŜŘ ōȅ 

ƳŜŀƴǎ ƻŦ ŀ ƪπƳŜŀƴǎ ŎƭǳǎǘŜǊƛƴƎ ŀƭƎƻǊƛǘƘƳΣ ǿƘƛŎƘ ƳƛƴƛƳƛȊŜǎ ǘƘŜ ǿƛǘƘƛƴ ŎƭǳǎǘŜǊ ǾŀǊƛŀǘƛƻƴ ƻŦ ǘƘŜ 

ŜƭŜŎǘǊƛŎƛǘȅ ŘŜƳŀƴŘ 

¢ƻ ŜŦŦŜŎǘƛǾŜƭȅ ǳǎŜ ŀ ǎǘƻǊŀƎŜ ǎȅǎǘŜƳ ƛƴ ǘƘŜ ǊŜǎƛŘŜƴǘƛŀƭ ŘƛǎǘǊƛŎǘΣ ŀƴ ƻǇŜǊŀǘƛƻƴ ǎȅǎǘŜƳ ǿŀǎ 

ǇǊƻǇƻǎŜŘΦ CƻǊ ǘƘŜ ƻǇŜǊŀǘƛƻƴ ǎȅǎǘŜƳ ǘƻ ōŜ ŀǇǇƭƛŎŀōƭŜ ǎƻƳŜ ŦǳƴŎǘƛƻƴŀƭ ǊŜǉǳƛǊŜƳŜƴǘǎ ŀǊŜ ŘǊŀǿƴ 

ǳǇΤ ǘƘŜ ƘƻǳǎŜǎ Ƴǳǎǘ ōŜ ƛƴŘƛǾƛŘǳŀƭƭȅ ōƛŘƛǊŜŎǘƛƻƴŀƭƭȅ ŎƻƴƴŜŎǘŜŘ ǘƻ ǘƘŜ ƎǊƛŘ ŀƴŘ ǘƘŜ ǎǘƻǊŀƎŜ 

ǎȅǎǘŜƳΣ ǘƘŜ ƻǇŜǊŀǘƛƻƴ ǎȅǎǘŜƳ Ƴǳǎǘ ƘŀǾŜ ŀŎŎŜǎǎ ǘƻ ǘƘŜ ǊŜŀƭ ǘƛƳŜ ǎƳŀǊǘ ƳŜǘŜǊƛƴƎ Řŀǘŀ ƻŦ ǘƘŜ 

ŘǿŜƭƭƛƴƎǎ ŀǎ ǿŜƭƭ ŀǎ ǘƻ ƘƻǳǊƭȅ ǿŜŀǘƘŜǊ ŦƻǊŜŎŀǎǘ ƻƴŜ Řŀȅ ŀƘŜŀŘΦ CǳǊǘƘŜǊƳƻǊŜΣ ǘƘŜ ƻǇŜǊŀǘƛƻƴ 

ǎȅǎǘŜƳ Ƴǳǎǘ ōŜ ŀōƭŜ ǘƻ ŎƻƴǘǊƻƭ ŀƭƭ ǘƘŜ ǎǿƛǘŎƘŜǎ ƛƴ ǘƘŜ ŜƭŜŎǘǊƛŎŀƭ ŎƛǊŎǳƛǘ ƻŦ ǘƘŜ ƴŜƛƎƘōƻǳǊƘƻƻŘΦ 

¢ƘŜ ƻǇŜǊŀǘƛƻƴ ǎȅǎǘŜƳ Ŏƻƴǎƛǎǘǎ ƻŦ ǎŜǾŜƴ ŎƻƴŘƛǘƛƻƴŀƭ ǊǳƭŜǎ ǘƻ ƻǇǘƛƳƛȊŜ ǘƘŜ ƭƻŎŀƭ ǳǎŀƎŜ ƻŦ 

ǊŜƴŜǿŀōƭŜ ŜƴŜǊƎȅ ŀƴŘ ǘƘŜǊŜōȅ ǎŜƭŦπǎǳŦŦƛŎƛŜƴŎȅΦ 
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¢ƘŜ ǇǊƻǇƻǎŜŘ ƳƻŘŜƭ ŀŎƘƛŜǾŜŘΣ ƻƴ ŀǾŜǊŀƎŜΣ ƻǾŜǊ ǘŜƴ ǾŀƭƛŘŀǘƛƻƴ ŘŀȅǎΣ ŀƴ wн ǎŎƻǊŜ ƻŦ лΦтт ŀƴŘ ŀ 

ŎǾπwa{9 ƻŦ лΦпмΦ ¢ƘŜ ƪπƳŜŀƴǎ ŎƭǳǎǘŜǊƛƴƎΣ ǘƻƎŜǘƘŜǊ ǿƛǘƘ ŀ ǊŀƴŘƻƳ ŦƻǊŜǎǘ ǊŜƎǊŜǎǎƻǊ ŀƭƎƻǊƛǘƘƳ 

ƛǎ ŀōƭŜ ǘƻ ǇǊŜŘƛŎǘ ǘƘŜ ǘǊŜƴŘǎ ƻŦ ƘƻǳǊƭȅ ƻƴŜ Řŀȅ ŀƘŜŀŘ ŜƭŜŎǘǊƛŎƛǘȅ ƭƻŀŘǎ ŀƴŘ ŘŜǘŜǊƳƛƴŜ ǘƘŜ 

ƛƴŘƛǊŜŎǘ ǎƘŀǊƛƴƎ ǇƻǘŜƴǘƛŀƭΦ ¢ƘŜ Ƴƻǎǘ ƛƴŦƭǳŜƴǘƛŀƭ ǇǊŜŘƛŎǘƛƻƴ ŦŜŀǘǳǊŜ ƛǎ ǘƘŜ ŜƭŜŎǘǊƛŎƛǘȅ 

ŎƻƴǎǳƳǇǘƛƻƴ ƻŦ ǘƘŜ ǇǊŜǾƛƻǳǎ ŘŀȅΦ hǘƘŜǊ ƛƳǇƻǊǘŀƴǘ ŦŜŀǘǳǊŜǎ ŀǊŜ ƘǳƳƛŘƛǘȅΣ ƻǳǘǎƛŘŜ ǘŜƳǇŜǊŀǘǳǊŜ 

ŀƴŘ ŜƭŜŎǘǊƛŎƛǘȅ ŎƻƴǎǳƳǇǘƛƻƴ ƻŦ ǘǿƻ ŀƴŘ ǘƘǊŜŜ Řŀȅǎ ǇǊƛƻǊΦ ¢ƘŜ ǇǊŜŘƛŎǘƛƻƴ ƳƻŘŜƭ ǇǊŜŘƛŎǘǎ ōŜǘǘŜǊ 

ƛƴ ǎǇǊƛƴƎ ŀƴŘ ǎǳƳƳŜǊ ǘƘŀƴ ŀǳǘǳƳƴ ŀƴŘ ǿƛƴǘŜǊΦ .ŀǎŜŘ ƻƴ ǘƘŜ ǾŀƭƛŘŀǘƛƻƴǎΣ ǘƘŜ ƴŜƛƎƘōƻǳǊƘƻƻŘ 

Ŏŀƴ ŜƴǘƛǊŜƭȅ ōŜ ǎŜƭŦπǎǳŦŦƛŎƛŜƴǘ ŦƻǊ ǎŜǾŜƴ ƻǳǘ ƻŦ ǘǿŜƭǾŜ ƳƻƴǘƘǎ ǿƛǘƘ ŀ ǎǘƻǊŀƎŜ ǎȅǎǘŜƳ ƻŦ сслƪ²ƘΣ 

ǿƘƛŎƘ ƛǎ фΦпоƪ²Ƙ ǇŜǊ ŘǿŜƭƭƛƴƎΦ ²ƘŜƴ ŀǇǇƭȅƛƴƎ ƭƻƴƎπǘŜǊƳ ŜƴŜǊƎȅ ǎǘƻǊŀƎŜΣ ǘƘŜǊƳŀƭ ƻǊ 

ŜƭŜŎǘǊƻŎƘŜƳƛŎŀƭΣ ǘƘŜ ǎŜƭŦπǎǳŦŦƛŎƛŜƴŎȅ ŎƻǳƭŘ ōŜ ƛƴŎǊŜŀǎŜŘ ŜǾŜƴ ƳƻǊŜΦ 

¢ƘŜ ƳƻŘŜƭ ƛǎ ƻƴƭȅ ǾŀƭƛŘŀǘŜŘ ƻǾŜǊ ǎƛƴƎƭŜ ŘŀȅǎΣ ǿƘƛŎƘ ƛǎ ŀ ǎƘƻǊǘŎƻƳƛƴƎ ƻŦ ǘƘƛǎ ǊŜǎŜŀǊŎƘΦ ±ŀƭƛŘŀǘƛƴƎ 

ƻǾŜǊ ƳƻǊŜ ŜȄǘŜƴŘŜŘ ǇŜǊƛƻŘǎΣ ŀǘ ƭŜŀǎǘ ƳǳƭǘƛǇƭŜ ŘŀȅǎΣ ǎƘƻǳƭŘ ƎƛǾŜ ŀ ōŜǘǘŜǊ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ƻŦ ǘƘŜ 

ŀŎǘǳŀƭ ǎƘŀǊƛƴƎ ǇƻǘŜƴǘƛŀƭ ōŜǘǿŜŜƴ ŘǿŜƭƭƛƴƎǎΦ CǳǊǘƘŜǊƳƻǊŜΣ ōȅ ŜȄǇŜǊƛƳŜƴǘƛƴƎ ǿƛǘƘ ŀŘŘƛǘƛƻƴŀƭ 

ǇǊŜŘƛŎǘƛƻƴ ŦŜŀǘǳǊŜǎ ǎǳŎƘ ŀǎΤ ƻŎŎǳǇŀƴŎȅΣ ŀǇǇƭƛŀƴŎŜǎ ƻǿƴŜǊǎƘƛǇǎ όƛƴŎƭǳŘƛƴƎ ŜƭŜŎǘǊƛŎ ǾŜƘƛŎƭŜύΣ ŀƴŘ 

ǎƻƭŀǊ ǊŀŘƛŀǘƛƻƴΣ ƛƳǇǊƻǾŜŘ ƳƻŘŜƭ ŦƛǘǘƛƴƎ ƳƛƎƘǘ ōŜ ŀŎƘƛŜǾŜŘΦ LƴŎƻǊǇƻǊŀǘƛƴƎ ŘȅƴŀƳƛŎ ǇǊƛŎƛƴƎ ŀƴŘ 

ƭƻƴƎ ǘŜǊƳ ǎǘƻǊŀƎŜ ƛƴ ǘƘŜ ƻǇŜǊŀǘƛƻƴ ǎȅǎǘŜƳ ŎƻǳƭŘ ŀƭǎƻ ŜƴƘŀƴŎŜ ǘƘŜ ŎǳǊǊŜƴǘ ŀǇǇǊƻŀŎƘ ǎƛƴŎŜ ƛǘ 

Ŏŀƴ ƘŜƭǇ ǘƻ ŘŜǘŜǊƳƛƴŜ ǘƘŜ ŦƛƴŀƴŎƛŀƭ ŦŜŀǎƛōƛƭƛǘȅΦ 
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Samenvatting 
Sinds het wereldwijde akkoord op het limiteren van de opwarming van de aarde op +1,5 ɕC 

ten opzichte van het pre-industrieel tijdperk, zijn overheden gestart met het stimuleren van 

duurzame maatregelen door middel van subsidies en wetgeving. Een van de belangrijkste 

focus gebieden voor deze maatregelen is de gebouwde omgeving. Gebouwen in het algemeen 

zijn verantwoordelijk voor 40% van de wereld wijde energy behoefte en 30% van de CO2 

uitstoot. Dit heeft ertoe geleid dat de toepassing van particulieren hernieuwbare 

energieopwekking enorm is toegenomen de afgelopen jaren, vooral door middel van 

zonnepanelen. Dit heeft het energiesysteem veranderd van een centraal naar een 

gedecentraliseerd systeem. Doordat de hernieuwbare energie variabel aanwezig is, is het 

implementeren van energieopslag benodigd om een volledige energietransitie mogelijk te 

maken.  

Om een energieopslagsysteem slim aan te sturen in het elektriciteitsnet, is nauwkeurige 

voorspelling van korte termijn elektriciteit behoefte benodigd.   Onderzoeken op het gebied 

van het voorspellen van de behoefte van energie, hebben nauwelijks gefocust op lokale korte 

termijn energie behoefte waarbij ook hernieuwbare energie bronnen op locatie aanwezig zijn. 

Ook is er geen zijn er geen standaard aansturingssystemen voor opslagsystemen om 

overtollige hernieuwbare energie te delen.  Het doel van dit onderzoek is het bieden van een 

methode om voor een woonwijk de lokale korte termijn elektriciteitsbehoefte te voorspellen. 

Verder wordt er een opzet voor een aansturingssysteem voor elektrisch energy opslag 

systeem voorgesteld om efficiënt gebruik te maken van lokale hernieuwbare energie om het  

zelfvoorzienend vermogen te vergroten.  

Voor 70 gerenoveerde woningen is voor twee jaar aan elektriciteitsverbruik gegevens van 

slimme meter data beschikbaar gesteld, met metingsintervallen van vijftien minuten. De 

woningen, gelegen in het midden van Nederland, hebben geen gas aansluiting, en zijn 

voorzien van zonnepanelen, warmtepomp en hoogwaardige isolatie. De gebouw 

karakteristieken van de woningen suggereren de mogelijkheid om, met behulp van een 

elektrisch opslag systeem, grotendeels zelfvoorzienend te worden.  

De keuze om een zo geschikt mogelijk machine learning model te selecteren, is gebaseerd op 

een literatuur studie en empirische testen van verschillende machine learning modellen. 

Hieruit is geconcludeerd dat een random forest regressor geschikt is voor het voorspellen van 

korte termijn elektriciteitsverbruik van een woonwijk. Voorafgaand aan de predictie, zijn de 

elektriciteitsverbruik profielen van de woningen geclusterd door middel van k-means cluster 

algoritme, welke de varianties binnen de clusters minimaliseert. Het voorspellend model 

gebruikt 38 variabelen, waaronder, historisch elektriciteitsverbruik, vrij beschikbare 

meteorologische gegevens en tijd gerelateerde gegevens, zoals indicators voor dag van de 

week, maand en seizoen. Hyperparameters van het voorspellend model zijn geoptimaliseerd 

door middel van een algoritme wat de beste combinatie van parameter instellingen zoekt door 

een groot aantal parameter instellingen te testen. 
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Om effectief gebruik te maken van een elektrisch opslagsysteem in een woonwijk, is er een 

aansturingssysteem voorgesteld. Om dit voorstel bruikbaar te maken zijn er een aantal 

vereiste aan de omgeving waar deze in komt te staan; de woningen dienen direct bi 

directioneel verbonden te zijn met het opslagsysteem en het elektriciteitsnet, het 

aansturingssysteem dient toegang te hebben tot de slimme meter standen en tot de uurlijkse 

weersvoorspelling voor de komende 24 uur. Tenslotte dient het systeem de schakelingen in 

het elektrische circuit te kunnen bedienen. Het besturingssysteem is gebaseerd op zeven 

conditionele regels om de gegenereerde hernieuwbare energy lokaal te gebruiken en 

daarmee het zelfvoorzienend vermogen te bevorderen.  

Het gebruikte model behaald, gemiddeld over tien validatie dagen, een R2 score 0,77 en een 

cv-RMSE van 0.41. De k-means clustering samen met de random forest regressor zijn in staat 

om de uurlijkse trend van de komende 24 uur te voorspellen en het indirecte 

uitwisselingspotentieel te bepalen. De belangrijkste variabele voor het voorspellend model is 

het energieverbruik van de vorige dag op hetzelfde tijdstip. Andere belangrijke variabele zijn 

de luchtvochtigheid, temperatuur en elektriciteitsverbruik van twee en drie dagen 

voorafgaand aan de voorspelling. Op basis van de validatie is ingeschat dat, de woonwijk zeven 

van de twaalf maanden per jaar volledig zelfvoorzienend kan zijn bij gebruik van een elektrisch 

opslagsysteem van 660kWh, 9,42kWh per huishouden. Wanneer er ook gebruik wordt 

gemaakt van lange termijn opslag, kan het zelfvoorzienend vermogen zelfs nog vergroot 

worden.  

Het model is slechts gevalideerd op enkele dagen, wat een tekortkoming is van dit onderzoek. 

Wanneer er over langere periode gevalideerd wordt, minimaal meerdere dagen 

aaneengesloten, geeft dit een beter beeld van het daadwerkelijke uitwisselingspotentieel 

tussen de woningen. Ook kan de nauwkeurigheid van het model waarschijnlijk worden 

verbeterd door te experimenteren met extra variabelen zoals, aanwezigheid van bewoners, 

apparaten eigendom en zon intensiteit. Verder zou de huidige aanpak van het 

aansturingssysteem geoptimaliseerd kunnen worden naar de belangen van de eigenaar. 

Bijvoorbeeld door het in ogenschouw nemen van dynamische elektriciteitsprijzen en lange 

termijn opslag. 
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1. Introduction 
 

The energy transition currently is and will be for the next years, an important research topic. 

The application of sustainable developments and improvements in energy self-sufficiency will 

continue to play an important role, not only in academics but also in business and politics. This 

research will contribute to the field of energy demand prediction of residential buildings by 

suggesting a new approach which combines a clustering technique and an ensembled 

regression tree machine learning (ML) model. Also this research will discuss applying energy 

sharing to increase energy self-sufficiency of a neighbourhood.  
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1.1 Research context 
Similar to most of the countries around the world, the Netherlands has agreed upon pursuing 

efforts to limit the temperature increase to 1.5 ɕC above pre-industrial levels (United-Nations, 

2015). To achieve the goals from this agreement, energy, in general, must be used more 

efficiently, and more energy must be generated from sustainable or renewable sources. 

Buildings account for 40% of the global energy demand and 30% of global CO2 emissions, and 

is therefore, one of the most focused fields for stimulating energy efficiency and sustainability 

(Costa, Keane, Torrens, & Corry, 2013) (Wang, Wang, Zeng, Srinivasan, & Ahrentzen, 2018). 

This has led to regulations and subsidies which stimulate investments in energy efficiency and 

sustainability measures, such as applying better insulation and PV-systems, for private and 

commercial buildings (Wiebes, Stimulering Duurzame Energieproductie, 2019). These 

regulations and subsidies did have results, as the number of wind turbines and photovoltaic 

panel (PV) systems have grown steadily the previous years. High penetration of energy 

conversion technologies based, on fluctuating renewable energy sources, shifts the power 

system from centralized to decentralized energy systems. Energy is no longer generated 

centrally only using large power generation stations, and top-down distributed from the high-

voltage (HV) to the low-voltage (LV) grid where individuals can tap their desired demand 

(Junker, et al., 2018). In the decentralized systems, energy is generated, used, and distributed 

from numerous places across the grid. Currently, only a small portion of the total consumed 

energy is generated from sustainable or renewable sources. However, this is expected 

increase in the near future, rapidly. The report of CBS (2018) mentioned that the total share 

of renewable energy in the Netherlands was just 6.6% in 2017, but, the target for 2023 is to 

achieve 16% (CBS, 2018). This target demands a substantial growth of renewable energy 

generation, among which will be residential PV-installations. The trend report for PV 

applications of the International Energy Agency (IEA) state that the Netherlands has a total PV 

capacity of 2,983MW of which 853 MW is installed in the year 2017. Currently, three-quarter 

of the PV capacity is installed at private dwellings. To reach the renewable energy goals of 

2023 there is room for 1GW of PV capacity installations per year (Masson & Kaizuka, 2018). 

This is also acknowledged by the Smart Grids European Technology platform, as they state 

that a significant fraction of the generation capacity in 2035 will be stochastic and/or 

intermittent (SmartGrids, 2012).  
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1.2 Problem definition 
Most of the renewable energy sources, especially wind and solar energy, do not have a high 

energy density and are irregularly available. The utilisation of energy by the industry, 

dwellings, and the work place, have different demand patterns compared to the renewable 

energy generation patterns (Li & Chan, 2017). This is also true for PV-systems on residential 

buildings where the solar intensity is at its peak during the day where electricity demand, in 

general, is low. To use produced renewable energy effectively and to follow the demand, 

energy storage and smart energy dispatch technologies are necessary (Li & Chan, 2017). 

Although this is a clear statement, little applications of energy storage systems are currently 

used for residential buildings. Usage of electrical storage systems (ESS) are not yet established 

in the current energy system. More research should be conducted to expose the usability and 

feasibility of ESS. To properly use a storage system, the short-term detailed local energy 

demand of residential districts is necessary. There are many studies which suggest approaches 

to forecasting energy demand, but little of these are specific for short-term local residential 

buildings (Seyedzadeh, Rahimian, Glesk, & Roper, 2018) and almost none consider renewable 

energy generation on-site. As the adoption of renewable energy keeps increasing, also on the 

local residential district level, the need for energy storage and efficient energy distribution is 

increasing. 

The two main problems addressed in this research are: (i) the lack of research towards local 

short-term residential energy demand forecast with renewables on-site, which is needed for 

having a proper electricity distribution system, and (ii) the absence of a general concept to 

improve the effective usage of PV- generated electricity and the energy self-sufficiency in a 

residential district by utilizing an ESS.   
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1.3 Research objective 
This research aims to suggest an approach to accurately predict local residential electricity 

demand, with short time intervals, based on actual smart meter data. Currently, most 

researches, regarding energy demand prediction, have focused on enormous energy-

consuming entities, such as entire cities and campuses. Also, the prediction horizon of these 

studies are often very long, such as aggregated usage of daily, monthly or even yearly 

(Seyedzadeh, Rahimian, Glesk, & Roper, 2018). Having access to detailed energy demand 

profiles have not been widely available before the upcoming of smart meters. The smart 

meter data has enabled a closer look into the energy demand patterns of individuals, and 

might reveal possibilities in improving energy self-sufficiency. Smart meter data is often 

considered as privacy-sensitive. Therefore, not many studies have been able to use such 

detailed energy consumption data of a large sample of households. The suggested approach 

should contain a method or combination of methods, which is innovative and helps to improve 

currently used models. Further, the potential of increasing self-sufficiency by using an ESS and 

by sharing electricity between dwellings should be determined. The goal is to accurately 

formulate a methodology to achieve growing self-sufficiency for a group of houses.  

The research should show one of the many possible applications that analysing smart meter 

data makes possible. The research objectives will add knowledge to the research field of 

energy demand prediction since a rarely available dataset of smart meter data will be analysed 

in a way current researches have not done yet. The study should bring energy demand 

prediction a step closer to detailed individual household prediction, which can help efficiently 

micro-manage the smart grid and expose energy saving possibilities. 

 

1.4 Research questions 
To achieve the desired research objective, the following main research question should be 

answered: 

 

 

 

In order to answer this main research question, 3 sub-questions are drawn up: 

SQ1. How can the houses with similar electricity demand profiles be clustered?  

SQ2.  What machine learning algorithm performs best in predicting the hourly electricity 

demand one day ahead, for clusters of dwellings? 

SQ3. What is the expected direct and indirect electricity sharing potential between the 

clusters? 

 

  

How can self-sufficiency of a neighbourhood be increased by 
using electricity exchange and an electrical storage system, 

based on analysed smart meter data? 
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1.5 Research design 
This research is divided into three stages, see Figure 1: (i) explorative research, (ii) validation 

and (iii) reporting. The following three sections will describe the content of each research 

stage.  

Explorative Research Data pre-processing

Literature study

Validation 

Reporting
Conclusions, discussion 
and recommendations

Research stage Activities

Sub question 1

Sub question 2

Sub question 3

Empirical study 

Research questions

Proof of Concept

Start

R
e

se
a

rc
h

 p
e

ri
o

d

End

 

Figure 1 Research design 

1.5.1 Explorative research 

The explorative research stage consists of three parts; (i) literature study, (ii) data preparation 

and (iii) empirical study. In the literature study related scientific papers will be studied to see 

what methods and approaches are currently used in the field of research. The goal of this 

literature study is to explore the current state of the art techniques for energy demand 

forecasting. The data preparation part is a necessary step to make the received data useful for 

analysis and modelling. In this step the raw datasets will be transformed and processed so 

that they can be used for machine learning purposes. Activities such as removing outliers and 

replacing missing values will be performed. During the empirical study part, various machine 

learning algorithms will be tested to find empirical evidence for which algorithm performs best 

on the received data. After the explorative research section a well-grounded choice can be 

made to select a suiting model for predicting residential electricity demand.  
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1.5.2 Validation 

In the validation section, the third research question will be answered. The direct and indirect 

sharing potential between houses will be determined by  means of predicting the electricity 

demand for clusters. The suggested approach aims to predict the electricity demand for one 

day ahead and identify the direct and indirect sharing potential between the clusters. The 

validation part will compare the outcome of the prediction model with the actual values and 

discuss the results. 

1.5.3 Reporting 

During the reporting stage of the research the report will be finalized. This will contain 

answering individual research questions, drawing up conclusions, discussing the overall study, 

and giving recommendations for future related research.  

 

1.6 Reading guide 
In chapter two, a literature review of some close related scientific articles is given. Primarily  

energy demand prediction related articles will be covered throughout the literature review. 

Chapter three contains a thorough description of the used methodology. It includes 

explanation of the clustering technique and the prediction model as well as the method to 

determine the sharing potential. In chapter four, a description of the data and pre-processing 

methods are described. Chapter five presents the results of one validation day, and the overall 

results of the used approach. The conclusions, a critical discussion of the used methodology, 

and recommendations for future research are written down in chapter six.  
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2. Literature review  
 

This literature review summarizes scientific publications related to energy demand prediction 

to see what methods could be implemented, what kind of data and performance indices are 

used, and what topics need further research. By reviewing these studies, it becomes clear 

what is already done in this field of research, and where additional work is desired. This 

literature review points out the necessity and relevance of this research. The covered studies 

are the inspiration for the used approach in this research.  
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2.1 Energy system transformation 
The decentralized energy system demands smart solutions to be implemented, which enables 
achieving more energy efficiency and energy flexibility. Energy flexibility is the ability to adapt 
the energy profiles without threatening technical and comfort constraints (Reynders, et al., 
2018).  Therefore, to achieve a more efficient and flexible energy system, the widely known 
trais energetica method was adapted to five steps, including user demand and behaviour and 
the effect of energy exchange and storage systems (HaskoningDHV, 2018), see Figure 2. The 
newly added step 1, ǿƘƛŎƘ ƛǎ ά5ŜǎƛƎƴ ŀŎŎƻǊŘƛƴƎ ǘƻ ǳǎŜǊ ŘŜƳŀƴŘ ŀƴŘ ōŜƘŀǾƛƻǳǊέ, helps in 
exploring the required energy flexibility without compromising the user comfort. On the other 
ƘŀƴŘΣ ǎǘŜǇ пΣ άŜƴŜǊƎȅ ŜȄŎƘŀƴƎŜ ŀƴŘ ǎǘƻǊŀƎŜ ǎȅǎǘŜƳǎέ, helps in overcoming the grid-related 
bottlenecks. Even though the method is fully established, further research and exploration are 
still needed to identify the potential of this methodology in different case studies. Therefore, 
this research will contribute to the knowledge and applications of step-four by identifying the 
potential for energy sharing and storing.  
  

 
Figure 2 Five step method (HaskoningDHV, 2018) 

As step four includes storage systems, a short declaration on the necessity of storage systems 

in the electricity grid will be given. There is a broad acknowledgment that, due to the 

variability of renewable energy sources, energy storage systems must be implemented to 

make a complete energy transaction possible. Electrical storage systems can contribute to a 

variety of manners for efficient energy usage. The electrical storage system enables 

maximization of PV systems and shared usage of electricity generated by PV systems. When 

the electricity is not used by a household with a PV system the electricity can be stored in the 

ESS, during daytime when demand is low, and consumed, by the household itself or another 

household in the neighbourhood, when demand is high. The decentralisation of the energy 

network and the usage of ESS enables consumers to shape their power demand actively. This 

possibly will increase the energy demand flexibility of a smart neighbourhood.  
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Other examples of benefits, dependent on the capacity of the storage system and the time 

the electricity is stored, described by Barton and Infield (2004) are: 

¶ Spinning reserve ς clouds on PV panels and wind power smoothing 

¶ Standing reserve ς peak shaving smoothing of loads  

¶ Smoothing of weather effects ς PV,  wind, small hydro 

¶ Voltage and frequency control 

The research of Barton and Infield (2004) show that the electrical storage systems can increase 

the absorption of renewable energy by 10 -25%, dependent on the storage time, without grid 

reinforcement. Some scenarios used in the research are proven to be economically 

worthwhile (Barton & Infield, 2004). One possible storage system is the lithium-ion battery. 

Some studies have determined the financial feasibility of such electrical storage systems with 

different subsidy scenarios (Kantor, Rowlands, Parker, & Lazowski, 2015) (Cucchiella, 

5Ω!ŘŀƳƻΣ ϧ DŀǎǘŀƭŘƛΣ нлмтύ. The approach of these studies suggests that with the current 

practices, ESSs are, currently not feasible without governmental support in these specific 

cases. However, as mentioned earlier, the electricity grid, as well as the regulations regarding 

feed-in electricity, are changing rapidly, which makes storage becoming more a feasible 

additive to the network. 

In order to operate an ESS efficiently, accurate short-term electricity load forecast is desired 

(Lahouar & Slama, 2015). Energy load forecasting or energy demand prediction is the 

speculation and prediction of what the power demand for a certain period in the future will 

be, using historical data, and its influencing factors and by applying mathematical algorithms 

(Huo, Shi, & Chang, 2016). Energy demand prediction has always been acknowledged to be a 

difficult task. The dependency on weather conditions, building characteristics, operation of 

sub-level components (e.g. HVAC-system and appliances), occupancy and user behaviour, 

makes it a complex problem (Zhao & Magoulès, 2012). However, the high penetration levels 

of intermittent resources in the grid, such as wind and solar energy, increases the degree of 

uncertainty even more, due to their non-regular behaviour. This is an incentive to extend the 

knowledge in this field of research (Lahouar & Slama, 2015) (Huo, Shi, & Chang, 2016). The 

technological advancement of communication infrastructures, mathematical modelling 

techniques, and numerical simulation environments are promising developments for the 

integration of short-term electricity load forecasting into the existing grids. This is also true for 

storage capacity within the energy network, which can be achieved by intelligent demand side 

management (DSM) (Jurado, Peralta, Nebot, Mugica, & Cortez, 2013). Research has proven 

that empirical ML modelling can provide noticeable prediction results and outperform 

engineering-based building energy modelling when the algorithm and settings are 

appropriately chosen (Wang, Wang, Zeng, Srinivasan, & Ahrentzen, 2018). ML is generally 

referred to as a computer algorithm that learns from existing data (Seyedzadeh, Rahimian, 

Glesk, & Roper, 2018). The focus of this study is therefore towards the application of ML 

models to forecast short-term electricity demand. 
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2.2 Energy demand prediction 

2.2.1 Essence of energy demand forecasting 

There are many arguments on why improving the accuracy of energy demand modelling is 

beneficial. Better prediction of energy demand can lead to a reduction of monitoring 

expenses, initial cost of hardware components, and long-term maintenance costs in the future 

grids (Kuo & Huang, 2018). Accurate forecasting  of energy consumption can help to determine 

the required storage size, to delay and postpone energy consumption. It can be used at early 

design stages of renewable energy systems  to see its impact. It can also help in the DSM, to 

forecast the likely future development of electricity demand (Rodrigues, Cardeira, & Calado, 

2014). Wang et al. (2018) state that building energy demand prediction is becoming more 

significant for improving efficiency due to its essential role for implementing energy efficiency 

measures such as; demand response control, system fault detection and diagnosis, building 

energy benchmarking and building system measurement and verification (Wang, Wang, Zeng, 

Srinivasan, & Ahrentzen, 2018). Mocanu et al. (2016) state that the future grid needs a system 

that can monitor, predict, schedule, learn, and make decisions regarding local energy 

consumption. Ryu et al. (2016) state that short term energy load forecasting is becoming 

increasingly important. A wide variety of applications is mentioned for accurate prediction 

models such as demand response, targeted dynamic pricing, load monitoring, energy storage 

operation and peak load reduction (Ryu, Noh, & Kim, 2016) (Lahouar & Slama, 2015).  Other 

authors explain that accurate forecasting is a vital issue to support individual and 

organisational decision making (Jurado, Peralta, Nebot, Mugica, & Cortez, 2013). Predicting 

energy demand should not only be done on an aggregated level but also individual building 

level so that the distribution of locally generated energy can be distributed based on the local 

demand. Also, the decomposition of energy demand, locally in short-term time intervals, helps 

to analyse energy demand patterns and give insight in potential energy conservation targets 

(Mocanu, Nguyen, Gibescu, & Kling, 2016). These are reasons why much effort is put into 

investigating different models and approaches to improve energy demand prediction.  

2.2.2 Energy demand forecasting over the years. 

Energy demand forecasting has been studied intensively since the 1950s (Jurado, Peralta, 

Nebot, Mugica, & Cortez, 2013). Early researches regarding demand forecasting, often used 

methods such as autoregressive integrated moving average (ARIMA), exponential smoothing, 

non-parametric regression and Kalman filter (Taylor, Menezes, & McSharry, 2016) (Ryu, Noh, 

& Kim, 2016). In the 1980s the Kalman filter was especially attractive an model to forecast 

demand, due to its computational efficiency. By the time computing power increased, 

researchers were able to explore the complex load data better. This led to rule-based and 

fuzzy logic expert systems to model the complexity in the load data, using domain knowledge. 

Despite the fact that these approaches were promising, they relied on rules that were 

ŜȄǘǊŀŎǘŜŘ ŦǊƻƳ ŜȄǇŜǊǘǎΩ ŀƴŘ ƻǇŜǊŀǘƻǊǎΩ ƛƴŘƛǾƛŘǳŀƭ ŜȄǇŜǊƛŜƴŎŜǎΣ ǿƘƛŎƘ ŀǊŜ ǎǳōƧŜŎǘ ǘƻ 

inconsistencies and therefore not reliable (Taylor, Menezes, & McSharry, 2016). Another 

promising approach introduced to help the increase accuracy and reliability of demand 

forecasting is neural networks. Artificial neural networks (ANN) made experimenting with 

models that can identify complex nonlinear relationships in data and predict future behaviour. 

These models are theoretically weak and need rich data since they learn through examples 
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which consist of input features and output. This learning through examples enables the 

potential to discover a far greater range of relationships compared to models with pre-defined 

format (Taylor, Menezes, & McSharry, 2016). Artificial neural networks are therefore broadly 

used and have received lots, if not most, of attention and interest in scientific publications 

regarding energy demand prediction since it was introduced in the building services sector in 

the 1990s (Rodrigues, Cardeira, & Calado, 2014). More recent studies have used other ML 

techniques such as Support Vector Machines (SVM) and ensembled trees and showed that 

these models also achieve highly accurate performance results (Zhao & Magoulès, 2012). 

2.2.3 Commonly used approaches and methods 

As the essence of accurate energy demand forecasting has become clear, researches have 

started exploring and optimizing all sorts of different approaches. Many studies have 

ŎƻƳǇŀǊŜŘ ƻǊ ǎǳƎƎŜǎǘŜŘ ŘƛŦŦŜǊŜƴǘ ƳƻŘŜƭǎ ǘƻ ǇǊŜŘƛŎǘ ōǳƛƭŘƛƴƎǎΩ ŜƴŜǊƎȅ ŘŜƳŀƴŘ. For some of 

these studies, the most important fragments, such as the used data types, number, 

characteristics of prediction variables, performance indicators, the results, and conclusions, 

are summarized.  

An important factor for the approach of energy demand forecasting is the forecasting horizon 

and corresponding time intervals. In general, a shorter prediction horizon (days, hours, sub-

hourly) is harder to predict than mediocre (weeks or months) and long-time (many months or 

a year) horizons, since short intervals are more susceptible for statistical variations. Besides 

the time intervals, the prediction entity is an important factor, for the same reason, as small 

energy-consuming entities are more sensitive for little variations. Please take this in mind 

when reading this review. 

Kontokosta and Tull (2018) used a yearly prediction horizon, which is considered as long.  The 

authors used three ML algorithms, which are ordinary least squares (OLS) regression, RF, and 

SVM to forecast annual building, district and city-scale energy demand of New York City, USA. 

The authors used a combination of actual building energy consumption and detailed property 

and building-level attributes, such as floor area, use type, and building year. This information 

is collected from three sources: (i) Local Law 84 energy disclosure provides building energy 

use information, building occupancy and physical characteristics of 20,000 buildings, (ii) city-

scale PLUTO provides parcel-level physical characteristics, zoning and use type data of all 1.1 

million buildings in New York, (iii) zip code energy data set provides aggregated annual energy 

consumption data of all 176 zip codes in New York. All types of buildings are included in the 

data set, residential, commercial, industrial, etc. For the RF and SVM, the hyperparameter 

settings were optimized by creating a grid of different parameters and stepwise testing all the 

different combinations. The best performing combination was eventually chosen to use for 

the actual prediction. This optimization step is conducted for both electricity and natural gas 

consumption.  Fivefold cross-validation is used to overcome the possibility of overfitting.  The 

model is validated at the building and zip code level using actual consumption data of 2014. 

The authors chose to use the mean absolute error (MAE) and the mean log accuracy ratio 

(mean-LAR) to compare the model accuracies. The feature importance is dependent on the 

scale-level, building or zip code level, and on the energy source; electricity or natural gas.  In 

general, building use, size and layout serve as the most important predictors. The authors 
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conclude that, for the OLS model, using more variables decreases the model accuracy. For the 

RF and SVM, the first six features provide the vast majority of the prediction ability. Overall, 

the authors conclude that there is little difference in the prediction ability and accuracy of the 

three used machine learning models.  When looking on the city and zip code scale, the simple 

OLS model performs best, on the building level prediction the SVM has the lowest MAE. 

Further, it is concluded that, given the used models, predicting natural gas consumption is 

harder than electricity, for both building level and zip code level scale. The authors state that 

the results have proven that there is a need for higher data transparency and data access from 

utility companies, as it is a valuable resource for helping cities to plan and evaluate 

sustainability and carbon reduction strategies (Kontokosta & Tull, 2017). 

Robinson et al. (2017) also compared multiple machine learning models to predict annual 

electricity demand. The prediction entities were commercial buildings. In total 14 different 

machine learning models are tested and compared based on the R2 and the Mean Absolute 

Error (MAE). They used data from the CBECS, published every five year by the U.S. Energy 

Information Administration (EIA). This dataset contains 6720 rows (buildings) of data which 

are representative for 5.6 million commercial buildings in North America. The data is gathered 

by means of a questionnaire to building owners. The models are based on five building and 

weather features; (i) number of floors, (ii) square feet, (iii) heating degree days, (iv) cooling 

degree days, and (v) principal building activity. This small amount of commonly accessible 

features makes applying this approach convenient, elsewhere. They conclude that gradient 

boosting regression models perform the best with an R2 score of 0.82. They note that they 

used the default settings of the models and did not optimize the hyperparameter settings 

(Robinson, et al., 2017). 

Li et al. (2010) predicted the annual energy consumption of residential buildings with a SVM 

and multiple ANNs; general regression neural network (GRNN), back-propagation neural 

network (BPNN), and radial basis function neural network (RBFNN). The models use 16 

technical building features such as; building size, window wall ratio, heat transfer coefficient, 

as well as annual electricity consumption of the buildings, as prediction features. Stepwise 

searching is used to select suitable parameter settings for each model. For the neural network 

models, the number of neurons in the hidden layers drastically impacts the results and is, 

therefore, an important parameter to optimize.  The parameters for the SVM are optimized 

by using genetic algorithms. The models are compared based on the relative errors, MSE, and 

root mean square error (RMSE). The study uses 50 houses for training and nine houses for 

testing. They conclude that the SVM and the GRNN perform significantly better than the BPNN 

and RBFNN given the nine testing samples (Li, Ren, & Meng, 2010).  

A Net-zero energy residential test facility is used to test the application of a regression (OLS) 

model to predict its energy performance by Kneiffel and Webb (2016). The test facility 

contains a PV system for electricity production and has data acquisition and control system to 

collect data and monitor the performance. A heat pump and a thermal solar system are used 

for space heating and domestic hot water; no natural gas connection is available. For lightning 

and insulation of walls and windows, high performing materials are used. The installed 

instruments measure weather data at the test facility such as temperature, humidity and solar 
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insulation, electricity consumption (of the building as a whole, as well as system-specific 

values), electricity production. These variables are collected every 3 or 60 seconds, dependent 

on the specific measurement. These observations collected one year and aggregated to daily 

average values for the analysis. The prediction is separately executed for the consumption and 

the production of electricity. The first two weeks of every month were selected to be the 

training data, which contains 140 daily consumption and production values. The RMSE and R2 

values are used as performance indicators for the prediction model. Also an analysis of 

variance (ANOVA) is conducted to determine the significance of the models and their 

coefficients. The proposed OLS models are compared with broadly used, physics-based, 

energy performance indication models. The authors found that the production model has an 

extremely strong linear correlation, while the consumption model shows a more unexplained 

variation. The suggested OLS model performs better than the other three tested, engineering-

based models. The higher accuracy is, according to the authors, mainly achieved through the 

actual in-situ data input of the test facility, where the engineering models work with the 

specifications of all materials and appliances (Kneiffel & Webb, 2016).  The study does not use 

actual occupancy behaviour, which is a major shortcoming although it is generally recognized 

that this plays an important role in the complexity of consumption patterns (Arregi & Garay, 

2017), by means of opening windows, usage of appliances and changing thermostat settings.  

A study by Xu et al. (2019) proposed an integrated social network analysis (SNA) and ANN to 

predict multi-building energy use. Specifically they try to predict the energy use index (EUI), 

in kWh per square meter. The SNA is used to determine reference buildings, buildings with 

similar energy use patterns, and identify correlations between the total energy usage of a 

building and that of a reference building and non-reference building. The data used in this 

approach consists of three years of monthly energy use of 17 buildings on the Southeast 

University campus in Nanjing, China. The different building types on the campus are; office, 

educational, laboratory and residential. Missing values and erroneous data is replaced by 

interpolating according to Lagrange polynomials. Features used in the prediction model 

consist of historical energy use, change in energy use and building characteristics such as 

materials, physical dimensions and building year. The model was evaluated and compared 

with a regular ANN based three indices; MAE, MAPE, RMSE. The study concludes that the SNA-

ANN model predicts the monthly energy use for the building groups, offices, laboratory and 

education around 90% accurate and residential dwellings 83.32% accurate. Dependent on the 

ƴŜǘǿƻǊƪ ǎǘǊŜƴƎǘƘ ōŜǘǿŜŜƴ ǘƘŜ ǊŜŦŜǊŜƴŎŜ ōǳƛƭŘƛƴƎǎΩ 9¦L ŀƴŘ ǘƘŜ ǘƻǘŀƭ ōǳƛƭŘƛƴƎǎΩ 9¦L ŀƴŘ ǘƘŜ 

standard deviation this is outperforming the regular ANN  (Xu, Wang, Hong, & Chen, 2019).  

These long ranging prediction horizons are often very accurate and can be used for more 

general capacity planning. There are also studies which focus on mediocre energy demand 

prediction. Dong et al. (2015) have examined the feasibility and applicability of SVM in 

forecasting building loads monthly. They have used weather data such as monthly mean 

outdoor temperature, relative humidity, and global solar radiation. The approach is applied to 

four, randomly picked, buildings from a business district in Singapore. The used data was 

collected from an extended survey started in 1996, where building owners have collected 

monthly electricity consumption from the main meters. Data from October 1996 through 

October 1998 and the year 2000 were used as training data, and 2001 was used as a test set. 
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Different parameter settings are tested to find the best suitable model for the problem. To 

select the best model for each building, four performance indicators are used, the MSE, mean 

squared error of scaled value (S-MSE), cv-RMSE, and the percentage error (%error). The best 

performing models have all very accurate results with cv-RMSE of less than 3% and %errors of 

under 4%, which is excellent (Reddy, et al., 1997). Dong et al. (2015) compare their results 

with other researches regarding demand forecasting of commercial buildings and conclude 

that their results are superior with the lowest errors and highest prediction accuracy. The 

authors compared their research with studies who used other, daily or hourly instead of 

monthly, time intervals, which makes the comparison somewhat unfair. Nevertheless, the 

suggested SVM does prove to have a very high performance in the researched case. 

Advantages of SVM are the little parameters that have to be optimized compared to genetic 

programming or ANNs. This study has only optimized two parameters for the prediction 

model. A disadvantage of SVM is the large computation time when applied to large-size 

problems. This disadvantage was not relevant in this study since little data, monthly 

consumption of four buildings was used. The authors conclude that, due to the good results, 

future focus should be on short-term load data exploration (Dong, Cao, & Lee, 2005). 

Another mediocre prediction time horizon study is conducted by Tso and Yau (2005), who 

compared multiple machine learning models for prediction total weekly electricity 

consumption of individual dwellings in Hong Kong. Commonly used approaches are selected 

to be compared; Stepwise regression, Decision Tree (DT) and ANN (stepwise regression, and 

intercept regression were also considered). The comparison is made, based on two seasonal 

cases, winter and summer. For each case data for prediction variables were collected, by an 

extensive survey of over 1000 households. Detailed information about the ownership and 

usage patterns of appliances were collected and monitored. The monitoring of the appliance 

usage of the households has pointed out that the air-conditioning consumes on average 59% 

of the total electricity in a typical household in Hong Kong. Also, the housing type, household 

characteristics data is used as prediction variables. The square root of average square error 

(RASE) is used as a performance indicator to compare the three models. The authors conclude 

that the DT slightly outperforms the other more complicated methods based on the RASE 

score. The ANN performs worst, although the differences, based on the RASE score are very 

small. For all the models, three variables were proven to have a significant impact on the 

prediction; House (flat) size, Number of household members and ownership of air-

conditioning, are the most important in the summer period. The winter period indicates, 

housing type, number of household members and ownership of electrical water heater, as the 

most important prediction variables, which makes sense. The authors remark that the 

inclusion of meteorological features should improve the model fitting results (Tso & Yau, 

2005). 

The short-term prediction horizon, with aggregated data of a maximum of one day, is covered 

in scientific publications. Biwas et al. (2016) conducted a case study to assess the capabilities 

ŀƴŘ ǇƻǎǎƛōƭŜ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴǎ ƻŦ ǘǿƻ !bb ōŀǎŜŘ ǇǊŜŘƛŎǘƛƻƴ ƳƻŘŜƭǎΣ ŀ Ψ[ŜǾŜƴōŜǊƎ-aŀǊǉǳŀǊŘǘΩ 

and an ΨhǳǘǇǳǘ ²ŜƛƎƘǘ hǇǘƛƳƛȊŀǘƛƻƴΩ ǾŀǊƛŀƴǘΦ ¢ƘŜ a!¢[!. ƴŜǳǊŀƭ ƴŜǘǿƻǊƪ ǘƻƻƭōƻȄ ǿŀǎ ǳǎŜŘ 

to run the models. Two specially constructed research and demonstration dwellings on the UT 

Tyler campus were used as test facilities. These houses are designed to serve as realistic test 
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facilities for developing and demonstrating new technologies related to energy efficiency. Due 

to the many energy efficiency measures applicate at these dwellings, the energy usage is 

approximately half of that of a similar regular dwelling. The test buildings only have an 

electricity connection and heating is provided by means of a HP. Every five minutes the energy 

consumption and weather conditions of three months (72 days), was collected at the test 

dwellings. The houses are however not occupied, which is a major shortcoming of the test 

facilities, since user behaviour is known to have a significant impact on the energy 

consumption profiles. Both ANN models have identical setup and use similar prediction 

features, number of days, temperature and solar radiation. 70% of the data is used for training 

and the remaining 30% for testing. Each model is used to predict the total daily energy 

consumption of the dwelling and the hourly electricity usage of the HP. The R2 was used as a 

performance indicator to compare two models. The Levenberg-Marquardt model performs 

slightly better than the Output Weight Optimisation model. The authors mention that the 

difference is not significant due to the small number of data points used. Further, it is 

concluded that the prediction for the electricity consumption of the HP is more accurate than 

the total energy consumption (Biwas, Robinson, & Fumo, 2016). Although detailed, five-

minute interval energy consumption data is available, the authors chose to test the models 

on aggregated daily consumption data.  

Most of the studies which suggest or test the models for short-term load forecasting focus on 

large energy consuming entities, such as Darabellay and Slama (2000), who  tested different 

models to predict the electricity demand of the entire Czech Republic. These authors 

investigated the linear and nonlinear correlation of electric load time series profiles. This is 

tested by predicting the short term (four different time horizons of 1h, 12h, 24h and 36h) 

electric load by means of a nonlinear model, ANN, and a linear model, ARMAX. Two years of 

hourly intervals of electric load of the Czech Republic is collected. From this data, some 

periodic components have been visually identified; there is an annual, weekly and daily cycle 

visible in the load profiles. The, the nature of the correlation between time and electricity load 

is investigated. The autocorrelations of the electric load over time is determined, by observing 

the differences in electric load value over a time interval. The authors found that the nonlinear 

correlations were weak, however, they were not sure whether to completely neglect these 

correlations in a predictive model. The data is split into two sets, working days and holidays. 

For the prediction, only the working days are used. One year of data is used for training, and 

one year for testing. For the ANN model, the Matlab neural network toolbox was used, and 

the linear ARMAX model is generated by means of genetic programming. For the daily 

forecasting, average daily outdoor temperature, which has a linear correlation with electricity 

consumption in the Czech Republic (Darbellay & Slama, 2000), is used as the prediction 

variable. The normalized mean square error (NMSE), MAPE and the maximum absolute 

percentage error (maxAPE) were used to determine the model accuracy. It is concluded that 

the prediction abilities of the linear model are slightly superior to that of the nonlinear model. 

This is in line with the earlier conclusions regarding the linearity of the autocorrelations.  The 

main point of the research is the advice to check whether the problem is indeed nonlinear 

before embarking some complex nonlinear model. The authors have put more effort in 

optimizing the ARMAX model compared to the ANN, and mention that experimenting further 
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with the ANN model would have resulted in better results, yet it would have cost them more 

time than building the ARMAX model (Darbellay & Slama, 2000).  

From the available l iterature on prediction models with hourly intervals, note that most of 

the studies focus here on large energy consuming entities. These studies towards short-term 

prediction models are chosen because they are most relevant for this study.  

Lahouar and Slama (2015) used a random forest for day-ahead electric load forecast. A large 

dataset, of electricity and gas is used with half-hourly intervals from 1 January 2009 to 31 

August 2014 from the Tunisian power system. As a comparison, hourly data from 

Pennsylvania-New Jersey-Maryland Interconnection, USA, is also used. Data preparation 

consisted of aggregating the data to hourly values and, removing missing values, by replacing 

them with previous ones. No normalisation is applied, the data consists of real ranges. Special 

days, such as public holidays, are intentionally kept within the dataset so that the model could 

learn their behaviour. The training set for the prediction  model consists of all the available 

data up until the prediction day. Model inputs used for the RF concern of autoregressive 

features, two previous days at the same hour as well as morning and evening peaks of the 

previous day. Further, external factors, month number, day type, maximum and minimum 

temperature of the predicted day are used as features. Using weather data of the predicted 

day are not possible when predicting a day ahead. Therefore, weather forecast data is used. 

Bad weather forecast entails misbehaviour of the prediction.  The RF is compared with 

extensively used ML models, ANN and SVM. Also, a persistence model, where the prediction 

is exactly the same load demand as the previous day, is added as a reference.  For the ANN 

and SVM no extensive hyperparameter tuning is conducted, only slight manual adjustments 

for optimisation. For each season in 2013, a week of hourly electric load is predicted by the 

models, for the USA data as well as the Tunisia data. A separate prediction is run for the special 

days, with feature selection by an expert on the cultural background of these days. The 

combination between the RF and expert input is able to capture complex load behaviour and 

can solve special cases that are specific to cultural or religious events, by means of appropriate 

inputs. The RF performs overall better than the ANN. Dependent on the season and weekday, 

the RF performs equal, better or worse than the SVM, on both the Tunisian and the USA set 

(Lahouar & Slama, 2015). 

Another study compared a new deep neural network algorithm called DeepEnergy with a 

SVM, a Random Forest (RF), a Multilayer Perceptron (MLP) and a Long Short Term Memory 

neural network (LSTM). A dataset from the U.S. district public consumption and a dataset of 

electric load provided by the Electric Reliability Council of Texas was used. This dataset 

represents roughly 90 percent of the electric load of Texas. In this study, the models trained 

on 7 days of hourly energy loads (168 hours) to  predict for 3 days, 72 hours, for the whole 

state of Texas. The input for these models is purely the past energy loads. This study compares 

the models with Mean Absolute Percentage Error (MAPE) and Cumulative Variation of Root 

Mean Square Error (CV-RMSE). The authors mention that the RF does outperform the decision 

tree and the SVM, which proves that the model ensemble solution is effective in the energy 

demand forecasting. On both performance indices, the DeepEnergy model outperforms the 

other models, closely followed by the RF and the LSTM (Kuo & Huang, 2018). It is notable that 
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the amount of data, used in this study is fewer than comparable studies. The large amount of 

electricity consumption appliances creates relatively smooth graphs, which eases the 

prediction.  

Taylor et al. (2016) have compared six algorithms for forecasting electricity demand; 

autoregressive moving average (ARMA), linear regression (OLS) with principal component 

analysis (PCA), exponential smoothing, ANN and two simple benchmark methods. In the study, 

two datasets are used, one from Rio, Brasil, which contains hourly electricity consumption of 

the whole city, and one from England and Wales which contains the total electricity used every 

30 minutes. They tested all six models on both datasets and compared the results based on 

the MAPE. They conclude that the exponential smoothing model  performs the best overall, 

followed by the PCA linear regressing model. This points out that more simple methods, which  

requires little domain knowledge, can outperform sophisticated alternatives, in this case ANN 

and ARMA  (Taylor, Menezes, & McSharry, 2016). A notable remark Taylor et al. (2016) make, 

is that they used a ANN approach very similar to the one Darbellay and Salma (2000) used, but 

got different results (Darbellay & Slama, 2000) (Taylor, Menezes, & McSharry, 2016)Φ ¢ŀȅƭƻǊΩǎ 

achieved accuracy is significantly lower, which again indicates that the data, on which the 

training and prediction is executed, plays an important role in the suitability and quality of the 

model. 

The study of Huo et al. (2016) compared SVM and RF for short-term electric load forecasting. 

For prediction variables, the month number, weekday indicator, holiday indicator, minimum 

ǘŜƳǇŜǊŀǘǳǊŜΣ ƳŀȄƛƳǳƳ ǘŜƳǇŜǊŀǘǳǊŜ ŀƴŘ ǇǊŜǾƛƻǳǎ ŘŀȅǎΩ ƭƻŀŘ ǿŜǊŜ ǳǎŜŘΦ ¢ƘŜ a!t9 ǿŀǎ ǳǎŜŘ 

as the performance indicator to compare the models. Hourly electricity demand data from 

different sources is used, from multiple cities worldwide. This enables investigating the impact 

of the nature of the data on the different models. The programs were run in Matlab bridged 

with R environment, by Matlab-R link with SVM and R packages installed. For both the SVM 

and the RF, the parameters are optimized by step wise changes. The authors conclude that 

both models are excellent for short-term load forecasting. Overall, no significant differences 

could be observed between the two prediction models. The performance of these models is 

dependent on the parameter settings, the data and even seasons. Parameter settings are 

more important for the model fitting of SVM than of the RF (Huo, Shi, & Chang, 2016).  

The study of Juardo et al. (2013) tested different ML techniques to for short-term electric load 

forecasting; RF, ANN, SVM, and Fuzzy Inductive Reasoning. Data from three locations are used, 

the entire campus of University of Catalonia, and two office buildings in Barcalona of 200m2 

and 50m2. For the campus data, a complete year of hourly electricity consumption data is 

collected. For the office buildings, approximately six months of hourly data is collected. The 

input for the models only consists of historical energy load behaviour, both electricity and gas. 

Validation of the models for the campus data, is based on four days of data in different 

seasons. For the office buildings, three days are used for validating the model. The training set 

consists of all the available data up until the prediction day. The number of data points do 

differ per validation day. The normalized root mean square error (NMSE) is used to compare 

the different models with each other. The authors conclude that the Fuzzy Inductive 

Reasoning model has the best performance based on the NMSE, closely followed by the RF. 
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The SVM and ANN show less accurate results, especially compared to the computational 

efforts of the models, indicating that these models are not the best solution for the used data. 

The RF and Fuzzy Inductive Reasoning model can handle sudden changes. Further, it is 

concluded that the Fuzzy Inductive Reasoning model, RF and ANN are computationally 

efficient enough to be used as real-time prediction models. The authors recommend that the 

Fuzzy Inductive Reasoning model and the RF should be studied and used more in-depth for 

short-term electricity load forecasting (Jurado, Peralta, Nebot, Mugica, & Cortez, 2013).  

Another study which has focussed on predicting hourly energy demand is that of Wang et al. 

(2018). The authors of this study have used a random forest to predict the hourly electricity 

demand for two institutional buildings on the campus of the University of Florida, with 

surfaces of 47.270 and 72.520 square feet.  In total, eleven prediction variables were used in 

the prediction model. Meteorological prediction features such as; temperature, humidity, 

wind speed, rainfall and solar intensity, and time related data such as indicators for days of 

the week were used. Also they used occupancy data of the buildings. The occupancy was 

estimated based on the operation and class schedule of the buildings. A data transformation 

process was performed to determine the hourly occupancy of each building. This is something 

which not many other researches have implemented in energy prediction modelling, probably 

because such specific information is hard to get. The output, or dependent variable, is the 

hourly building level electricity usage. The research has used one whole year of hourly data, 

consisting of 8760 time stamps. After removing observations with missing values for both 

buildings, an acceptable 99% and 95% of the observations were preserved for the prediction 

model. Two approaches were used to test the applicability of RF for energy demand 

prediction: (i) complete year as a data set, (ii) months as separate sets. In the latest mentioned 

approach they tested three months, February, July and October. The monthly set contain 

significantly less data points. However, the total trend in the dataset will be less variable when 

only a month is used, due to the seasons they are in. They used 80% of the data for training 

and 20% for testing, by randomly splitting the data into two sets, for both the yearly and the 

monthly sets. They compared the RF with a single Regression Tree (RT) and a Support Vector 

Regression model (SVR) to see the performance differences. They compared the models based 

on the R2, RMSE, Performance Index (PI) and MAPE. For both buildings, the RF outperforms 

the other two models, in training and testing, on all the performance indicators. Regarding 

the variable importance, the authors conclude that for the yearly models, similar variable 

importance results are observed. The monthly models did differ more, which indicates that 

certain variables play a more important role depending on the season. The occupancy feature, 

which is not much used in other researches, did have big impact on the prediction results. 

Based on this result, it is recommended in this study that future researches should try to 

implement more user behaviour in the field of energy demand prediction (Wang, Wang, Zeng, 

Srinivasan, & Ahrentzen, 2018). 

Fan et al. (2017) used a deep learning approach to predict 24 hour ahead cooling load of a 

large institutional building in Hong Kong. The authors describe deep learning as a collection of 

machine learning algorithms which are powerful in revealing nonlinear and complex patterns 

in big data. A full year of 30-minute interval data is collected for, temperature, humidity, 

supply and return chilled water temperature, and the flow rate of the chilled water 



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

39 

 

temperature. The cooling load, which is the dependent variable in this study, is calculated 

based on the three latest mentioned variables. Also, time data, e.g. month, day type, and hour 

of the day, is used as prediction variable. Lastly, the previous 24 hour of cooling load is used 

as a prediction variable, adding 48 more features, due to 30 minute interval. Seven different 

models were used in the same way to see the performance differences namely, Multi Linear 

Regression (MLR), RF, SVM, Elastic Net (ELN), Gradient Boositing Machine (GBM), Extreme 

Gradient Boosting Machinen (XGB), and ANN.  The MAE, RMSE and cv-RMSE, are used as 

performance indices to compare the model performances. The data set is split into a training, 

testing and validation set, with proportions of 70%, 15% and 15% respectively.  Stepwise 

optimisation for the hyperparameter settings is used for optimisation. The MLR and ELN, 

which assume linearity,  have the poorest performance. The XGB has overall the best 

performance followed by the other non-linear models. The authors mention that there are 

large differences between the performance with basic, default, settings and optimized 

settings. The authors conclude that using deep learning approach can provide accurate and 

reliable 24 hour ahead building cooling load prediction (Fan, Xiao, & Zhao, 2017). 

Li et al. (2009) have compared SVM and different ANNs to predict the hourly cooling load of 

an office building in Guangzhou, China. In this study the Matlab 7.0 Neural Network toolbox is 

used to train and develop models. Features such as meteorological data, relative humidity, 

temperature and solar radiation as well as historical data of cooling load are used. In total six 

months of hourly data is collected for these features. Five months are used for training, and 

one for validation. They compared the models based on the Mean Relative Error (MRE) and 

the Root Mean Square Error (RMSE). The SVM performs slightly better than the three ANN 

models, but all models have sufficient accuracy for engineering purposes (Li, Meng, Cai, 

Yoshino, & Mochida, 2009).  

Ryu et al. (2016) used two different Deep Neural Network (DNN) approaches that are 

suggested to identify the applicability, (i) the restricted Boltzmann machine, and (ii) rectified 

linear unit DNN. Hourly electricity consumption data provided by Korea Electric Power 

Corporation. For eight different industrial categories, (Retail; R&D; Healthcare; Networking 

business; Vehicle and Trailer manufacturing; Electronic component and Computer 

manufacturing; and other manufacturing) five consumers are randomly selected.  Also, 

weather data, such as cloud coverage, solar radiation and temperature, together with 

indicators for seasons, month, and date are used as prediction variables. All data, including 

the hourly consumption data, is normalized (when numerical values are considered), cleaned 

and restructured before used in the prediction models. The focus for the prediction is only on 

business days.  For each consumer, 750 days of hourly data is gathered for three years without 

holidays. The MAPE and the RRMSE are used as performance indicators. To overcome 

overfitting, k-fold cross-validation is used to determining the stopping criteria for the training 

models. The two suggested DNNs are compared with Shallow Neural Network (SNN), ARIMA, 

and DSHW to verify the DNNs performance of forecasting energy demand for individual users. 

This comparison is executed in three cases; single load types various load types, and 

aggregated load types. This rather extensive experiment shows that the DNN based models 

can be trained well, with up to three years of customer load data for predicting 24-hour load 
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profiles day-ahead, without overfitting. Both suggested DNN based models, significantly 

outperform the other tested models, based on the MAPE and RRMSE (Ryu, Noh, & Kim, 2016). 

Publications with short term energy demand prediction models for individual households are 

not present in abundance. One of the fewer studies which try to forecast hourly electricity 

demand for individual households is that of Rodrigues et al. (2014). They have used an ANN 

to predict householdsΩ electricity usage up to three days ahead. The authors did deliberately 

chose not to use weather data, such as temperature, as a prediction variable, to prove the 

possibility of obtaining good results without using extended amount of data. Still, the model 

uses 16 inputs such as; available electric appliances, apartment area and number of 

occupants. These input variables are very user specific and rarely used in other researches. 

They used 6 weeks of hourly electricity consumption data of 93 households in Lisbon, Portugal. 

Two-thirds of the data is used for training and testing, and one third is used for validation. The 

R2Σ a!t9 ŀƴŘ ǘƘŜ ǎǘŀƴŘŀǊŘ ŘŜǾƛŀǘƛƻƴ ƻŦ ŜǊǊƻǊ ό{59ύ ŀǊŜ ǳǎŜŘ ǘƻ ƛƴŘƛŎŀǘŜ ǘƘŜ ƳƻŘŜƭǎΩ 

performance. The Levenburg-Marquardt algorithm was used to simplify and reduce the 

computational effort to run the ANN, by means of pruning. This algorithm determines which 

units are not necessary for the solution and removes them making the model more efficient. 

The conclusion of this study is that their ANN can accurately forecast daily, average and 

maximum, and hourly energy consumption (Rodrigues, Cardeira, & Calado, 2014). 

Houimli et al. (2019) used a ANN to forecast the half hourly electric load demand of Tunisia. 

Nine years, 2000 to 2008, of half hourly electric load demand is used in the prediction model. 

The first eight years are used for the training and validation of the model, and the last year is 

used for testing. As prediction variables, ǘƘŜ Ǉŀǎǘ ŘŀȅǎΩ ŜƭŜŎǘǊƛŎƛǘȅ ǇǊƻŦƛƭŜΣ пу ƛƴǇǳǘǎΣ ǘƻƎŜǘƘŜǊ 

with meteorological data, minimum and maximum temperatures, and calendar variables, 

such as type of day, week, month, year, are used. All the used data is normalized, which is 

essential for a good ANN performance (Houimli, Zmami, & Ben-Salha, 2019). A pattern search 

optimisation algorithm is used to determine the best number of hidden layers and the number 

of neurons in each layer. The proposed ANN, with Levenberg-Marquardt algorithm, is 

compared with two other ANN model, the resilient backpropagation and conjugate gradient. 

For the evaluation of the model several performance indicator are uses; the MAE, MPE, MSE, 

MAPE and RMSE. Five average day profiles, Monday, Thursday, Friday, Saturday, Sunday, from 

2008 are used in the final testing of the model. The proposed Levenberg-Marquardt ANN 

outperforms the other two tested models in all cases (Houimli, Zmami, & Ben-Salha, 2019). 

The usage of testing on average day profiles of an entire year makes the prediction less 

impressive. These profiles are completely smoothed out and no sudden changes, spikes or 

whatsoever appear in these profiles.  
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Table 1 summarizes the global approaches from some of the, energy demand prediction 

related scientific articles, covered in this literature review. 

Table 1 Literature review summary 

Authors Models used Performance 
indicators 

Time interval 
of prediction 

Prediction entity Data used 

(Kontokosta & Tull, 
2017) 

OLS, SVM, RF MAE, Mean-LAR Annual Building, zip 
code and city 
level 

1 year 

(Robinson, et al., 
2017) 

Multiple Tree, 
OLS and SVM 
based models 

MAE, R2  Annual Commercial 
buildings 
(6000+) 

1 year 

(Li, Ren, & Meng, 
2010) 

ANN, SVM MSE, RMSE Annual Residential 
buildings (59) 

1 year 

(Kneiffel & Webb, 
2016) 

OLS R2, RMSE Annual Individual 
residential 
building (1) 

140 days 

(Xu, Wang, Hong, & 
Chen, 2019) 

SNA-ANN MAE, MAPE, 
RMSE 

EPI[1] Buildings (17) 3 years 

(Dong, Cao, & Lee, 
2005) 

SVM MSE, S-MSE, cv-
RMSE, %error 

Monthly Commercial 
buildings (4) 

4 years 

(Tso & Yau, 2005) OLS, RT, ANN RASE Weekly Individual 
residential 
buildings (1000) 

6 months 

(Biwas, Robinson, & 
Fumo, 2016) 

ANN R2 Daily Individual 
residential 
buildings (2) 

72 days 

(Darbellay & Slama, 
2000) 

ANN, ARMA MAPE, maxAPE, 
NMSE 
 

Daily, Hourly Country (Czech 
Republic) 

2 years 

(Lahouar & Slama, 
2015) 

ANN, PER, RF, 
SVM 

MAPE Hourly Country (Tunisia) 5,5 years 

(Kuo & Huang, 2018) DeepEnergy[2], 
SVM, RF, MLP, 
LSTM 

cv-RMSE, MAPE Hourly State (Texas) 10 days 

(Taylor, Menezes, & 
McSharry, 2016) 

ARMA, OLS, 
ANN 

MAPE Hourly City level 30 weeks 

(Huo, Shi, & Chang, 
2016) 

RF, SVM MAPE Hourly City level Variable per 
model 

(Jurado, Peralta, 
Nebot, Mugica, & 
Cortez, 2013) 

ANN, Fuzzy 
logic, RF, SVM 

NMSE Hourly Campus (1), 
commercial 
buildings (2) 

1 year 

(Wang, Wang, Zeng, 
Srinivasan, & 
Ahrentzen, 2018) 

RT, RF, SVM R2, RMSE, PI, 
MAPE 

Hourly Large 
institutional 
buildings (2) 

1 year 
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(Fan, Xiao, & Zhao, 
2017) 

ANN, GBM, 
XGB, SVM, RF, 
ELN, MLR 

cv-RMSE, MSE, 
RMSE 

Hourly[3] Institutional 
building (1) 

1 year 

(Li, Meng, Cai, 
Yoshino, & 
Mochida, 2009) 

ANN, SVM MRE, RMSE Hourly[3] Commercial 
building (1) 

6 months 

(Ryu, Noh, & Kim, 
2016) 

ANN(multiple), 
RIMA, and 
DSHW 

MAPE, RRMSE Hourly Industrial 
buildings (5) 

750 days 

(Rodrigues, 
Cardeira, & Calado, 
2014) 

ANN R2, RMSE, 
MAPE, SDE 

Daily, Hourly Individual 
residential 
buildings (93) 

6 weeks 

(Houimli, Zmami, & 
Ben-Salha, 2019) 
 

ANN MAE, MPE, MSE, 
MAPE, RMSE. 
 

Half-hourly Country (Tunisia) 9 years 

Some studies focus on electricity, natural gas, or both.  
[1]Energy performance index, thus no quantitative energy consumption. 

[2]ANN based model. 
[3]Building cooling load. 

 

Some studies have reviewed publications on the usage of different models to predict energy 

demand profiles.  Zhao and Magoulès (2012) conclude that each model has its advantages in 

certain cases and applications. In general, engineering-based models are difficult to create and 

show a large variety in prediction accuracy. Basic statistical models are relatively easy to 

develop but can be inaccurate and are less flexible. Artificial intelligent models, such as ANN 

and SVM, are good at solving nonlinear problems, which makes them very suitable for energy 

demand prediction, as long as the hyperparameters are tuned appropriately. In many cases 

SVM have even more superior results than the ANN approaches. Drawbacks of these two 

models are that they require sufficient historical data and are complex, which makes 

interpretation of results difficult. The authors state that the establishment of databases with 

precise and sufficient historical data of different entities is necessary to further research 

develop of reliable and effective prediction models. Also, the optimisation of parameter 

settings when using ML models is an important point (Zhao & Magoulès, 2012).  

Another, more extensive, literature review study is conducted by Seyedzadeh et al. (2018). 

Not only did they review the ML models utilised for energy demand prediction, but also 

different pre-processing techniques to enhance prediction accuracy are discussed. The 

authors conclude that ML has shown great potential for energy modelling and assessment for 

different types of buildings. It has been shown that SVM outperforms ANN in load forecasting 

and has the potential to build models from limited amount of data. The authors do question 

this statement since they mention that the earlier used ANN models were from a simple 

structure and might not have the optimal hyperparameter settings. The Gaussian Process 

models (GP) are the only ones that have been used with uncertainty assessment.  This is 

however not the only possible model to apply uncertainty and sensitivity analysis to. The 

authors recommend devoting additional research to these approaches. It is also 
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recommended that more thorough research is desired with a focus on the tuning of the 

models. So that selecting ML models for energy demand forecasting becomes more 

convenient. The authors mention, as also brought forward in this literature study, that some 

studies did fairly not compare different ML models. A common mistake is putting much effort 

in optimizing one model and comparing it with default versions of other models which gives 

an unreliable result (Seyedzadeh, Rahimian, Glesk, & Roper, 2018).  

2.2.4 Model selection 

Many studies have suggested and compared different machine learning models for predicting 

energy demand of buildings and point towards the most promising algorithm in their case. 

Overall it is challenging to determine the best machine learning model, since the covered 

literature concludes that many models can provide decent accuracy when used appropriately, 

with sufficient data and optimized parameters. Multiple authors agree that there is no method 

that is clearly better than others (Taylor, Menezes, & McSharry, 2016). It is stated that the 

choice of the model is determined by the nature of the data (Darbellay & Slama, 2000). 

Therefore, it is essential to analyse the available data and application, to determine which 

model suits best in the given situation (Seyedzadeh, Rahimian, Glesk, & Roper, 2018). 

Empirically test different prediction models first, without optimizing hyperparameters, to see 

which model naturally performs better on a given dataset, is useful to select a proper method.  
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2.3 Research gap 
The growing concerns about energy consumption in residential buildings have driven an 
interest in low- and net-zero energy buildings and legislation to increase building energy 
efficiency (Kneiffel & Webb, 2016). Although the residential building sector accounts for a 
large portion of the growing energy demand in the world today, the majority of the research 
is focused on commercial, industrial and transportation (Swan & Ugursal, 2009). Residential 
energy consumption is thus, underdeveloped for optimal and robust solutions (Biwas, 
Robinson, & Fumo, 2016). One of the reasons that residential energy consumption is less 
studied, is the lack of financial incentive compared to industrial, commercial and 
transportation sectors (Swan & Ugursal, 2009). The privacy sensitivity of collecting 
ƘƻǳǎŜƘƻƭŘǎΩ ŜƴŜǊƎȅ consumption data does also provide an obstacle in such studies (Biwas, 
Robinson, & Fumo, 2016). Authors of different studies have stressed the essence of additional 
research on smart grid solutions. The integrated grid solutions are important since they enable 
other sustainable energy solutions, such as EV, variable renewable sources and demand 
response (Kuo & Huang, 2018). More research is desired for enhancing forecasting capabilities 
to identify effective and appropriate use of renewable energy and energy storage (Rodrigues, 
Cardeira, & Calado, 2014). Although the availability of smart metering data has led to the 
expectation that electricity demand prediction will move toward the individual household 
prediction (Fumo & Biswas, 2015), most studies focus on large energy consuming entities or 
predict for a aggregated daily, monthly or annual values. Consumption of many different 
consumers accumulated, or large entities in general, often show a more smooth and constant 
demand pattern, which makes predicting overall more accurate.  

 

Since many studies have already tested a variety of machine learning models, a combination 

of methods should be used to add significant value in the field of research. By combining 

different methods, an improvement can be made relative to only running an optimized 

algorithm, which most studies have done.  

Lastly, most of the studies have not incorporated renewable energy production at the demand 

side, when predicting the energy demand. As this is becoming more and more the norm, 

ŀŘŘƛǘƛƻƴŀƭ ǊŜǎŜŀǊŎƘΣ ǊŜƎŀǊŘƛƴƎ ǇǊŜŘƛŎǘƛƴƎ ŎƻƴǎǳƳŜǊǎΩ ŜƴŜǊƎȅ ŘŜƳŀƴŘ ǿƛǘƘ ǊŜƴŜǿŀōƭŜ ŜƴŜǊƎȅ 

generation systems on-site, is desired. 
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3. Methodology  
 

The methodology of this research contains a combination of methods, to predict short term 

electricity demand of residential buildings. To improve the prediction accuracy, a clustering 

algorithm will be run preceding on the prediction model. Clustering households based on their 

electricity consumption profiles could be beneficial for the prediction accuracy. An operating 

system will be suggested to identify opportunities for improving self-sufficiency, by sharing 

electricity between clusters. The underlying theoretical principles of the used models will be 

clarified in the upcoming three sections of this report.  
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3.1 Clustering model 
Many studies, as described in the previous chapter, have used different approaches to 

improve energy demand prediction accuracies. In this study a new approach is suggested for 

this same objective. Before the prediction model will take place, the houses in the 

neighbourhood will be clustered based on their electricity demand profiles. The goal of this 

clustering is to group houses with similar electricity demand patterns, so that the prediction 

for these clusters is more accurate and robust.  

K-means clustering is a simple and convenient approach to divide a dataset into K distinct, and 

non-overlapping groups. This approach scales well to large number of samples, and has been 

used across a large range of application areas in different fields. The main principle for the K-

ƳŜŀƴǎ ŎƭǳǎǘŜǊƛƴƎ ŀǇǇǊƻŀŎƘ ƛǎ ǘƻ ƳƛƴƛƳƛȊŜ ǘƘŜ ΨǿƛǘƘƛƴ ŎƭǳǎǘŜǊ ǾŀǊƛŀǘƛƻƴΩΦ ¢ŀƪƛƴƎ ƛƴǘƻ ŀŎŎƻǳƴǘ 

two important properties; (i) each observations, in this case demand profile, belongs to one 

of the K clusters. (ii) no observations belong to more than one cluster, thus, non-overlapping 

clusters. The problem that has to be solved to create good clusters according to the K-means 

method is (James, Witten, & Hastie, 2017): 

ὓὭὲὭάὭᾀὩ
ὅȣὅ

 ὡ ὅ  
(1) 

Equation 1: K-means clustering objective. 

Where ὑ is the number of cluster, ὅȣὅ  represent all clusters and ὡ ὅ  is a measure of 

the amount by which the observations within the clusters differ from each other, named; the 

within cluster variation. The within cluster variation, summed over all the clusters, has to be 

as small as possible, to create good clusters according to the k-means approach. 

The within cluster variation can be expressed in a number of ways, however, by far the most 

used method involves the squared Euclidean distance. Here, within the cluster variation is 

expressed as (James, Witten, & Hastie, 2017);  

ὡ ὅ
ρ

ȿὅȿ
ὼ ὼ

ȟᶰ

 (2) 

Equation 2: Within cluster variation. 

In Equation 2, corresponding to this research work, ȿὅȿ gives the number of houses in the Kth 

cluster. ὼ  represents the value of feature Ὦ of observation  Ὥ. ὼ  is the average observation 

value of the cluster, or centroid.  

Further, ὴ stands for the total number of features used, in this case, only one feature is 

considered; total grid electricity demand. To put this equation to words; the within cluster 

variation for the Kth cluster is the sum of all the pairwise squared Euclidean distances between 

the observations of the Kth cluster, divided by the total number of observations in the Kth 

cluster (James, Witten, & Hastie, 2017). 
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The two previously described equations combined, gives the optimization problem that 

defines K-means clustering; 

ὓὭὲὭάὭᾀὩ
ὅȣὅ

 
ρ

ȿὅȿ
ὼ ὼ

ȟᶰ

 (3) 

Equation 3: Optimization problem of k-means clustering. 

In this study only one feature is used in the clustering, the optimization problem can therefore 

be simplified as: 

ὓὭὲὭάὭᾀὩ
ὅȣὅ

 
ρ

ȿὅȿ
ὼ ὼ

ȟᶰ

 (4) 

Equation 4: Optimization problem corresponding with research 

The algorithm that solves Equation 4 consists of two steps.  

(I) Randomly assign a number, from 1 to K, to each of the houses. These serve as 

the initial cluster assignments for the houses.  

(II) Iterate the following, until the cluster assignment stops changing: 

a. For each of the K cluster, compute the cluster centroid, the average values 

for each observation of the cluster. The Kth cluster centroid is the mean of 

the ὴ feature for the houses in the Kth cluster. 

b. Assign each house to the cluster whose centroid is the closest, by using the 

Euclidean distance. 

This algorithm is guaranteed to decrease the value of the objective function at each step. 

However, the (local) minimum that is reached, is dependent on the initial assignments of 

houses to clusters.  Therefore, it is important to run the algorithm multiple times with different 

random initial configurations. So that the best solution, with the smallest outcome of Equation 

3, can be selected (James, Witten, & Hastie, 2017).  

This clustering technique will be executed in Python, by means of the Scikit-learn module 

Ψcluster.kmeansΩΦ ¢Ƙƛǎ ŦǳƴŎǘƛƻƴ has some parameters to be set before running it.  

n_cluster:  Represents the number of desired clusters.  

n_init:  The number of times the k-means algorithm runs, with different initial 

assignment of houses to clusters.  

max_iter: Maximum number of iterations of the k-means algorithm for a single 

run. In the case the clusters keep changing after a lot of iterations, this 

is the stopping rule.  

When observing the electricity demand profiles of the clusters for a whole year, trends are 

very similar. Individual houses can have different energy consumption behaviour in winter 

compared to summer. This causes the clustering algorithm to distribute the clusters unevenly. 

In fact, when clustering the houses based on the full 2 years of data, the 70 houses are  

distributed over four clusters as: 67-1-1-1, which adds no value to the approach. When making 
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the period smaller, the model can, after a number of iterations, determine clusters with 

substantial  number of houses in it. To select a suitable period for the clustering model, 

multiple time periods are tested, seasons (three months), months and two week. The season 

and month periods show similar, although less extreme, behaviour as the two years of data. 

Two weeks seems to be a suitable period for the k-means clustering approach to create decent 

clusters. Each prediction day, a clustering algorithm must be executed.  

To determine a suitable number of clusters (n_clusters), multiple tests have been conducted; 

six, five and four clusters, as shown in Appendix II ς Cluster sizes.. When the parameter 

n_clusters is set to five or six, it is observed only three clusters have substantial size, the 

remaining clusters contain only a few houses. The small clusters in these cases do not add 

value to the overall prediction accuracy, so they will be added to the second smallest cluster 

which makes the effective number of clusters smaller. Based on this test the best number of 

clusters is selected to be four, and this will be used to do the clustering.  

The number of times the clustering algorithm randomly puts centroids in the data (n_init) is 

on default set to 100. This means the model is run 100 times and selects the cluster 

distribution, from these 100 runs, where the total within cluster variation is the lowest. The 

maximum number of iterations (max_iter), which is an early stopping rule for when the cluster 

distribution keeps on changing, is set to 1000. The default setting of max_iter is 300, this is 

increased to 1000, to be sure the best cluster distribution is achieved and the algorithm is not 

stopped before the lowest within cluster variation is achieved.  

Table 2 shows the parameter settings for the k-means clustering model that will be used 

throughout the research. 

Table 2 Parameter settings clustering model 

Parameter Value 

n_clusters 4 
n_init 100 
max_iter 1000 
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3.2 Prediction Model 

3.2.1 Model selection 

The literature has pointed out that multiple models can accurately predict energy demand 

when used under the right circumstances. To make a well grounded decision, multiple 

algorithms are tested with their default settings to see which model naturally performs best 

on the given data of individual houses without clustering. This is done by using the built in 

Matlab application Regression Learner. This application offers the possibility to test multiple 

algorithms on a dataset relatively quickly. In total  15 algorithms are tested, namely, multi 

linear regression models, ensembled trees, support vector machines and single prediction 

trees. Table 3 shows the results for the house ID-7056 as an example. In total 5 randomly 

picked houses are tested to determine the best performing algorithm empirically. In the used 

ƳƻŘŜƭǎΣ тл҈ ƻŦ ǘƘŜ ǘǿƻ ȅŜŀǊǎΩ Řŀǘŀ ƛǎ ǳǎŜŘ ŦƻǊ ǘǊŀƛƴƛƴƎ ŀƴŘ ол҈ ŦƻǊ ǘŜǎǘƛƴƎΦ CƻǊ ŜŀŎƘ ǘŜǎǘŜŘ 

algorithm, the R2, RMSE, MSE and MAE are generated. The model with the best average values 

of the performance indices, of these 5 tests, is selected.    

Table 3 Algorithm comparison, example house ID-7056 

Model R-squared RMSE MSE MAE 

Linear regression[1] 0.66 0.4160 0.1730 0.2594 

Robust linear regression[1] 0.65 0.4248 0.1805 0.2432 

Interaction linear regression[1] 0.67 0.4137 0.1711 0.2510 

Ensemble Boosted trees 0.67 0.4080 0.1664 0.2363 

Ensemble Bagged trees 0.67 0.4082 0.1666 0.2421 

SVM Linear [1] 0.65 0.4226 0.1786 0.2428 

SVM Quadratic 0.67 0.4138 0.1712 0.2293 

SVM Cubic 0.65 0.4213 0.1775 0.2343 

SVM Fine Gaussian 0.44 0.5367 0.2881 0.2110 

SVM Medium Gaussian 0.66 0.4173 0.1742 0.2316 

SVM Coarse Gaussian  0.66 0.4170 0.1739 0.2339 

Tree Coarse 0.65 0.4228 0.1788 0.2554 

Tree Medium 0.61 0.4466 0.1995 0.2736 

Tree Fine 0.51 0.4979 0.2479 0.3032 
House 7056 
[1]Theoretically not suitable due to non-linear relationships between autoregressive features 
and the dependent variable.   

 

This empirical test points out that the ensemble trees have the best performance among the 

tested algorithms; highest coefficient of determination and lowest errors terms. The literature 

study has clarified that the ensembled trees are performing well when a training set contains 

many correlated variables. The training set of this research, does indeed contain mutually 

dependent predictors such as autoregressive and meteorological features, see section 4.2.2. 

The literature is therefore in line with the empirical test results. A more in-depth review of 

ensemble tree based models, and their origin, will be given in the next section of this report. 
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3.2.2 Regression tree 

Since the ensembled trees are derivatives of the regression tree a sort explanation of the 

regression tree will be given first. A regression tree consists of branches nodes and leaves (or 

terminal nodes) created by a series of splitting rules starting at the top of the tree (James, 

Witten, & Hastie, 2017) .  

The basic principle of regression trees will be explained by means of Figure 3, which shows an 

example of a single regression tree with a depth of three.  

 

Figure 3 Example regression tree 

Lƴ ǘƘƛǎ ŜȄŀƳǇƭŜΣ ŀ ƘƻǳǎŜƘƻƭŘǎΩ ŜƭŜŎǘǊƛŎƛǘȅ ŘŜƳŀƴŘ ŦƻǊ ŀ ŎŜǊǘŀƛƴ ƘƻǳǊ ƛǎ ǇǊŜŘƛŎǘŜŘ ōŀǎŜŘ ƻƴ ǘƘŜ 

temperature on that particular hour. The top node splits the data for which the temperature 

is equal or smaller than 15.85 degrees Celsius to the left branch, and data for which the 

temperature is larger than 15.85 degrees Celsius to the right branch. These first regions are 

split ones more, so that four regions are created, see Figure 3, with each a predicted amount 

of electricity used: 

Ὑ ὢȿὝὩάὴὩὶὥὸόὶὩχȢωυ,        ώ πȢχχὯὡὬ 

Ὑ ὢȿὝὩάὴὩὶὥὸόὶὩρυȢψυȟὝὩάὴὩὶὥὸόὶὩχȢωυ,   ώ πȢρτὯὡὬ 

Ὑ ὢȿὝὩάὴὩὶὥὸόὶὩρυȢψυȟὝὩάὴὩὶὥὸόὶὩρωȢφυ,  ώ πȢωφὯὡὬ 

Ὑ ὢȿὝὩάὴὩὶὥὸόὶὩρωȢφυ,      ώ ςȢρψὯὡὬ 

The tree keeps building until a stopping point is reached determined by a stopping rule. In this 

case the stopping rule is a max dept of 2, the data is split twice. The prediction value for all 

the observations within a region is equal to the mean of the response variable of the training 

data in that region. Defining the size of the regions Ὑ Χ Ὑ is based on minimizing the residual 

sum of squares (RSS), at the point of splitting of the total tree. The RSS is defined as (James, 

Witten, & Hastie, 2017): 
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ὙὛὛ Ὡ  Ὡ Ễ  Ὡ  (5) 

Equation 5: Residual sum of squares. 

Here Ὡ is the error of a prediction, this can be described as the difference between the 

measured value and the predicted value, defined as: 

Ὡ ώ ώ (6) 
Equation 6: Error of prediction. 

Here, ώ is the observed value of the i-th sample and ώ is the predicted value of the i-th sample. 

Total minimization formula can be described as (James, Witten, & Hastie, 2017):  

ὓὭὲὭάὭᾀὩώ ώ

ᶰ

 (7) 

Equation 7: Regression tree objective 

Where, ώ  is the mean value of the dependent variable in the j-th region.  

The algorithm which solves Equation 7,  consists of two steps which create the regression tree 

(James, Witten, & Hastie, 2017): 

(I) The predictor space is divided into J distinct and non-overlapping regions.  

(II) For every value that falls in a particular region, the same prediction is made. This 

prediction is the mean of the dependent variable for the training observations in that 

region.  

3.2.3 Random Forest 

In the previously described example, only one independent variable is used and only four 

regions are constructed. Regression trees where vast amount of data is used to train, will have 

hundreds of regions and use multiple independent variables. When problems become more 

complex, with more independent variables and non-linear relationships, a single tree will not 

predict accurate (James, Witten, & Hastie, 2017).  

Random forest is an ensemble learning method, consisting of a collection of regression trees. 

It is a homogeneous ensemble method since the model uses the same algorithm to create its 

base models, in this case regression trees. Random forests consist of multiple trees, where the 

prediction value is an averages of all the constructed trees. However now that there are 

multiple predictors, a rule must be defined to select the predictors for the splitting regions. In 

each tree, every time a split in a tree is created, a random sample of m predictors is chosen as 

split candidates from the full set of p predictors. So only a part of the predictors is considered 

each node. The goal of this approach is the decorrelation of the individual trees. Training sets 

often contain one, or a few, strong predictors, along with a number of moderately predictors.  

When multiple trees are constructed based on the strength of the predictors, the trees will 

look very much alike. The predictions of these trees will therefore be highly correlated. 

Averaging many highly correlated quantities will not reduce the variance as much as averaging 

many uncorrelated quantities. So creating multiple, comparable trees, will not reduce the 
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variance over a single tree. Therefore, random trees try to create uncorrelated predictions by 

randomly choosing predictors at each node of each tree.  By only using a subset of the 

predictors, the strong predictor will in some trees not even be considered and the other 

predictors have more influence. The average of the predicted values will be less variable and 

hence more reliable. Using this random forest with a small value of m will typically be helpful 

if a training set has many correlated predictors (James, Witten, & Hastie, 2017). The process 

of a random forest is visualized in Figure 4. 

 

Figure 4 Random forest process (Wang, Wang, Zeng, Srinivasan, & Ahrentzen, 2018) 

To measure the impact of each variable on the overall prediction performance, data 

permutation is used. By calculating in- or decrease of prediction accuracy resulting from 

randomly permuting the values of a variable, the importance of a variable can be determined. 

The larger the difference in prediction accuracy, the more the important of the variable, the 

smaller the difference the lesser the importance of a variable is (Wang, Wang, Zeng, 

Srinivasan, & Ahrentzen, 2018). 
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3.2.3.1 Parameters  

The prediction model is executed with the python module Scikit-learn. Scikit-learn is an 

integrated Python module with a wide range of state-of-the-art machine learning algorithms 

for medium-scaled supervised and unsupervised problems. This package is, like Pandas and 

Numpy, also open source and encouraged to use both for scientific and commercial purposes 

(Pedregosa, et al., 2011).  This program is chosen since it allows more flexibility in the fine 

tuning of parameter setting. With regression learner app from Matlab, used for the model 

selection in 3.2.1, only a few parameters, minimum leaf size and number of learners, can be 

changed. Where the Scikit-learn random forest regressor has much more possibilities in terms 

of parameter settings, see Table 4  (Scikit-learn, 2019). 

Table 4 Prediction model parameters 

Parameter Description Default setting 

n_estimators The number of trees in the random forest.  100 
criterion The function to measure the quality of a split. ΨƳǎŜΩ 
max_depth The maximum depth of the tree.  ΨbƻƴŜΩ 
min_samples_split The minimum number of samples required 

to split an internal node. 
2 

min_samples_leaf The minimum number of samples required 
to be at a leaf node. 

1 

min_weight_fraction_leaf The minimum weighted fraction of the sum 
total of weights (of all the input samples) 
required to be at a leaf node. 

0 

max_features The number of features to consider when 
looking for the best split.  

ΨŀǳǘƻΩ[1] 

max_leaf_nodes Grow trees with max_leaf_nodes in best-
first fashion. If None then unlimited number 
of leaf nodes. 

ΨbƻƴŜΩ 

min_impurity_decrease A node will be split if this split induces a 
decrease of the impurity greater than or 
equal to this value. 

0 

bootstrap Threshold for early stopping in tree growth. 
A node will split if its impurity is above the 
threshold, otherwise it is a leaf. 

1e-7 

[1]If auto, than max_features=n_features 

 (Scikit-learn, 2019) 
 

Besides the model specific hyperparameters given in Table 4. There are also some parameters 

regarding the hardware usage such as, n_jobs, which indicates the number of jobs to run 

parallel, which is limited by the number of processors used (Scikit-learn, 2019). For these 

parameters the default settings are used, they will not be covered or explained further in this 

research.  
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3.2.3.2 Hyperparameter tuning 

To optimize the hyperparameter settings, a model selection tool from Scikit-learn, called 

ΨwŀƴŘƻƳƛȊŜŘ{ŜŀǊŎƘ/±ΩΣ ƛǎ ǳǎŜŘΦ ¢Ƙƛǎ ǘƻƻƭ ŜƴŀōƭŜǎ ǊǳƴƴƛƴƎ Ƴŀƴȅ ŘƛŦŦŜǊŜƴǘ ǎŜǘǘƛƴƎǎ ŀǘ ƻƴŜǎ ŀƴŘ 

gives the parameter settings that have the best results. The randomized search tool creates a 

table with inputs for each predictor and runs all possible combinations of parameters on a 

threefold cross validation.  

Table 5 Hyperparameter tuning input 

Parameter Inputs options 

n_estimators Start=200, stop=400[1] 5 
max_features ΨŀǳǘƻΩΣ ΨbƻƴŜΩ 2 
max_depth мллΣ мнлΣ мплΣ ΨbƻƴŜΩ 4 
min_samples_split 2, 3, 5, 10 4 
min_samples_leaf 2, 3, 4 3 
bootstrap Ψ¢ǊǳŜΩΣ ΨCŀƭǎŜΩ 2 

Total combinations  960 

cross validation 3 3 

Total runs   2880 
[1]Start and stop indicate boundaries of the range where the options are distributed over  

 
For all the parameters, not included in the optimisation model, the default settings are used. 
The exact coding and output of this optimization step can be found in Appendix V ς 
Hyperparameter tuning. The combination with the best area under curve (AUC) score is 
considered as the best estimator. The confidence interval for AUC indicates the uncertainty 
for the prediction (DeLong, DeLong, & Clarke-Pearson, 1988). This optimization step has result 
in the following parameter settings, see  
Table 6. These settings will be used for all the validations. The optimization of parameters is a 
one-time effort in this process.  
 

Table 6 Result parameter tuning  

Parameter Inputs 

n_estimators 350 

max_features ΨbƻƴŜΩ 
max_depth 120 
min_samples_split 3 
min_samples_leaf 4 
bootstrap Ψ¢ǊǳŜΩ 
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3.2.4 performance of the prediction model  

There are different manners to evaluate the quality of fit of a prediction model to a set of 
observed data. One of them is the coefficient of determination (R2), see Equation 8 (Fumo & 
Biswas, 2015): 

Ὑ ρ  
Вώ ώ

Ὥ

Вώ ώ
Ὥ

 (8) 

Equation 8: Coefficient of determination. 

Here, ώ is the mean of the dependent variable defined as: 

ώ
ρ

ὲ
ώ (9) 

Equation 9: Mean of dependent variable. 

Where ώ is the observed value of the response variable of the i-th observation. ώ is the 

predicted value of the i-th sample. The terms Вώ ώ  and Вώ ώ , in Equation 8, are 
respectively named; sum of squared errors and  total sum of squared errors. The value of the 
coefficient of determination varies between 0 and 1 (0 and 100 percent). This percentage 
indicates how much variability in the dependent variable, is accounted for by the independent 
variables. Many software packages have a built in R2 calculation method. It is not necessarily 
true that a model with a high R2 value fits the data well. Specifically for multi linear regression 
the coefficient of determination is adjusted and expressed as follow, see Equation 9: 

Ὑ ρ ρ Ὑ
ὲ ρ

ὲ ὴ ρ
 (10) 

Equation 10: Adjusted coefficient of determination. 

Here, n is the number of observations and p is the number of features, predictive variables.  

Another performance indicator is the mean absolute error (MAE). It can be calculated to 
evaluate the quality of the model, the MAE is expressed in Equation 11. 
 

ὓὃὉ  
В ώ ώὭ

ὲ
 (11) 

Equation 11: Mean absolute error. 

Here, ώ is the observed or measured data and ώ is the predicted data generated by the 

prediction model. n represents the total number of observations. The MAE has a value 

between 0 and 1, where 0 is a perfect fit.  

The mean squared error (MSE) calculates a risk metric corresponding to the expected value of 

the squared error, see Equation 12: 

ὓὛὉ
ρ

ὲ
ώ ώ  (12) 

Equation 12: Mean squared error. 

Here, ώ is, again, the predicted value of the i-th sample and ώ is the corresponding true value, 

then the MSE is estimated over n number of observations. 
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Another parameter that tells something about the quality of fit of the model is the root mean 
square error (RMSE), which is a measure of the scatter in the data around the model. The 
equation of RMSE for multi linear regression is written in Equation 13: 

ὙὓὛὉ 
Вώ ώ

Ὥ

ὲ
 ЍὓὛὉ (13) 

Equation 13: Root mean squared error. 

Since the models will predict clusters of dwellings with a variable number of houses, the error 

terms will have different ranges, due to the different cluster sizes.  

To compare the error terms of the different models the cumulative variation of root mean 

squared error (cv-RMSE) is used, this is the normalized RMSE. Normalisation is done by 

dividing the error term by the mean value of the particular observations of the cluster.  

ὧὺὙὓὛὉ
ὙὓὛὉ

ώ
 (14) 

Equation 14: Cumulative Variation of root mean square error. 
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3.3 Operating system 

3.3.1 Framework for operating system 

For the proposed operating system, a framework is of some necessary conditions and 

requirements is drawn up. Without these conditions, the operating system cannot be 

applicable. Firstly, a computer system must be available which has access to all real time smart 

meter data of the neighbourhood and meteorological forecast for one day ahead. The 

computer must be able to store and pre-process the data and execute the clustering algorithm 

to create clusters, as well as execute the prediction algorithm to run the prediction. Further, 

this computer must, be able to operate all the switches in the electrical circuit of the 

neighbourhood.  This computer system is ǘƘŜ ΨŎƻǊŜΩ of the operation. Another requirement is 

that all houses are individually connected on the LV-grid, to the ESS and to the other houses. 

So that they can be connected and disconnected to the LV-grid circuit, ESS-circuit or another 

cluster, in the appropriate conditions.   

 

3.3.2 Proposed circuit 

A schematic overview of the electric circuit of the neighbourhood is given in Figure 5.  

MV-grid

Storage system

LV-grid

Transformer MV 
to LV-grid

Cluster 0 Cluster 1 Cluster 2 Cluster 3

 

Figure 5 Schematic view of electrical circuit neighbourhood 
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In Figure 5 the houses are not pictured individually, but as clusters. In the circuit, each cluster 

is schematized as a variable resistor, representing the energy demanding state, and a solar 

station, which can provide electricity to the circuit when production exceeds demand. The 

clusters are connected to two switches, one for connecting to the LV-grid, and one for 

connecting to the ESS. The clusters can either be connected to the LV-grid, connected to the 

storage system, or completely disconnected. For example, in periods where enough solar 

energy is produced to provide the demanded electricity, or even more, to the cluster, it can 

be switched off from the LV-grid, and only connect to the storage system, so that it gets 

charged. 

In cases where direct sharing is possible, the switches are able to create connections between 

them. Figure 6 highlights the subsystem of interconnected clusters to clarify the principle of 

the direct sharing circuits. These are two-way connections, electricity is able to go towards, 

and away from each cluster.  This bidirectional connections breaks down the border between 

electricity generation and consumption, which is an important characteristic of the smart grid 

(Ryu, Noh, & Kim, 2016). 

 

MV-grid

Storage system

LV-grid

Transformer MV 
to LV-grid

Cluster 0 Cluster 1 Cluster 2 Cluster 3

 

Figure 6 Electrical circuit for direct sharing 
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3.3.3 Operating rules 

Together with the set framework and the proposed circuit, the following rules should be 

executed. Cluster 0 is used as example. Similar conditions and rules are applicable for the 

other clusters as well, see Table 7. 

Table 7 Operating rules 

 Conditions Operation rules 

1. If Cluster0 has positive demand, and Cluster1 and 
Cluster2 and Cluster3 have positive demand, and  
ESS has no capacity[1]; execute rule 1, else; check 
condition 2. 

Use gird power. 

2. If Cluster0 has positive demand, and Cluster1 and 
Cluster2 and Cluster3 have positive demand, and  
ESS has capacity; execute rule 2, else; check 
condition 3. 

Use ESS power. 

3. If Cluster0 has positive demand, and Cluster1 and/or 
Cluster2 and/or Cluster3 have negative demand; 
execute rule 3, else; check condition 4. 

Use surplus electricity from 
other cluster. 

4. If Cluster0 has negative demand, and Cluster 1 
and/or Cluster2 and/or Cluster3 has/have positive 
demand; execute rule 4, else; check condition 5. 

Share surplus of electricity to 
demanding cluster(s). 

5. If negative demand is larger than accumulated 
positive demand in other clusters; execute rule 5, 
else; check condition 6. 

Charge ESS with excess 
electricity. 

6. If Cluster0 has negative demand, and Cluster1 and 
Cluster2 and Cluster3 have negative demand,  and 
ECC does have charging capacity left; execute rule 6, 
else; check condition 7. 

Charge ESS with excess 
electricity. 

7. If Cluster0 has negative demand, and Cluster1 and 
Cluster2 and Cluster3 have negative demand,  and 
ECC does not have charging capacity left; execute 
rule7, else; check condition 1. 

Send excess back to grid/ sell 
in demand response 
market/long -term storage. 

[1]Substantially charged so, that it can provide the cluster with electricity.  

 

These rules cover the main circumstances which can take place in the neighbourhood. There 

are many combinations possible for the exact status of each cluster. For example the surplus 

electricity, mentioned in operation rule 3, can come from any cluster which has a surplus in a 

specific point in time.  

The objective is to create an operation schedule based on the predicted values of electricity 

demand in the different clusters. The operation schedule consists of a table with hourly 

operation commands, based on the condition rules in Table 7, for the operating system. Please 

note that the applicability of such schedule is very dependent on the prediction accuracy. In 

cases where the prediction models conditions deviate from the actual state of the 

neighbourhood, the operating rules might not be suitable.  
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Rule number-7 in Table 7, suggests to use excess electricity for long-term storage, when there 

is negative demand in the neighbourhood and the ESS is fully charged. Excess energy 

generated in summer and spring can be stored to consume during the winter and autumn 

when demand is higher. Li and Chan (2017) have summed up widely recognized energy 

storage technologies, besides ESS (Li & Chan, 2017):  

- Thermal energy storage;  

- Electrical and mechanical energy storage using flywheels; 

- Pumped hydroelectric energy storage relying on reservoirs; 

- Compressed air energy storage; 

- Electrical energy storage using a combination of electrolysers and hydrogen fuel cells.  

Exact application and technology of the long-term energy storage is not further considered in 

this study.  
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4. Data 
 

The upcoming of smart meter data enables a closer look into the energy demand patterns of 

individuals, and possibly reveals possibilities in improving energy self-sufficiency. Smart meter 

data is often considered as privacy sensitive, therefore, not many studies have been able to 

use such detailed energy consumption data of a large sample of households. Since this 

research is completely built around a provided dataset, it is appropriate to assign a chapter to 

this data. In this chapter, the origin, source and content of the data  will be described. Also an 

in-depth overview of the data pre-processing and feature selection will be given.  

  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

62 

 

4.1 Data description and analysis 
The data used in this research is provided by Royal BAM group. The renovated houses are 

located in the municipality of Soest, a village west of Amersfoort in the province of Utrecht. 

The data is considered as privacy sensitive, therefore no exact address information of the 

dwellings nor information about the housing corporation is given. No sociodemographic 

information or time schedules of residents is provided for this same reason.  

The provided dataset consists of comma-separated values (CSV) files, with data of householdsΩ 

energy usage for every 15 minutes of the past two years (2016, 2017). The data is collected 

from renovated houses of a social housing corporation. The houses have living surfaces of 85 

to 120 square meters, this is not known per dwelling. All houses have high quality insulation 

and new windows applied during the renovation. Further, the dwellings are not connected 

with natural gas and contain PV panels and HPs. More exact specifications, given by the 

provider of the dataset, are shown in Table 8. 

Table 8 Technical specifications dwellings 

Specification Value 

Living surface:                            85-110m2 

RC-score roof:                            6 

RC-score walls:                           3.5 

U-value windows:                   1.1 

Hot water buffer:                      150L 

Heat Pump power:                 1.2kW (SPF 3.9) 

PV installation capacity:            5-8kW peak 
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The dataset contains 13 variables,  divided over; electricity consumption variables, electricity 

production variables, heat pump variables and boiler variables, each measured every 15 

minutes, see Table 9. 

Table 9 Variables description of provided dataset 

Variable Description 

Time stamp 15-minute intervals from 2016-01-
1T00:00:00+01:00Amsterdam   to  
2018-12-31T22:00:00+01:00Amsterdam 

Consumed high Consumed electricity on high tariff hours in kWh 
Consumed low Consumed electricity on low tariff hours in kWh 
Solar inverter produced Produced solar electricity 
Produced solar high Produced and fed back electricity on high tariff hours 

in kWh 
Produced solar low Produced and fed back electricity on low tariff hours 

in kWh 
Heat pump consumed Consumed electricity by the heat pump in kWh 
Heat pump set point Temperature set point in Cɕ of the heat pump 
Heat pump room temp Actual room temperature in Cɕ 
Heat pump space heating delivered Amount of heating delivered by heat pump in GJ 
Boiler hot tap water consumed Volume of consumed hot tap water in m3 
Boiler set point temperature tap water Set point temperature of boiler in Cɕ 
Boiler supply temperature Temperature of hot tap water when consumed in Cɕ 

 

In many of the CSV-files, the columns regarding boiler set point temperature, actual boiler 

temperature and space heating delivered, is completely empty. These variables are taken out 

of the datasets entirely for consistency purposes, since it is not desirable to have differences 

in the number of variables in the dataset. The variables regarding boiler temperatures will not 

be found anywhere further in the research. 

The households use a dynamic cost pricing for their electricity consumption. In the daytime 

period, from 06:30 in the morning to 22:30 in the evening, the high tariff is applicable. The 

low tariff is applicable in the night time, from 22:30 in the evening to 06:30 in the morning. 

This could be used to optimize the operation system of the ESS. This research will however 

not further analyse any opportunities regarding dynamic pricing.  

4.2 Feature engineering 
The data pre-processing is done in Python (PFS, 2019). In the data cleaning process two 

modules are used, which enable fast and efficient data preparation in the Python 

programming language; Pandas and NumPy. Pandas is a Python data analysis library (Pandas, 

2019).  Numpy is a Python module for scientific computing with, among many other things, 

useful linear algebra and random number capabilities (NUMFOCUS, 2019). Another used 

panda module is Matplotlib, which is an open source plotting library (Hunter, Dale, Firing, 

Droettboom, & team, 2019). Matplotlib will be used to visualize pre-processed data and 

results.   
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4.2.1 Prediction variable 

The goal is to predict the total demand these houses have on the electricity grid, and improve 

the energy self-sufficiency by sharing between houses, or clusters of houses. The total demand 

on the grid computed ōȅ ǎǳƳƳƛƴƎ ǘƘŜ ŎƻƴǎǳƳǇǘƛƻƴ ǾŀǊƛŀōƭŜǎ Ψ{ƭƛƳƳŜ aŜǘŜǊ Ǉм ŎƻƴǎǳƳŜŘ 

ƪ²Ƙ ƘƛƎƘΩΣΩ {ƭƛƳƳŜ aŜǘŜǊ Ǉм ŎƻƴǎǳƳŜŘ ƪ²Ƙ ƭƻǿ ŀƴŘ ΨIŜŀǘ ǇǳƳǇ ŎƻƴǎǳƳŜŘ ƪ²ƘΩΣ ŀƴŘ 

ǎǳōǘǊŀŎǘƛƴƎ ǘƘŜ ǘƻǘŀƭ ǇǊƻŘǳŎŜŘ ŜƭŜŎǘǊƛŎƛǘȅ ŦǊƻƳ ǘƘŜ t± ǎȅǎǘŜƳ Ψ{ƻƭŀǊ LƴǾŜǊǘŜǊ ƪ²Ƙ ǇǊƻŘǳŎŜŘΩΦ 

This new variable is ŎŀƭƭŜŘ ΨgǊƛŘψŎƻƴǎǳƳǇǘƛƻƴΩ and will be the response variable. This variable 

contains both positive, when the houses are demanding electricity and negative values, when 

they have a surplus from electricity generated by the PV panels.  

In total 38 predictive features are created, divided over; autoregressive variables, categorical 

time-related variables and meteorological variables. 

4.2.2 Auto regressive features 

Features based on historical data are used to improve the model accuracy. In this case total 

grid consumption will be used to create the autoregressive features. In total eight 

autoregressive features are created, see Table 10. 

Table 10 Autoregressive features 

1.  tot_gridconsumed ts-1day 5. tot_gridconsumed ts-5days 

2.  tot_gridconsumed ts-2days 6. tot_gridconsumed ts-6days 
3.  tot_gridconsumed ts-3days 7. tot_gridconsumed ts-7days 
4.  tot_gridconsumed ts-4days 8. -tot_gridconsumed ts-14days 

   

¢ƘŜǎŜ ŦŜŀǘǳǊŜǎ Ŏŀƴ ōŜ ƳŀŘŜ ōŀǎŜŘ ƻƴ ǘƘŜ ΨǘƻǘψƎǊƛŘψŎƻƴǎǳƳŜŘΩ ǾŀǊƛŀōƭŜ ōȅ ƳŜŀƴǎ ƻŦ ǘƘŜ  

tŀƴŘŀǎ ŦǳƴŎǘƛƻƴ ΨǎƘƛŦǘόύΩ ŦǳƴŎǘƛƻƴΦ ¢Ƙƛǎ ǎƘƛŦǘǎ ǘƘŜ ƛƴŘŜȄ ōȅ ǘƘŜ ŘŜǎƛǊŜŘ ƴǳƳōŜǊ ƻŦ ǇŜǊƛƻŘǎΣ 

where each observation is a period. The ΨǘƻǘψƎǊƛŘψŎƻƴǎǳƳŜŘΩ variable is shifted by the number 

of observations to reach previous day, or days. For example, to reach the previous day the 

data must be shifted by 96 observations (24 hours has 96 observations of 15 min). This means 

that these autoregressive variables lack data in the first rows, since there is no previous data 

for the first day of the dataset. FƻǊ  ΨǘƻǘψƎǊƛŘŎƻƴǎǳƳŜŘ ǘǎ-мпŘŀȅǎΩ this means that the first 

1344 observations are not present.  

4.2.3 Categorical features  

It is recommended by Mocanu et al. (2016) that adding extra information concerning the time, 

such as day and month would improve their model (Mocanu, Nguyen, Gibescu, & Kling, 2016). 

To do this, four ŦŜŀǘǳǊŜǎ ŀǊŜ ŀŘŘŜŘ ǘƻ ǘƘŜ ŘŀǘŀǎŜǘΣ ΩǇŀǊǘ ƻŦ ǘƘŜ ŘŀȅΩΣ ΨǿŜŜƪŘŀȅΩ, ΩƳƻƴǘƘΩ and 

ΨǎŜŀǎƻƴΩΦ ¢ƘŜ tŀƴŘŀǎ ǘȅǇŜ Ψ5ŀǘŜ¢ƛƳŜΩ ǊŜŎƻƎƴƛȊŜǎ ǘƘŜ ǿŜŜƪŘŀȅǎ όaƻƴŘŀȅ ς Sunday) and 

months (January ς December) based on the date and time. Here, two columns are added, one 

with a label for the weekday and one with a label for month. The part of day variable is created 

Ƴŀƴǳŀƭƭȅ ōȅ ŀŘŘƛƴƎ ƴŜǿ ŎƻƭǳƳƴ ƛƴ ǘƘŜ ŘŀǘŀǎŜǘ ǿƛǘƘ ǘƘŜ ƭŀōŜƭ ΨaƻǊƴƛƴƎΩ ŦƻǊ ŘŀȅǘƛƳŜ ƛƴǘŜǊǾŀƭǎ 

6:00 ς мнΥллΣ Ψ!ŦǘŜǊƴƻƻƴΩ ŦƻǊ ŘŀȅǘƛƳŜ ƛƴǘŜǊǾŀƭ мнΥлл-муΥллΣ Ψ9ǾŜƴƛƴƎΩ ŦƻǊ ŘŀȅǘƛƳŜ ƛƴǘŜǊǾŀƭ 

18:000 -нпΥллΣ ŀƴŘ ΨbƛƎƘǘΩ ŦƻǊ daytime interval 24:00-6:00. ¢ƘŜ ǾŀǊƛŀōƭŜ ΨǎŜŀǎƻƴΩ ƛǎ ŎǊŜŀǘŜŘ 

ōŀǎŜŘ ǘƘŜ ƳŜǘŜƻǊƻƭƻƎƛŎŀƭ ǎŜŀǎƻƴ ŘŜǎƛƎƴŀǘƛƻƴΤ ǎǳƳƳŜǊ ΨWǳƴŜ-July-!ǳƎǳǎǘΩΣ !ǳǘǳƳƴ 
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Ψ{ŜǇǘŜƳōŜǊ-October-bƻǾŜƳōŜǊΩΣ ǿƛƴǘŜǊ Ω5ŜŎŜƳōŜǊ-January-CŜōǊǳŀǊȅ Ω ŀƴŘ {ǇǊƛƴƎ ΨaŀǊŎƘ-

April-aŀȅΩΣ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ YbMI (KNMI, 2019). 

For all the previously described categorical features, dummy-features are created. This allows 

the model to recognize these features as a categorical type. To do this the Pandas function 

which creates dummy variables. This transforms the designated features to dummy features. 

For example, ΨǇŀǊǘ ƻŦ ǘƘŜ ŘŀȅΩ ƛǎ ǎǇƭƛǘ ƛƴto four features, morning, afternoon, evening and night, 

where by means of zeros and ones it indicates if a particular datapoint belongs to which part 

of the day, see Figure 7. 

 

Figure 7 Example dummy variables 'part of day' 

In total 27 categorical features are created, see Table 11. 

Table 11 Categorical features 

Part of day and day of week Months Seasons 

1. part_of_day_Night 12. month_January 24. season_winter 
2. part_of_day_Evening 13. month_February 25. season_spring 
3. part_of_day_Morning 14. month_March 26. season_summer 
4. part_of_day_Afternoon 15. month_April  27. season_autumn 

5. weekday_Wednesday 16. month_May 
6. weekday_Tuesday 17. month_June 
7. weekday_Thursday 18. month_July 
8. weekday_Sunday 19. month_August 
9. weekday_Saturday 20. month_September 
10. weekday_Monday 21. month_October 
11. weekday_Friday 22. month_November 

 23. month_December 

 
{ƻƳŜ ƻŦ ǘƘŜǎŜ ǾŀǊƛŀōƭŜǎΣ ǎǳŎƘ ŀǎ ΨǎŜŀǎƻƴψǿƛƴǘŜǊΩ ŀƴŘ ΨƳƻƴǘƘψWŀƴǳŀǊȅΩ ŀǊŜ ŎƻǊǊŜƭŀǘŜŘΣ ǘƘƛǎ 
should be taken into account when picking a prediction model.  
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4.2.4 Meteorological features 

In addition to the features from the provided dataset, freely available meteorological data is 

gathered from the KNMI database. In many, energy demand prediction models, 

meteorological variables are used. The models tested by Fumo and Biwas (2015) contained 

meteorological data such as temperature, humidity and solar radiation (Fumo & Biswas, 

2015). Also, Mocanu et al. (2016) recommend using extra weather related information such 

as outside temperature would improve their model (Mocanu, Nguyen, Gibescu, & Kling, 2016). 

Weather station de Bilt, with a distance of approximately ten kilometres is the closest weather 

station from renovation project in Soest. The KNMI has freely available historical data which 

can be downloaded online by everyone. For the period from 31-12-2015 to 31-12-2018 the 

hourly measured data for temperature, relative humidity and dew point temperature is 

downloaded. Temperature is measured in 0.1 degrees Celsius, 1.50 meter above ground level. 

The relative humidity is measured in percentage, 1.50 meter above ground level. Dew point 

temperature is measured in 0.1 degrees Celsius, 1.50 meter above ground level. These three 

meteorological features are numerical and have the notation in the datasets as visible in Table 

12. 

Table 12 Meteorological features 

1. Temperature             

2. Humidity 
3. Dew point temp 

 
It should be taken into account, when selecting a prediction model, that the meteorological 

variables are correlated with each other (Fumo & Biswas, 2015). When applying linear models 

to this data, the highly correlated variables should be merged. Also, these meteorological 

variables are actually measured values. When predicting one day ahead, no certain 

information of these variables is available and only weather forecast data can be used.  

 

4.3 Data cleaning 

4.3.1 Unwanted strings removal 

The provided dataset contains unwanted strings in numerical columns, such as units, which 

makes it unable to operate the values. This is because of the fact that Python automatically 

recognizes the data as strings wen literal characters are involved, rather than the numerical 

values they represent. The first column of the dataset indicates the timestamp of the 

ƳŜŀǎǳǊŜŘ ǾŀƭǳŜǎΣ ŀƴ ŜȄŀƳǇƭŜ ƻŦ ǘƘƛǎ ƛǎ Ψ2016-01-01T01:30:00+01:00 AmsterdamΩΦ ¢ƘŜ tŀƴŘŀǎ 

module is able to recognize time indication when it is displayed according to a certain 

standard. As can be seen the provided timestamp contains some unwanted information; Ψ¢ΩΣ 

ΨҌлмΥллΩ ŀƴŘ Ψ!ƳǎǘŜǊŘŀƳΩΦ ¢ƘŜǎŜ ǎǘǊƛƴƎǎ ŀǊŜ ǊŜƳƻǾŜŘ ŀƴŘ ǘƘŜ ǘƛƳŜǎǘŀƳǇ ŎƻƭǳƳƴ ƛǎ ŎƻƴǾŜǊǘŜŘ 

ǘƻ ΨǇŀƴŘŀǎΦ5ŀǘŜ¢ƛƳŜΩ so python recognizes it as a date time. This is necessary for feature 

engineering later where indicators will be made for date and time related features. 

Consumption and production data in the dataset are consequently displayed with units ΨkWhΩ, 

ǘŜƳǇŜǊŀǘǳǊŜ ǊŜƭŀǘŜŘ Řŀǘŀ Ŏƻƴǘŀƛƴǎ Ψ°CΩΣ ƘŜŀǘƛƴƎ ŘŜƭƛǾŜǊȅ Řŀǘŀ Ŏƻƴǘŀƛƴǎ ΨGJΩ ŀƴŘ Ƙƻǘ ǿŀǘŜr 
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ǳǎŀƎŜ Ŏƻƴǘŀƛƴǎ Ψm3ΩΦ ¢ƘŜǎŜ ǳƴƛǘǎ ŀǊŜ ǊŜƳƻǾŜŘ ŀƴŘ ǘƘŜ ǾŀƭǳŜǎ ŀǊŜ ǘǊŀƴǎŦƻǊƳŜŘ ǘƻ ǘȅǇŜ ΨfloatΩ 

to create editable numerical values.  

4.3.2 Replacing outliers 

The provided data contains some unrealistic outliers, values a hundred times larger than the 

mean. The data is inspected visually to see where the threshold for a so called outlier should 

be. According to this visual inspection a value of 2kWh is determined to be the threshold for 

outliers, every value above will be replaced by a realistic replacement, its preceding value. 

This is done by means of a bǳƳǇȅ ŦǳƴŎǘƛƻƴ ΨŦƻǊǿŀǊŘ ŦƛƭƭΩΦ {ƻ ƛƴǎǘŜŀŘ ƻŦ ǘƘŜ ƻǳǘƭƛŜǊΣ ǘƘŜ ǾŀƭǳŜ 

preceding on that outlier, will occur twice. To test the whether this threshold of 2kWh is 

suitable, a random sample of 5 houses are tested. As an example, for house ID-5005, only 20 

values are above 2kWh, which is only 0.028% of the observations.  Since the amount of values 

above the threshold is so small, and the observations just below the threshold are high, the 

threshold value is considered realistic and suitable for this data. After filling the outliers, the 

pattern of electricity demand over time becomes more visible, see  Figure 8. 

  

Figure 8 Removing outliers, before and after 

 

4.3.3 Replacing missing values 

For the sake of the quality and reliability of the model, 70 houses with the least missing values 

are selected. These houses have on average 10.8҈ ƳƛǎǎƛƴƎ ǾŀƭǳŜǎ ƛƴ ǘƘŜ ΨƎǊƛŘ ŎƻƴǎǳƳǇǘƛƻƴΩ 

variable, ranging from 5.2% to 29.8%. These missing values are firstly filled by the values of 

the previous day same time. This makes sense since there is a high correlation (correlation 

value of 0.84)Σ ōŜǘǿŜŜƴ ΨǘƻǘψƎǊƛŘψŎƻƴǎǳƳǇǘƛƻƴΩ ŀƴŘ ΨǘƻǘψƎǊƛŘŎƻƴǎǳƳŜŘ ǘǎ-мŘŀȅΩΦ ¢Ƙƛǎ ŦƛǊǎǘ 

step does not completely fill all the missing values. On places where more than a full day of 

data is missing, missing values remain unfilled. The next step is to fill the missing values with 

the consumption values of the previous week same time. The correlation between 

ΨǘƻǘψƎǊƛŘψŎƻƴǎǳƳǇǘƛƻƴΩ ŀƴŘ ΨǘƻǘψƎǊƛŘŎƻƴǎǳƳŜŘ ǘǎ-мпŘŀȅǎΩ ƛǎ ƭƻǿŜǊ ǘƘŀƴ ŦƻǊ ǘƘŜ ǇǊŜǾƛƻǳǎ Řŀȅ 

but still notable with 0.59. Still not all missing values are filled, on places where more than a 

week of data is missing consecutive the missing values remain.  However, the number of left 
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over missing values are considered acceptable. After filling the missing values with the 

described two steps, the average amount decreased from 10.8% to 2.91%, ranging from 1.1% 

to 14.2%. This is considered acceptable. As a comparison, the study of Robinson et al. (2017) 

removes samples with more than 25% missing values (Robinson, et al., 2017). The complete 

overview of missing values can be seen in Appendix I ς Missing values. 

 

4.4 Clustering and prediction sets 
After going through the data pre-processing, a clustering set is created. This set only contains 

the grid demand of each house, since the clustering will be solely based on the grid demand 

profiles of the houses. A visualisation of grid demand for two years of a single house is given 

in Figure 9. The grid demand is often, especially in the summer months, negative. This 

indicates that the PV system generates more electricity than used at that specific point in time. 

The total grid consumptions, which can be negative, is calculated according to Equation 15. 

tot_grid_consumpiton = Slimme Meter p1 consumed kWh high +  
 Slimme Meter p1 consumed kWh low + Heat pump consumed kWh  
             ɀ    Solar Inverter Produced kWh 

(15) 

Equation 15: Total grid consumption 

 

Figure 9 Grid demand 2016-2017 for example household 

It can be visually observed from Figure 9 that, currently, large quantities of electricity are fed 

back to the grid.  Managing this excess electricity by using a ESS could therefore increase the 

self-sufficiency of the dwellings.  
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For each individual household a prediction set is created, containing all the previously 

described features. The prediction set is made hourly and has a shape of 38x17544 with 

666,627 data points per prediction set. In total one clustering set and 70 prediction sets are 

generated.  

In this clustering set the rows represent an individual house, the columns contain the 

timestamps, see Figure 10. The clustering set consists of fifteen-minute interval data and has 

a shape of 70176x70,  which is 4,912,320 data points. From this data set is used to extract the 

two weeks preceding on the prediction day.   

 

Figure 10 Clustering set example 
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5. Results  
 

In the first part of this results chapter shows the overall results of the 10 validation days. The 

days represent both week- and weekend days and contain all four seasons. The second part 

of this chapter focuses on one validation day, May 19th 2017. The results and process to get 

to the results will be described and explained in detail. 

.  
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5.1 Overall results  
Figure 11 shows a visual representation of the complete process. This process has to be 

worked through for every prediction that is executed. 

Smart meter data

Time data

Meteorological data

Data type Data preprocessing

K-means clustering for two 
weeks of data Accumulate prediction sets 

according to clusters

Training data Prediction data

Train random forest model

Predict electricity 
demand

Predicted electricity demand

Determine direct sharing 
potential

Determine indirect sharing 
potential

Calculate excess electricity 
for long-term storage/

demand response

P
e

r 
h
o
u
r 

Operate ESS

 

Figure 11 Research methodology 

In total, 10 validation days have been selected throughout 2017, see Table 13. The validation 

days cover week and weekend days, are all in different months and cover all seasons.  

Table 13 Validation days 

VALIDATION CLUSTER WEEKS PREDICTION DAY # OF 
CLUSTERS 

1 20-01-2017 to 03-02-2017 04-02-2017 Saturday 2 

2 09-03-2017 to 22-03-2017 23-03-2017 Thursday 3 

3 06-04-2017 to 19-04-2017 20-04-2017 Thursday 4 

4 04-05-2017 to 18-05-2017 19-05-2017 Friday 4 

5 05-06-2017 to 18-06-2017 19-06-2017 Monday 3 

6 09-07-2017 to 22-07-2017 23-07-2017 Sunday 4 

7 01-08-2017 to 14-08-2017 15-08-2017 Tuesday 3 

8 09-09-2017 to 23-09-2017 24-09-2017 Sunday 4 

9 03-10-2017 to 16-10-2017 17-10-2017 Tuesday 3 

10 06-12-2017 to 19-12-2017 20-12-2017 Wednesday 3 
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As can be seen in Table 13, some validation days have less than four clusters. The k-means 

clustering technique is forced to create 4 cluster, which is in some cases, is not suitable for the 

actual patterns in the data. This can results in a cluster with only one or a few houses. In such 

cases, the cluster with the smallest number of houses, is added to the second smallest cluster, 

see Appendix III ς Cluster distribution September 2017 for an example. This approach is used 

to keep the prediction accuracy of the clusters high.   

Table 14 shows, for all the validation days, the model accuracy indices. Some noteworthy 

observations can be made from these results.   

Table 14 Total validation results 

 
Validation 
nr. 

1 2 3 4 5 6 7 8 9 10 

 
Date February 

3rd 
March 
23rd 

April 
20th 

May  
19th 

June 19th July 23rd August 
15th 

September 
24th 

October 
16th 

December 
20th 

Cluster Weekday Saturday  Thursday  Thursday Friday  Monday Sunday Tuesday Sunday  Tuesday  Wednesday 

Cluster 
0 

R2 0.69 - 0.92 0.73 0.91 0.85 0.80 0.77 - 0.48 

R2-adjusted 0.68 - 0.92 0.73 0.91 0.85 0.80 0.77 - 0.47 

MAE 8.21 - 10.50 16.22 7.14 11.55 9.05 10.33 - 3.47 

MSE 107.93 - 173.19 524.61 127.27 274.46 161.37 218.06 - 18.07 

RMSE 10.39 - 13.16 22.90 11.28 16.57 12.70 14.77 - 4.25 

absolute 
mean 

27.90 - 40.39 41.55 33.53 35.39 23.14 25.29 - 28.89 

cv-RMSE 0.36 - 0.33 0.55 0.34 0.47 0.55 0.58 - 0.15 

Cluster 
1 

R2 - 0.94 0.90 0.77 0.94 0.76 0.85 0.83 0.89 0.26 

R2-adjusted - 0.94 0.90 0.77 0.94 0.76 0.85 0.83 0.89 0.25 

MAE - 8.51 7.47 7.71 6.05 5.88 8.56 4.18 3.39 3.32 

MSE - 120.87 93.60 107.17 66.30 79.66 131.33 40.99 19.46 19.06 

RMSE - 10.99 9.67 10.35 8.14 8.93 11.46 6.40 4.41 4.37 

absolute 
mean 

- 37.51 26.16 20.85 32.56 18.17 24.74 13.67 11.77 16.46 

cv-RMSE - 0.29 0.37 0.50 0.25 0.49 0.46 0.47 0.37 0.27 

Cluster 
2 

R2 078 0.89 0.92 0.75 - 0.87 0.86 0.87 0.41 0.48 

R2-adjusted 0.78 0.89 0.92 0.75 - 0.87 0.86 0.87 0.41 0.48 

MAE 8.54 10.86 7.33 9.58 - 5.24 4.05 8.17 7.84 4.33 

MSE 175.73 190.05 101.04 188.75 - 45.68 38.65 116.41 123.71 30.98 

RMSE 13.26 13.79 10.05 13.74 - 6.76 6.22 10.79 11.12 5.57 

absolute 
mean 

36.68 36.65 30.31 26.07 - 17.97 14.58 24.74 16.21 31.67 

cv-RMSE 0.36 0.38 0.33 0.53 - 0.38 0.43 0.44 0.69 0.18 

Cluster 
3 

R2 - 0.90 0.94 0.81 0.62 0.71 - - 0.79 - 

R2-adjusted - 0.90 0.94 0.81 0.62 0.71 - - 0.79 - 

MAE - 7.60 3.84 7.53 8.56 6.63 - - 4.29 - 

MSE - 98.82 28.41 101.94 181.60 103.37 - - 29.74 - 

RMSE - 9.94 5.33 10.10 13.48 10.17 - - 5.45 - 

absolute 
mean 

- 28.12 19.14 21.15 20.30 20.06 - - 9.43 - 

cv-RMSE - 0.35 0.28 0.48 0.66 0.51 - - 0.58 - 

All validation days are from 2017 
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The variance of the prediction accuracies from the different validation day is rather large. 
Multiple validations have R2 values of over 0.90 which is high, considering that this is a 
validation. An example of very good results is visible in Figure 12. As can be seen does the 
prediction line follow the same trend as the actual measured profiles. In the middle of the day, 
when excess electricity is at its peak, the prediction model shows less extreme shapes, 
especially in cluster 1 and 2.  This causes the errors, performance indices, to be rather high.  

 

Figure 12 Predicted and measured values validation number-3 

  




























































































