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Summary 
 
 
Internal combustion engine vehicles produce a large portion of the total GHG-emissions, noise 
nuisance and particulate matter. Electrification of transport modes is expected to reduce such 
problems and enhance economies. However, the market penetration of plug-in electric vehicles 
is still small and growth rates are modest in many EU countries. This is mainly caused by the 
high initial price, lack of charging infrastructure and the low driving range. Using less energy 
could reduce range anxiety on the short term but requires insights in the energy consumption 
of BEVs.  
 In the academic field, many energy prediction models have been created to predict the 
energy consumption of BEVs. Many models use historical speed data and aren’t able to predict 
the energy consumption upfront. This limits the prediction due to a lack of historical data. More 
recent models have been created based on microscopic energy prediction models, however, they 
often use standardized energy parameters to model the influence of the built environment. 
Therefore, these models often lack the microscopic influence of the built environment on the 
energy consumption of BEVs. Microscopic traffic software has been established for many years 
and proved to be able to predict microscopic driving behavior and vehicle processes. The 
software uses mathematical models to predict microscopic driving behavior and is able to model 
the driving speed of a vehicle based on many variables. This creates new possibilities for 
predicting the energy consumption of BEVs.   

A research gap has been found in the influence of the built environment on the energy 
consumption of BEVs. Current energy consumption models in vehicles base the prediction on 
historical energy consumption and lack route, weather and traffic information. Combining 
microscopic traffic simulations and energy prediction models gives more insight in the 
influence of the built environment on the energy consumption of BEVs. The main research 
question this thesis answered arises from this gap in academic knowledge about the energy 
consumption of electric vehicles, and reads: To what extent do driving style, environmental 
variables, infrastructural design and traffic intensity have an effect on the energy efficiency of 
electric vehicles and how could route optimization reduce the energy consumption within a 
driver’s time constraints? By answering this question, this thesis strives to contribute to the 
knowledge about the influence of the built environment on the energy consumption of BEVs 
and how that would influence the energy efficiency of different routes. Furthermore, it’s a goal 
to give policy makers and companies in the mobility sector new insights related to the energy 
consumption of electric vehicles, so that these could be a basis for sustainable measures on the 
long term. 
 To answer this question, a combination of methods has been used originating from 
different fields of science. After performing a literature research, an energy consumption model 
has been created which could predict the energy consumption of an electric vehicle based on 
its speed profile. Thereafter, a research has been performed into the possible influences of 
driving style, environmental variables and infrastructural design and traffic intensity. Based on 
literature, variables representing these four categories have been selected and quantified. First, 
the influence of these variables on the energy consumption has been calculated individually. 
Speed profiles have been created manually and by using VISSIM, after which the energy 
consumption model has been used to calculate the energy consumption in different situations. 
Secondly, these individual variables have been combined in a case study by modeling the 
southern part of Nieuwegein, Utrecht (the Netherlands) in VISSIM. The model combines 
influences from driving styles, the environment and infrastructural design. The first scenario, 
in which only one BEV is driving on the road network, gives insight in the influence of the built 
environment on the energy consumption of BEVs. The VISSIM model has also been used to 
calculate the influence of traffic intensity, by adding other traffic. The second scenario runs 
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simulations during the morning peak. The third scenario tests the same morning peak; however, 
all other vehicles are set to be eco-drivers, thus testing the influence of a large-scale eco-driving 
strategy. Finally, a simulation has been performed with an ambient temperature of 0°C to test 
the influence of the winter. The efficiency of route optimization has been tested by creating a 
generalized cost model based on charging costs, travel time valuation and a price for CO2-
emissions. Different scenarios have been calculated, based on driving style, environmental 
variables, infrastructural design and traffic intensity. Furthermore, the trip purpose and driver’s 
income are included in the model to evaluate travel time preferences. 

Regarding driving style, this research found that a combination of eco-driving strategies, 
such as driving a lower speed, calmer acceleration and lower speed oscillations led to a 
significant reduction in energy consumption compared to an aggressive driving style. Weather 
influences the energy consumption through temperature, with a significantly higher energy 
consumption at 0°C compared to 12°C ambient temperature. Wind also has an influence on the 
energy consumption, regardless of the driving speed. Infrastructure influences the energy 
consumption through the road type, slope and curvature, but also through stop-and-go 
situations, such as speed bumps and signalized junctions. The influence of signalized junctions 
becomes bigger during winter due to the high energy consumption during idling. 

The Nieuwegein VISSIM model has been used to test different scenarios. As expected, 
in the empty network, the results show a higher energy consumption for aggressive drivers 
compared to eco-/normal drivers, and longer travel times for eco-drivers. Increasing the 
intensity mainly led to longer travel times. Striking is the fact that the energy-efficiency 
increased on the motorway in the high traffic intensity scenario due to the lower average driving 
speeds. In the all-eco scenario, the eco-drivers remained more efficient than aggressive drivers, 
however, their calm acceleration and lower average speeds resulted in congestions. For many 
roads, an eco-strategy could therefore only be implemented after increasing the capacity of the 
road or by using new vehicle technologies, such as driving in platoons. Testing the Nieuwegein 
network at 0°C compared to 12°C resulted in an increase of 25% in energy consumption. The 
relative influence was bigger for eco-drivers than for aggressive drivers. Different forces turned 
out to be dominant for different routes and scenarios. In example, the aerodynamic drag forces 
are dominant on the motorway route, while at 0°C, the auxiliary energy is dominant on the 
residential route caused by the climate system. Concluding from this, different sustainability 
strategies would be preferable for different routes. Based on the generalized cost model, 
different scenarios, related to both energy efficiency and travel time preferences, led to different 
optimal routes. This demonstrates that optimal routes are influenced by all these variables and 
that route optimization could definitely influence the energy consumption.  

A validation study has been performed. Under Dutch circumstances, the model has been 
able to predict laboratory measurements with an accuracy of 97%. Next to this, 30 driving tests 
have been performed in Nieuwegein. The mean absolute percentage error (MAPE) of these 
measurements is 7,8% for short trips (<5 km) and 3,4% for longer trips (5-20 km). The main 
accuracy losses are found on motorway driving with the climate system running. A critical note 
has been expressed towards the current standard used for the technical specification of a 
vehicle’s range. 

The thesis ends with a conclusion and discussion, in which recommendations for further 
research have been given. Next to this, the limitations of this research have been critically 
discussed, and finally the most relevant information for different sectors has been emphasized. 
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Samenvatting 
 
 
Voertuigen met verbrandingsmotoren produceren een groot deel van de totale broeikasgassen, 
geluidsoverlast en uitstoot van fijnstof. Van elektrische voertuigen wordt verwacht dat ze deze 
problemen verminderen en tevens een positieve impuls voor de economie zijn. De 
marktpenetratie van deze voertuigen in de EU laat achter, voornamelijk door te hoge kosten, 
het gebrek aan laadinfrastructuur en de te lage actieradius. Door minder energie te gebruiken 
kan de onzekerheid (‘range anxiety’) van bestuurders worden teruggedrongen op korte termijn. 
Hiervoor is meer inzicht in het energieverbruik van elektrische voertuigen nodig. 
 In de academische wereld zijn verschillende modellen gemaakt om het energieverbruik 
van elektrische voertuigen te berekenen. Veel modellen gebruiken historische data en zijn niet 
in staat om een voorspelling vooraf te maken. De kwaliteit van de voorspelling wordt beperkt 
door een tekort aan historische data. Nieuwere modellen gebruiken microscopische 
energievoorspellingsmodellen. Echter, gestandaardiseerde parameters worden gebruikt om de 
invloed van de gebouwde omgeving te modelleren. Daarom zijn deze modellen beperkt in de 
microscopische invloed van de gebouwde omgeving op het energieverbruik. Microscopische 
verkeerssoftware is al jaren een bewezen kracht in het voorspellen van microscopisch verkeers- 
en rijgedrag. Deze software gebruikt wiskundige modellen die het microscopisch gedrag 
voorspellen en zijn geschikt om de rijsnelheid te voorspellen aan de hand van vele variabelen. 
Dit brengt nieuwe mogelijkheden met zich mee voor de voorspelling van het energieverbruik 
van elektrische voertuigen. 

Er bestaat wetenschappelijke onduidelijkheid over de invloed van de gebouwde 
omgeving op het energieverbruik van elektrische voertuigen. Huidige 
energievoorspellingsmodellen baseren de voorspelling op historische data en gebruiken maar 
beperkt route-, weer- en verkeersinformatie. Het combineren van microscopische 
verkeerssimulaties en energievoorspellingsmodellen geeft meer inzicht in de invloed van de 
gebouwde omgeving op het energieverbruik van elektrische voertuigen. Om dit gat in 
wetenschappelijke kennis te dichten is de volgende onderzoeksvraag gesteld: In welke mate 
hebben rijstijl, weersomstandigheden, infrastructureel ontwerp en verkeersintensiteit invloed op 
de energie-efficiëntie van elektrische voertuigen en hoe kan routeoptimalisatie het energieverbruik 
verminderen zonder tekort te doen aan de gewenste reistijd? Door antwoord te geven op deze 
vraag hoopt deze thesis bij te dragen aan de kennis over de gebouwde omgeving en haar invloed 
op het energieverbruik en hoe dit de energie-efficiëntie van verschillende routes beïnvloed. 
Tevens is het doel om beleidsmakers en bedrijven in de mobiliteitssector kwantitatieve 
inzichten te geven in elektriciteitsverbruik van voertuigen, om zo op langere termijn een basis 
te kunnen zijn voor verduurzamende maatregelen. 

Om deze onderzoeksvraag te beantwoorden is een combinatie van methodes gebruikt 
uit verschillende wetenschapsrichtingen. Na een literatuuronderzoek is er een 
energievoorspellingsmodel opgesteld waarmee het energieverbruik van een elektrisch voertuig 
kan worden bepaald aan de hand van een snelheidsprofiel. Vervolgens is er onderzoek gedaan 
naar de mogelijke invloed van rijstijl, weersomstandigheden, infrastructureel ontwerp en 
verkeersintensiteit. Op basis van literatuuronderzoek zijn per categorie variabelen opgesteld en 
gekwantificeerd. Allereerst is de invloed van deze individuele variabelen op het energieverbruik 
berekend. Snelheidsprofielen zijn handmatig en met behulp van VISSIM opgesteld, waarna het 
energievoorspellingsmodel is gebruikt om de energieconsumptie te berekenen voor 
verschillende situaties. Daarna zijn deze individuele variabelen gecombineerd in een case study 
door het zuiden van Nieuwegein, Utrecht (Nederland) te modelleren in VISSIM. Het model 
combineert invloeden van rijstijlen, weer en infrastructureel ontwerp. Het eerste scenario, 
waarin enkel één voertuig is gesimuleerd, geeft inzicht in de invloed van de gebouwde omgeving 
op het energieverbruik van elektrische voertuigen. Het tweede scenario is een simulatie van de 
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ochtendspits en meet de invloed van verkeersintensiteit. Het derde scenario test dezelfde 
ochtendspits, maar dan met alle auto’s rijdend met een eco-rijstijl, om zodoende de invloed van 
een grootschalige eco-strategie te testen. Als laatste is er een simulatie voltooid met een 
buitentemperatuur van 0°C om de invloed van de winter te testen. De efficiëntie van 
routeoptimalisatie is getest door een gegeneraliseerd kostenmodel te maken gebaseerd op 
laadkosten, reistijd en CO2-uitstoot. Verschillende scenario’s zijn doorberekend, gebaseerd op 
verschillende rijstijlen, weersomstandigheden, infrastructuur en verkeersdruk. Verder zijn het 
reisdoel en het inkomen van de bestuurder meegenomen om persoonlijke voorkeuren voor 
reistijd te modelleren. 

Dit onderzoek vond dat een combinatie van eco-rijstijl strategieën, zoals een lagere 
snelheid, kalmere acceleratie en minder snelheidsschommelingen zorgen voor een significante 
reductie in energieconsumptie vergeleken met een agressievere rijstijl. Weer beïnvloedt de 
energieconsumptie door temperatuur, met een significant hogere energieconsumptie bij een 
buitentemperatuur van 0°C vergeleken met 12°C. Wind heeft ook een invloed op de 
energieconsumptie, onafhankelijk van de rijsnelheid. De infrastructuur beïnvloedt de 
energieconsumptie door verschillende wegtypes, hellingen en bochten, maar ook door ‘stop-
and-go’ situaties zoals verkeersdrempels en verkeerslichten. De invloed van verkeerslichten 
wordt groter naarmate het kouder wordt buiten door de hoge energieconsumptie van het 
klimaatsysteem tijdens het wachten. 

Het Nieuwegein VISSIM-model is getest op verschillende scenario’s. Zoals verwacht is 
in het lege netwerk de energieconsumptie lager voor eco-bestuurders dan voor agressieve 
bestuurders, terwijl de reistijd hoger is voor eco-bestuurders. Het verhogen van 
verkeersintensiteit leidde voornamelijk tot langere reistijden. Opvallend is dat de energie-
efficiëntie op de snelweg soms zelfs hoger werd door de lagere gemiddelde snelheid in de spits. 
In het derde scenario, waarin een grootschalige eco-rijstijl implementatie werd getest, bleven 
de eco-bestuurders energie-efficiënter dan de agressieve bestuurders. Echter zorgde de kalme 
acceleratie en lagere rijsnelheid voor files. Voor veel wegen is het daarom aan te raden om een 
bij een grootschalige eco-strategie nauwlettend de capaciteit van de wegen te monitoren of zelfs 
te vergroten. Dit kan door extra asfalt, maar ook door slimme technologieën, zoals het rijden in 
pelotons. Het testen van het Nieuwegein model met een buitentemperatuur van 0°C vergeleken 
met 12°C resulteerde in 25% meer energieverbruik. De relatieve invloed was groter voor eco-
bestuurders dan voor agressieve bestuurders. Het onderzoek vond dat verschillende krachten 
dominant waren op verschillende routes en scenario’s. Zo is de aerodynamische weerstand 
dominant op de snelweg, terwijl bij een buitentemperatuur van 0°C het klimaatsysteem 
bepalend is voor het energieverbruik op de residentiële route. Hieruit kan geconcludeerd 
worden dat verschillende duurzaamheidsstrategieën gebruikt dienen te worden voor 
verschillende routes en scenario’s. Gebaseerd op een gegeneraliseerd kostenmodel bleken 
verschillende scenario’s (gebaseerd op zowel energie-efficiëntie als reistijd) tot verschillende 
optimale routes te leiden. Dit demonstreert dat de optimale route wordt beïnvloed door al deze 
verschillende variabelen en dat route-optimalisatie gebruikt kan worden om de 
energieconsumptie te verminderen. 

Een validatiestudie is uitgevoerd, waarin het model onder Nederlandse omstandigheden 
bewezen heeft dynamometer metingen met een nauwkeurigheid van 97% te kunnen 
voorspellen. Hiernaast zijn 30 rijtesten uitgevoerd in Nieuwegein. De ‘mean absolute percentage 
error’ (gemiddelde absolute procentuele afwijking) is 7,8% voor kortere ritten (<5km) en 3,4% 
voor langere ritten (5-20 km). De grootste afwijkingen zijn gevonden op de snelweg tijdens het 
rijden met het klimaatsysteem aan. Een kritische noot is geuit naar de huidige standaard voor 
de technische specificatie van de actieradius van voertuigen.  

De thesis eindigt met een conclusie en discussie, waarin aanbevelingen voor toekomstig 
onderzoek worden gedaan. Tevens worden hier de limitaties van het onderzoek besproken, en 
wordt kort de relevante informatie voor verschillende sectoren besproken. 
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Abstract 
 
 
Increasing the market penetration of electric vehicles is necessary to reduce negative 
externalities of mobility. This penetration is still small thanks in part to range anxiety. Gaps in 
the academic understanding of energy consumption of electric vehicles have been found, 
increasing this range anxiety. New ICT developments and the availability of data made it 
possible to create complex prediction models in order to gain more insights in the energy 
consumption. These insights could on the short-term lead to better range predictions, while on 
the long term they could be the basis of sustainability strategies and new business models. This 
research gives both qualitative and quantitative insight in the influence of driving styles, 
environmental variables, infrastructural design and traffic intensity on the energy consumption 
of electric vehicles. An energy consumption model has been used to calculate the influence of 
individual elements on the energy consumption. Afterwards, the southern part of Nieuwegein 
has been modeled by using the microscopic traffic simulator VISSIM. The relationship between 
all individual elements for three driving styles has been measured by using the energy 
consumption model. Furthermore, different scenarios have been tested to measure the 
influence of traffic intensity, winter and eco-driving strategies, resulting in qualitative insights 
in energy consumption and travel time. A power breakdown graph gives more insight in the 
specific energy consumption in different scenarios. Afterwards, a generalized cost model has 
been used to measure the influence of different scenarios and travel time preferences on the 
optimal routes. A significant influence of these scenarios and preferences on the route choice 
and energy consumption has been found. The model has been satisfyingly validated by using 
laboratory measurements and 30 driving tests in Nieuwegein, using a BMW i3. 
 
 
Keywords  
Battery electric vehicle, Energy prediction model, Driving style, Weather, Infrastructure, Traffic 
intensity  
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Abbreviations 
 
 
AC  Alternating current 
AHN  Actueel hoogtebestand Nederland (actual height map of the Netherlands) 
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Chapter 1. Introduction 
 
 
1.1 Background 

Internal combustion engine (ICE) vehicles produce a large portion of the total GHG-emissions 
(IPCC, 2014; EPA, n.d.; Clarke, 2017), noise and fine particles (Jochem et al., 2016). Electrification 
of transport modes is expected to reduce these problems and enhances economies (OECD/IEA, 
2018). Electric vehicles are expected to play a key role in the contribution to energy transition 
in the EU green policy agenda. However, the market share of plug-in electric vehicles is still 
small and growth rates are modest in many EU countries. 
 The low adaptation rates are mainly caused by three consumer concerns, which are 
driving range, lack of charging infrastructure and a high initial price (Deloitte, 2019). The driving 
range has been extensively discussed in literature. Many researchers show that the concern of 
not reaching a destination on time while traveling in a plug-in electric vehicle is caused by the 
battery capacity (Tate, Harpster & Savagian, 2008; Brady, 2010; Sonnenschein, 2010), long 
charging time (Agasal, 2009; Wynn & Lafleur, 2009), and lack of charging infrastructure 
(Deloitte, 2019; Nilsson, 2011). This prevents consumers from adapting to electric vehicles. Due 
to these concerns, most plug-in electric vehicles are bought as a second car in a multi-vehicle 
household (Shahan, 2017). Especially in North-America, where distances are relatively long, only 
about 11-17% of the electric vehicles are bought in single-vehicle households. Khan and 
Kockelman (2012) showed that the range of current plug-in electric vehicles such as Nissan 
LEAF, BMW i3 and the Fiat 500e could serve 69% of driving demand considering a range of 160 
km, which would meet half of single-car households preferences and 80% of multi-vehicle 
households.  
 The battery capacity of electric vehicles is improving (Yong et al., 2015), however, real 
breakthroughs are not solving range anxiety problems on the short term (Yong et al., 2015; 
Cluzel and Douglas, 2012) and batteries are expected to be constrained by weight and cost issues 
(Wang et al., 2017). Simultaneously, Cuijpers et al. (2016) expect that in 2035, the Netherlands 
would need 2.700.000 charging points, while most people prefer private charging over public 
charging (Mathieu, 2018; Cuijpers et al., 2016). Significant peak grid demands are likely to occur 
due to private charging peaks (Morrissey et al., 2016). European Automobile Manufacturers 
Association ACEA oversees practical and legislative problems in the realization of all these 
charging points (ACEA, 2018).  
 The most fundamental rule of Trias Energetica might be an outcome: using less energy. 
Ericsson et al. (2006) measured the energy consumption of 109 vehicles in Sweden. 46% of these 
vehicles didn’t use the most energy-efficient route and would’ve saved 8,2% by changing to a 
more sustainable route. Creating insights in the energy consumption of electric vehicles is a 
necessary first step. Many energy prediction models have been created, such as MVEI and 
MOBILE (Barth et al., 2000). Most of these have been based on macroscopic traffic models 
(Barth et al., 2000, Barth and Boriboonsomsin, 2009). Although these are able to get an insight 
in the total emissions at road segments, they don’t cover individual driving characteristics 
(Burghout, 2004; Hamdar, 2012). Microscopic models have been developed to simulate these 
individual characteristics (Barth et al., 2000; Scora and Barth, 2006). As Barth and 
Boriboonsomsin (2009) mentioned: “If the microscopic effects can be determined, then it will 
be possible to estimate vehicle emissions and energy consumption impacts of various speed and 
acceleration modification techniques for a variety of roadway conditions.” This formed the basis 
of many research projects (Ericsson, 2001; Brundell-Freij and Ericsson, 2005, Boriboonsomsin et 
al., 2012; Barth and Boriboonsomsin, 2009; Fukushima et al., 2018). Multiple microscopic 
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influences have been individually identified, such as rolling resistance (Michelin, 2003; Goubert 
and Sandberg, 2016; Esjmont, 2016), hilly driving (Liu et al., 2017), traffic calming elements 
(Johnson and Nedzesky, 2004; Ahn and Rahka, 2009; Gupta, 2014), traffic intensity (Sugiyama 
et al., 2008), vehicle automation (Hoogendoorn and Knoop, 2013; Heijne, 2014; Schoenmakers, 
2018), driving style (Gundana et al., 2018; Boriboonsomsin et al., 2012; Kedar-Dongarkar and 
Das, 2012; Fonseca et al., 2010; Zhu et al., 2018) and environmental influences (Wang et al., 2017, 
Evtimov et al., 2017; Geringer and Tober, 2012; Kavalchuk et al., 2015). 
 
1.2 Research gap 

The rise of ICT and the availability of data creates a stimulus to use data to create more complex 
energy prediction models. Due to the development of microscopic traffic simulation software, 
microscopic traffic behavior could be better predicted, and more vehicle operations could be 
modeled nowadays (Barth and Boriboonsomsin, 2009). A research gap has been found in the 
influence of the built environment on the energy consumption of EVs. Current energy 
consumption models in vehicles base the prediction on historical energy consumption and lack 
route, weather and traffic information (Wang et al., 2017). Creating insights in the influence of 
the built environment on the energy consumption of BEVs is a fundamental step towards more 
efficient routes and driving styles. Interesting is the rise of vehicle automation, however, a lot 
of research is necessary before efficient commercial AVs enter the market (Fagnant and 
Kockelman, 2015; Gao et al., 2016). The use of urban data in complex microscopic energy 
prediction models could therefore not only be used to create more efficient electric vehicles on 
the short term, but also to improve autonomous driving on the long term. The motive of this 
thesis is to research the influence of driving styles, environmental variables, infrastructural 
design and traffic intensity on the energy consumption of BEVs and how they would influence 
the energy efficiency of different routes. The research question which fits best to this motive 
and which this thesis aims to answer is:  
 
To what extent do driving style, environmental variables, infrastructural design and traffic 
intensity have an effect on the energy efficiency of electric vehicles and how could route 
optimization reduce the energy consumption within a driver’s time constraints? 
 
In order to answer this research question, several sub-questions need to be reviewed. These will 
be: 

1. What is the effect of different driving styles on the energy efficiency of electric vehicles? 
2. Which environmental variables do have an effect on the energy efficiency of electric 

vehicles and to what extent? 
3. What is the influence of different infrastructural elements on the energy efficiency of 

electric vehicles? 
4. What is the effect of traffic intensity (intensity/capacity) on the energy efficiency of 

electric vehicles? 
5. Can route optimization and style optimization make more energy efficient routes within 

a driver’s time constraints, and if yes, to what extent? 
6. To what extent does this predicted efficiency correspond to reality? 

 
By answering this question, this thesis strives to contribute to the knowledge about these 

different elements and their influence on the energy consumption, in order to provide drivers 
with information about the optimal route based on real-time data. Furthermore, it’s a goal to 
give policy makers and companies in the mobility sector new insights related to the energy 
consumption of electric vehicles, so that these could be a basis for sustainable measures on the 
long term. 
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1.3 Outline 

This thesis is structured such that a better understanding of the relationship between driving 
circumstances and energy consumption will be created bit by bit. Chapter 2 aims to create a 
basic understanding of the fundamental theory behind traffic modelling and energy prediction 
models through a literature review. Following on this, the literature review will explain different 
methods to model the various influences by using an energy consumption model. After creating 
a theoretical base, the methodology of the research will be explained in Chapter 3. This chapter 
will indicate the different methods which have been used to answer the research question and 
sub questions, globally. More in depth methodologies will be emphasized in Chapter 4 and 5. 
Chapter 4 focusses on the influence of individual elements related to driving style, 
environmental effects and infrastructural design. It explains how these individual elements have 
been modeled and shows results of both manual calculations and VISSIM measurements. 
Chapter 5 combines these individual elements in a case study of Nieuwegein. Again, a 
methodological framework will be sketched after which different scenarios will be explained. 
By using a generalized cost model, optimal routes will be chosen for different personal 
preferences and circumstances. In order to measure the accuracy of the model, all the results 
are validated in threefold. First, the model is validated against measurements from the Argonne 
National Laboratory. Second, 30 real driving tests with a BMW i3 in Nieuwegein are compared 
against the predicted scenarios. Finally, the results are compared against the technical 
specifications used by BMW itself. Chapter 6 closes this research with a conclusion and a 
discussion. It emphasizes both the scientific and societal relevance and critically discusses the 
limitations of this research. The thesis ends with recommendations for further research. 
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Chapter 2. Literature review 
 

 
Fundamental knowledge in traffic modeling and energy prediction models is essential for 
evaluating the microscopic influence of different built environment variables on the energy 
consumption of BEVs. In order to obtain this knowledge, a literature review has been conducted. 
First, current speed and energy prediction models are being discussed, after which a mathematical 
energy consumption model will be created based on the literature. Afterwards, the literature 
review will focus on microscopic traffic modeling as a tool to predict microscopic vehicle behavior. 
After combining the energy consumption model and the microscopic traffic modeling methods, 
the literature review will describe how driving style, environmental variables, infrastructural 
design and traffic intensity might influence the energy consumption based on the energy 
consumption model and microscopic traffic modeling. 
 
 
2.1 Energy prediction modelling 

Boriboonsomsin et al. (2012) found that the shortest path isn’t always the most eco-efficient and 
that 46% of the trips in Sweden could save energy by choosing a different route. Therefore, it is 
relevant to take a deeper look into predicting the energy consumption. The first subchapter 
compares models for predicting driving speed and behavior in different situations, since these 
affect the energy consumption directly. Different energy prediction models are being 
emphasized in the second subchapter. They form the basis for the setup of the energy 
consumption model used in this thesis. 
 
2.1.1 Velocity prediction models 

The largest amount of energy consumed in a vehicle is of course related to the movement of the 
vehicle. Energy is necessary to accelerate the car to a certain speed according to Newtons second 
law, and to keep it driving in a certain speed due to the resistance forces working on the vehicle. 
Since the speed of the car has a direct relationship with the energy related to motion, the first 
models which will be assessed are the velocity prediction models.  

Many definitions for vehicle speed exist for many different purposes and uses. Bysveen 
(2017) captured multiple definitions, based on a survey by Fitzpatrick et al. (2000). Added to 
these definitions is the desired speed which is often used in simulation software (PTV Group, 
n.d.). Table 2.1 (Bysveen, 2017) shows these definitions. The most interesting speed to predict is 
the operating speed, since this operating speed is the ‘real’ driving speed and thus says the most 
about the energy consumption. Since it’s impossible to measure the real speed of all vehicles, 
predictions are often made based on the other concepts.  
 
Table 2.1 Definitions of speed 

Concept Definition 
Design speed Speed related to the design of a road type (e.g. 30 km/h, 50 km/h) 
Free flow speed Speed of a vehicle when not being affected by other vehicles 
Operating speed Measured or observed speed of drivers in real situations 
Running speed Length of the road section divided by the time a vehicle drives on it 
Average running speed Average running speeds of all vehicles on a single road section 
Posted speed limit Maximum speed of a road regulated by law 
Desired speed Speed distribution of the speeds individual vehicles want to drive 
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The Transportation Research Board (2011) brought together many speed prediction 
models from North America and Europe. In most cases, the operating speed is being affected by 
the speed and the shape and presence of curves. Furthermore, the geographic shape of the 
infrastructure, such as width, road type, rolling resistance and road slope seems to be relevant. 
Table 2.2 shows the variables used in 22 European speed prediction models: 

 
Table 2.2 Variables used to determine operational speed in speed models from EU countries 
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Dilling GE X X X X     
Lamm GE  X  X X    
Trapp and Oellers GE X  X X X X   
Koeppel and Bock GE X  X X X    
Al-Kassar et al. GE X  X X  X   
Durth et al. GE  X  X     
Biedermann GE  X  X     
Koeppel GE X  X X     
Buck GE  X   X X   
Lippold GE X X       
Swiss Guide SW  X X X X  X X 
Italian official approach IT  X  X  X X X 
Cafiso et al. IT X X X X     
Marchionna and Perco IT  X X X   X  
UK official approach UK  X X X X    
Kerman et al. UK  X  X     
French Guide FR X X  X  X  X 
Austrian Guide AU  X  X  X   
OMOE-X GR X  X X  X  X 
Kanellaidis et al. GR  X X X  X  X 
Total  9 15 11 20 6 8 3 5 

* GE = Germany, SW = Switzerland, IT = Italy, UK = United Kingdom, FR = France, AU = Austria, 
GR = Greece 
 

The 22 prediction models are hardly comparable, since the traffic situation in many 
countries is very different. These situations differ due to behavioral differences, infrastructural 
differences, different geographical characteristics and differences in laws and regulations. 
However, the synthesis table shows which elements are often considered when modelling speed.  

Lately, due to the increasing amounts of traffic data and computational power, new 
types of speed prediction models occurred by using this data to find certain patterns and predict 
future situations. Csikós et al. (2015) used artificial neural networks to predict traffic speed and 
congestions by training the ANN with VISSIM outputs. Lin et al. (2018) used a Gaussian Process 
Model to combine different data sources, such as the geodata from twitter tweets and the 
trajectory sensors from traffic service platforms to predict trajectory speed, while Tang et al. 
(2017) used a Fuzzy Neural Network to predict traffic speed. They predicted the speed more 
accurately than traditional models, due to the learning ability of the machine learning tools. 
Although these prediction models are still in their infancy and not ready to be used on a large 
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scale, they do show how new technology could make prediction models better. It’s interesting 
to follow this development. 
 
2.1.2 Energy prediction models 

Besides predicting velocity, many researchers proposed models to predict the energy 
consumption on roads. Two types of energy prediction models could be distinguished: 
instantaneous models and aggregated models (Guo et al., 2015). In instantaneous models, the 
input is always done in very small discrete time-intervals (often second-to-second data) and 
comprises velocity and acceleration. The output of these models is usually GHG-emissions or 
energy consumption and could be calculated per second. Aggregated models are more of a 
macroscopic nature. Their input is aggregated data over multiple vehicles, such as average 
speed, and also gives an aggregated output.  

During the last century, two models seemed to be most reliable for modelling vehicle 
emissions: MOBILE and MVEI (Barth et al., 2000). Both models used average trip speeds to 
calculate emissions, based on large emission testing datasets. These models were intended to 
predict emissions on larger scales; the nature of the models isn’t suitable for individual 
(microscopic) predictions (EPA, n.d.-b; Barth et al., 2000). The models lacked the ability to 
assess complex vehicle operations and ITS strategies.  

Because there was more need for mesoscopic and microscopic emission models, the 
University of California-Riverside, the University of Michigan, Lawrence Berkeley National 
Laboratory and the National Cooperative Highway Research Program started a research project 
to build a better prediction model. The outcome was one of the most comprehensive models in 
that period: the Comprehensive Modal Emissions Model (CMEM) (Barth et al., 2000; Scora and 
Barth, 2006). The model is based on a physical modelling approach. What was new was the use 
second-to-second speed and acceleration data. Researchers did already find the influence of this 
second-to-second data on emissions (Joumard et al., 1995) but the CMEM putting this effect 
into a modelling environment was a breakthrough (Barth et al., 2000).  
 Principles of the CMEM model have been used by many researchers around the globe. 
A lot of research found uses car data to do a post-trip analysis of the energy consumption 
(Ericsson, 2001; Brundell-Freij and Ericsson, 2005, Boriboonsomsin et al., 2012; Barth and 
Boriboonsomsin, 2009; Fukushima et al., 2018). The first developed models focused on ICE 
vehicles. Ericsson (2001) set up a very extensive conceptual model to determine total energy use 
and exhaust emissions. This model has been further developed by Ericsson (2006) and Ericsson 
and Brundell-Freij (2005). Barth (2000, 2006, 2009) also further developed the CMEM model. 
However, these researches clearly lack real-time environmental influences. Pan et al. (2017) used 
a kernel principal component feature to select parameters for the model and Fuzzy C means 
clustering to cluster these parameters. Based on the results of a Markov model, these parameters 
are being translated in an energy prediction using MATLAB/Simulink. Although the results of 
the prediction are relatively accurate, the model lacks environmental factors, street 
characteristics and driving style characteristics and thus does not give enough insight in how 
these variables influence the energy consumption. 

More recent projects developed models based on the CMEM model focus on BEV’s 
(Table 2.6). Wu et al. (2015) and Fukushima et al. (2018) used historical speed measurements 
but were not able to predict the energy consumption upfront due to a lack of historical data. 
Boriboonsomsin et al. (2012) made use of historical route and standardized energy parameters 
based on roadway characteristics and Wang et al. (2017) created an online and offline algorithm 
to predict energy consumption, based on route data, road slope and weather data. It shows 
impressive results in terms of accuracy, however, both models by Boriboonsomsin et al. (2012) 
and Wang et al. (2017) lack the microscopic influence of driving behavior and traffic intensity 
on the driving speed. The model by Wang et al (2017) has been mainly tested on motorways, 
since predicting speed profiles for inner city areas is very hard. More information on the effects 
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of street characteristics on the speed profile are necessary in order to make inner city 
predictions. 
 Like in velocity prediction, energy prediction models start to use machine learning 
methodologies more often. Fukushima et al. (2018) used machine learning techniques to predict 
energy consumption of EVs to recommend charging spot locations, Foiadelli et al. (2018) used 
the Multi-Layer Perceptron neural network methodology to predict energy consumption based 
on route information, vehicle information, driver information and environmental variables.  
The use of machine learning models and especially their learning ability is promising, though a 
lot of data is necessary to generate accurate results. Very intensive data collection is still needed 
to create these models, which limits the contemporary use up till now. 
 Although the prediction model of this thesis won’t take sociodemographic variables into 
consideration, it will be discussed shortly since these sociodemographic influences might 
explain some of the outcomes of the results. Brundell-Freij and Ericsson (2005) found that males 
tend to drive a bit faster than females. Though, the difference is very small and would be 
insignificant for the calculation. An increasing age would on its turn decrease the average 
driving speed significantly. With a mean of 46 km/h, Brundell-Freij and Ericsson (2005) found 
an effect of -12 km/h for elderly. 
 The variables used in different researches have been assessed and summarized in Table 
2.3.   
 
Table 2.3 Variables used in energy prediction models 
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EV/PHEV/ICEV ICEV ICEV EV EV PHEV ICEV EV/ICEV  
Infrastructure         
Junctions with traffic 
lights 

X  X X  X X 5 

Speed limit X X X X  X X 6 
Type of neighborhood X X      2 
Type of road X X X X  X X 6 
Junctions without 
traffic lights 

X X X X  X X 6 

Intensity 
(vehicles/lane*hour) 

X X  X  X  4 

Number of lanes X X    X  3 
Traffic management  X      1 
Street function  X  X    2 
Road slope   X X  X X 4 
Rolling resistance   X X   X 3 
Road curvature   X X  X X 4 
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Driving style         
Relative positive 
acceleration 

X X  X X   4 

Deceleration X X X X X X X 7 
Stops X X X X X X X 7 
Speed oscillation X X X x X X X 7 
Engine speed (rpm) X X  X    3 
(Extreme) acceleration X X X X X  X 6 
Speed X X X X X  X 6 
Late gear changing X X      2 
Cruise time (%)    X X   2 
         
Environment         
Temperature  X X X   X 4 
Humidity  X X X   X 4 
Air density   X X   X 3 
Rainfall  X      1 
Snow  X      1 
Head wind   X    X 2 
         
Car performance         
Car power/mass X X   X X  4 
Rolling resistance 
coefficient 

  X   X X 3 

Mass   X X  X X 4 
Aerodynamic drag 
force 

  X   X X 3 

Acceleration force   X   X X 3 
Wheel inertia   X   X X 3 
Tire radius   X   X X 3 
Gearbox   X   X X 3 
Drivetrain   X   X X 3 
Auxiliary energy   X   X X 3 

* CNEM uses car categories, which are based on average car performance characteristics of the 
cars within the group. Therefore, some accuracy losses will likely occur. 
 
2.2 Energy consumption model 

Based on the models which have been compared in 2.1.1 and 2.1.2, a conceptual model has been 
created as could be seen in Figure 2.1. Different variables related to the environment, 
infrastructural design and traffic intensity, as well as personal preferences related to driving 
style and the technical performance of a vehicle determine the speed profile on a certain route. 
Based on this speed profile, and some variables related to the environment and the car 
performance, the energy consumption could be calculated by using an energy consumption 
model. 
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Environmental 
variables

Infrastructural 
characteristics

Traffic intensity Driving style

Car performance

Energy 
consumptionSpeed profile

 
Figure 2.1 Conceptual model 

Various energy prediction models have been compared (Table 2.3). Based on these 
models, an energy consumption model could be created which is able to predict the energy 
consumption at different routes. The following subchapters show the basic principles of this 
model. 
 
2.2.1 Energy consumption modelling principles 

Basic physical theory shows that the tractive forces of a vehicle are determined by the rolling 
resistance, the aerodynamic resistance, gravity, and acceleration force. The tractive force is also 
called the longitudinal dynamic force. This principle is shown in equation 1 and Figure 2.2 
(Wang et al., 2015). 
 
 𝐹𝐹𝑡𝑡𝑡𝑡 = 𝐹𝐹𝑟𝑟 + 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐹𝐹𝑔𝑔 + 𝐹𝐹𝑚𝑚  [1] 

 
where Fr is the rolling resistance force caused by the rolling resistance between the wheels and 
the road surface, Faero the aerodynamic drag force caused by aerodynamic resistance and wind, 
Fg the gravity or grade force caused by the gravity and the road slope and Fm the acceleration 
force caused by the acceleration and vehicle inertia. 
 

 
Figure 2.2 Tractive forces on a vehicle 
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2.2.1.1 Rolling resistance 
The rolling resistance force of a vehicle could be explained by the rolling resistance of the wheels 
on a road surface, multiplied by the mass and the gravitational constant. The equation for the 
rolling resistance force is: 
 
 𝐹𝐹𝑟𝑟 = 𝑓𝑓𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)  [2] 

 
Where fr is the rolling resistance coefficient, m represents the mass of the vehicle in kg, g is the 
gravitational constant which is 9,81 m/s2 and θ represents the slope on which the vehicle is 
driving (in rad).  
 
2.2.1.2 Aerodynamic drag force 
The aerodynamic drag force is the component of the force which is caused by air resistance 
while driving. The aerodynamic drag force is dependent on the air density, the size of the vehicle 
and its aerodynamic performance. Wind also influences the aerodynamic forces on a car. The 
equation of aerodynamic drag force is: 
 
 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

1
2
𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑(𝑣𝑣 − 𝑤𝑤)2 [3] 

 
With ρ being the air density in kg/m3, A being the frontal area of the vehicle, Cd being the 
aerodynamic drag coefficient representing the aerodynamic performance of the car, v being the 
velocity of the vehicle in m/s and w being the wind speed in the driving direction of the car in 
m/s. This wind speed reduces the amount of aerodynamic drag, since air particles will move in 
the same direction as the car and thus cause less air resistance.  
 
2.2.1.3 Gravitational force 
The gravitational force of the vehicle is the force component of gravity that pulls the vehicle 
towards the earth. When driving on a slope, the vehicle will either get positive or negative 
gravitational force, depending on the driving direction. The gravitational force is also called the 
hill climbing force (Genikomsakis and Mitrentsis, 2017) and could be calculated with the 
following equation: 
 
 𝐹𝐹𝑔𝑔 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)  [4] 

 
with m being the mass in kg, g being the gravitational constant 9,81 m/s2 and θ representing the 
slope on which the vehicle is driving (in rad). 
 
2.2.1.4 Acceleration force 
Newton’s second law of motion states that the net force needed to bring an object in motion is 
calculated by multiplying the mass of the object and the acceleration of the object. This same 
principle is being used to formulate the force which is used to linearly accelerate a vehicle: 
 
 𝐹𝐹𝑚𝑚 = 𝑚𝑚𝑚𝑚 [5] 

 
The inertia of the wheels and the motor causes forces as well. According to Wang et al. (2018) 
these could be described as follows: 
 
 𝐹𝐹𝑖𝑖 = (4𝐽𝐽𝑤𝑤

𝑟𝑟2
+ 𝐽𝐽𝑚𝑚𝑖𝑖𝑔𝑔

2

𝑟𝑟2
)a  [6] 
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Where Jw is the wheel inertia, Jm is the motor inertia, g is the gravitational constant, r is the 
radius of the tires, ig is the gearbox ratio and a is the acceleration. For most vehicles, the inertia 
is hard to calculate due to unknown variables (Genikomsakis and Mitrentsis, 2016). However, 
Larminie and Lowry (2012) found that the inertia is approximately 5% of the total vehicle mass. 
Therefore, the equation for acceleration force, corrected for the inertia, will be: 
 
 𝐹𝐹𝑚𝑚 = 1,05 ∗ 𝑚𝑚𝑚𝑚 [7] 

 
2.2.1.5 Substitution 
Substituting the above formulas into equation 8 gives a detailed equation of the tractive forces 
of the vehicle: 
 
 𝐹𝐹𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃) +

1
2
𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑(𝑣𝑣 − 𝑤𝑤)2 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃) + 1,05 ∗ 𝑚𝑚𝑚𝑚 [8] 

 
Multiplying the longitudinal force (in N) with the velocity (in m/s) results in the tractive power 
(in W). Multiplying this power with the time gives the tractive energy. Since velocity multiplied 
by time represents distance, the tractive energy could be calculated by multiplying the tractive 
forces by the driven distance. 
 
 𝑃𝑃𝑡𝑡𝑡𝑡 = 𝐹𝐹𝑡𝑡𝑡𝑡 ∗ 𝑣𝑣  [9] 
 𝐸𝐸𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑡𝑡  [10] 
 𝐸𝐸𝑡𝑡𝑡𝑡 = (𝑓𝑓𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃) + 1

2
𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑(𝑣𝑣 − 𝑤𝑤)2 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃) + 1,05 ∗ 𝑚𝑚𝑚𝑚) ∗ 𝑑𝑑  [11] 

 
Within every car, mechanical losses appear during transmission of energy from the battery to 
the wheels. These losses are referred to as powertrain losses (Wang et al., 2017). Based on energy 
conversion efficiency laws, the tank-to-wheel energy consumption of a car could be calculated. 
Figure 2.3 shows the process of energy flows from the battery to the wheels. 

ET2W

Etr

Invertor
Motor

Transmission

 
 
Figure 2.3 Energy flows inside an EV from battery to wheels 
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The equation to calculate the tank-to-wheel energy, based on the energy flows, will be: 
 
 𝐸𝐸𝑇𝑇2𝑊𝑊 =

𝐸𝐸𝑡𝑡𝑡𝑡
𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 [12] 

 
Where ηdrivetrain is the powertrain efficiency. Powertrain efficiency is usually calculated by using 
dynamometer measurements. A dynamometer is a measuring equipment which is able to 
measure the rotational speed and the torque of a vehicle (Irimescu at al. 2011). Based on the 
measurements by Argonne National Laboratory (2015) and measurements of other comparable 
vehicles, such as the Nissan Leaf (Lohse-Busch et al., 2013), the powertrain efficiency has been 
set to 85%. 
 
2.2.2 Regenerative braking 

EVs largely differ from ICEVs by their powertrains, since EVs use an electromotor and ICEVs an 
internal combustion engine. This electromotor has the potential to regenerate electric energy 
during braking, which is called regenerative braking. In regenerative braking, the kinetic energy 
is converted into chemical energy (Figure 2.4). Normally, kinetic energy is being converted to 
heat and thus lost. Regenerative braking uses the kinetic energy to power the drivetrain with 
chemical energy from an internal battery (Xu et al., 2016; Solberg, 2007; Clarke, 2017). Formula 
13 shows the equation for kinetic energy: 
 

𝐸𝐸𝑘𝑘 = 1
2
𝑚𝑚𝑚𝑚2          [13] 

 
The amount of energy regenerative braking could produce is dependent on the rolling 

resistance and aerodynamic forces, since part of the kinetic energy is lost due to these 
resistances. As Fiori et al. (2018) mention, “the most energy efficient route assignment for BEVs 
could be significantly affected by the regenerated energy”.  

A lot of future work will be needed to increase the regenerative braking efficiency, while 
maintaining safety during braking (Xu et al., 2016). It’s also common that new EV users need 
some adaptation time to get used to this way of braking (Llana, 2015; Cocron et al., 2013) while 
also differences in user preferences need to be considered (Solberg, 2007). Though, overall, users 
seem to be very positive about regenerative braking after some adaptation time (Cocron et al., 
2013). Schmitz et al. (2012) found that drivers prefer combined pedal solutions (where electric 
braking is done by the acceleration pedal) over split pedal solutions. 

Regenerative braking strategies are typically useful in stop-and-go situations, which in 
most cases refers to urban driving (Lv et al., 2015; Cocron et al., 2013). There’s also a lot of 
potential for hilly driving (Romm and Frank, 2006). It’s first use was in railway situations to 
regenerate the energy lost during braking (Gonzalez-Gil et al., 2014), but gained interest in the 
car transportation field lately. For trains, energy reductions of about 30% were found. For cars, 
the regenerative braking efficiency highly depends on the driving style (Walsh et al., 2010), 
however, the energy improvement is of about the same order (Wager et al., 2018; Walsh et al., 
2010; Romm and Frank, 2006). 

The model created by Besselink (2019), which is also used by Wang et al. (2017) assumes 
a fixed regenerative braking efficiency while the efficiency is highly dependent on driving style. 
Tests done by Walsh et al. (2010) found regenerative braking efficiencies ranging from 15-93% 
after measuring different drivers on different scenarios. The highest efficiency was reached by a 
trained eco-driver, suggesting that training people to use regenerative braking could lead to 
serious efficiency improvements. In their analysis, approximately 50% of the variation relates to 
the differences in tracks, while the rest of the variation is driver-specific. Gao et al. (2008) found 
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that the maximum efficiency of regenerative braking is 86% in 2007 based on five standard 
driving cycles. 

When decelerating slowly, the deceleration could be realized by only using the 
regenerative braking system, regenerating most of the kinetic energy to electrical energy. 
Extreme deceleration, as might be seen at aggressive driving styles, requires deceleration 
realized by a mechanical braking system. Parts of the braking process would still be done by the 
regenerative braking system, but the aggressive deceleration reduces the regenerative braking 
efficiency significantly (Evtimov et al., 2017).  

Battery Motor Gearbox Final drive

ηcharge ηgeneration ηgearbox ηfinal drive

ηdischa rge ηgeneration ηgearbox ηfinal drive

Wheels Wheels

Discharge energy

Regenerated energy  
Figure 2.4 Powertrain configuration of a vehicle including the internal energy losses 

 
2.2.3 Auxiliary energy use 

Operating vehicles requires more power than only tractive power. Other processes, such as 
turning on the lights, blowing a fan and putting on the heating require energy. The power this 
energy causes, which from now on is called auxiliary power or Paux, could be measured during 
standstill or idling. The biggest difference between ICEVs and EVs is that in most ICEVs, the 
motor keeps running even when the car is idling, which requires energy. Literature calls this 
idling energy (Boriboonsomsin et al., 2012). Electric vehicles are simpler in the sense that no 
energy is used in the motor when the car is idling. However, some energy is needed to keep the 
battery on working temperature. 

Auxiliary systems do have a significant impact on the energy use. Evtimov et al. (2017) 
describe five types of auxiliary systems: climate control, lights and horn, audio system, window 
cleaning system and seat heating and other systems. As electric vehicles don’t produce enough 
heat to control a comfortable temperature in the car themselves, active climate control is 
necessary (Kavalchuk et al., 2015). Evtimov et al. (2017) estimated the needed power to bridge a 
temperature difference of 22 degrees Celsius to be about 2 kW. This not only includes the 
heating, but also fans which defog windows and window heating devices. The last one requires 
relatively much power (about 200W per window), though, the running time is usually very short 
(Kavalchuk et al., 2015). Other climate systems exist in modern, luxurious cars, such as seat 
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heaters (about 200W per seat) and a steering wheel heater (50W). For modelling purposes, these 
are not considered. It is however good to mention that only the seat heaters and steering wheel 
heater could be using about 0,25 kWh on a trip from Eindhoven University of Technology to 
the Sweco Netherlands main office (a typical 1-hour drive of about 90 km), while this trip would 
normally use about 12 kWh (based on technical specifications. BMW, 2018). Based on 
Reichmuth (2016), the energy used to cool the vehicle is about half the energy to heat it. Since 
the targeted internal temperature is assumed to be 20 degrees, the relation between climate 
control power and ambient temperature will be used as shown in Figure 2.5. 
 

 
Figure 2.5 Climate control power for different ambient temperatures 

The power used by the light system has been captured by Vražić et al. (2014) and Schoettle et 
al. (2008) and summarized by Evtimov et al. (2017) as could be seen in Table 2.4 (based on 
Evtimov et al., 2017; Vražić et al., 2014; Schoettle et al., 2008). Based on this data, an average use 
during daytime and nighttime driving could be estimated. The estimated power for 
conventional lighting systems is 76 W during daytime and 95 W during nighttime driving. LED 
lighting systems significantly drop power consumption to 16 W during daytime and 64 W during 
nighttime driving. 
 
Table 2.4 Lighting systems and their power use 

Element Time of the 
day 

Power 
consumption 
[W] 

Power 
consumption 
(LED) [W] 

Use ratio [%] 

Daily lights Day 40 8 100 
Long lights Night 60 34,4 8,4 
Short lights Night 55 54 97,6 
Left blinker Day & night 21 6,9 5,8 
Right blinker Day & night 21 6,9 4,6 
Stop-lights Day & night 21 5,6 3,9 
Stop-lights 
(central) 

Day & night 21 3 16,2 

Rear-lights Day & night 5 1,7 92,2 
Registration 
table lights 

Day & night 5 0,5 92,2 

Reverse motion 
light 

Day & night 21 5,2 0,8 

Cabin lights Day & night 20 5 100 
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The audio system could reach 200 W according to Evtimov et al. (2017). According to 
measurements done by Geringer and Tober (2012) not surpass 20 W. The use ratio would be 
about 75% of the time. Therefore, the estimated power for the radio system is 15 W. According 
to Kavalchuk et al. (2015) the navigation system uses 15W. Window cleaners use approximately 
60 W, and, in the model, it’s assumed that they are always active during rainfall (Geringer and 
Tober, 2012; Kavalchuk et al., 2015). 

Many small electronical features are added to modern vehicles. Their use depends on 
the type of vehicle and the driver’s personal preferences. Some examples are the cigarette 
lighter, moving roof system, automated moving seats, multimedia screens, side windows and 
various sensors (Kavalchuk et al., 2015). It’s hard to determine their energy use since this is 
dependent on the running time of each system. As this depends on the driver, the countries 
system standards, the intelligence of the systems and the outdoor conditions, an assumption 
has to be made. The model assumes that there is a constant power of 30W needed for these 
small features. 
 
2.3 Microscopic traffic modelling 

Traffic modelling is a method used by traffic scientists to try to understand driving behavior and 
traffic flows in real situations. The models are an approximate representation of reality. Since 
the 50s, engineers have been doing research on creating models which make predictions close 
to reality (Chandler et al., 1958). From this moment on, many traffic models have been 
developed, not only for cars, but also for pedestrians, bicycles, boats and other vehicles. 
Modelling traffic with simulation software instead of by making analytical models based on 
calculus has the advantage that it gives more insight in the traffic situation. Thanks to the rapid 
increase in computational power, it becomes easier to use these models (Burghout, 2004). 

Developments in Intelligent Transport Systems (ITS) made the use of traffic models even 
more relevant. The traffic simulations are used to optimize traffic situations based on 
predictions. Examples are the introduction of advanced traffic management systems (Burghout, 
2004) and smart traffic lights (Van der Bijl, 2018). Traffic models are also getting more attention 
from a climate change perspective, where simulation results are used to model amongst others 
GHG-emissions (Hofer et al., 2018; Jonkers et al., 2018). 
 
2.3.1 Different traffic modelling scales 

Three major directions in traffic modelling could be distinguished. First, macroscopic traffic 
modelling, which is often used to model large-scale situations, such as city or regional traffic 
flows. The model uses three macroscopic variables: traffic flow, traffic density and average 
speed. These variables are often calculated by using the geometric parameters of the road (such 
as the size of the road, the road type and the number of lanes) and the vehicle input. Vehicles 
have no individual characteristics since they aren’t modeled individually (Burghout, 2004; 
Hamdar, 2012). 

The second model is the microscopic model, which focusses on the individual 
characteristics of vehicles. Microscopic modelling is able to individually set parameters to 
different vehicle types. Flows are modeled by modelling the interactions between two individual 
vehicles, based on their parameters. Often, car-following models are implemented to simulate 
all the interactions between a leading vehicle and a following vehicle. Microscopic traffic 
modelling is often used at smaller scales, since it is more time-consuming to build these models 
due to the large number of parameters. Nevertheless, it is very relevant for scientific use, since 
it gives more possibilities to model driving behavior and other complex driver characteristics 
and car characteristics (Hamdar, 2012, Immers and Logghe, 2002, Fellendorf and Vortisch, 2010). 
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A third and rather new direction in traffic modelling is the mesoscopic traffic modelling 
approach. Mesoscopic is a hybrid of micro- and macroscopic modelling which combines 
characteristics from both modelling perspectives. Mesoscopic modelling still uses a very high 
level of detail for individual vehicles. However, the vehicle interaction models aren’t as detailed 
as the microscopic modelling approach; they look more like macroscopic models. Mesoscopic 
models thus use both macroscopic as well as microscopic variables. Different mesoscopic 
simulation software packages exist, all with their own modelling approaches. Although these 
approaches all differ slightly, one similarity could often be found. Vehicles do have individual 
characteristics, but in the network, they’ll behave as groups, having aggregated speeds 
(Burghout, 2004; Hamdar, 2012).  

As this thesis focuses mainly on the individual vehicle behavior, microscopic models are 
preferred since they simulate the individual characteristics the best. The following subsections 
will discuss some fundamental models representing microscopic traffic behavior, after which 
several microscopic modelling tools are being discussed. 
 
2.3.2 Car-following models 

The first and most important element of microscopic behavior is the car-following model 
(Hamdar, 2012). Car-following models describe the behavior of a vehicle based on the behavior 
of the leading vehicle (Saifuzzaman and Zheng, 2014). In free flow, the effect of leading vehicles 
is assumed to be non-existing, thus vehicles will drive according to their desired speed. In 
congested situations, the distance between vehicles will reduce after which the behavior of the 
following vehicle will be mainly determined by the leading vehicle (Barth and Boriboonsomsin, 
2009). The most researched model family is the Gazis-Herman-Rothery (GHR) family, which 
has been the base of many models (Olstam and Tapani, 2004). One of the GHR models is the 
GHP model by Gazis et al. (1959), where interactions are based on the speed difference between 
the leading vehicle and the following vehicle, changing the acceleration of the following vehicle. 
It enables different driving styles by changing the sensitivity of behavior adaptation. The Gipps 
model (Gipps, 1981) knows two driving modes, which are free-flow and car-following. Behavioral 
differences are modeled through changing the desired acceleration and deceleration rates of a 
vehicle. The Cellular Automaton model (Nagel and Schreckenberg, 1992) uses the same 
principle, though it has an extra randomness factor. It shows unrealistic deceleration rates, 
which has been solved in Krauss’ S-K model (Krauss and Wagner, 1997). The maximum safety 
speed is set based on the maximum deceleration rate. The IDM and IDMM models (Treiber et 
al., 2006) model the behavior based on the velocity, the acceleration boundaries and the space 
headway. These models also assume imperfection in the estimation capabilities of drivers, 
simulating variation in the driving behavior. Wiedemann and Reiter proposed a model based 
on the differences in speed and distance between the leading car and the following car (PTV 
Group, 2016, Olstam and Tapani, 2004; Fellendorf and Vortisch, 2010). Yang and Koutsopoulos’ 
(1996) MITSIM knows three driving states: free flow, car following and emergency decelerating. 

Since the Wiedemann model used in VISSIM, it will be the most relevant model to 
discuss. The model assumes that the behavior of a car is always dependent on the behavior of 
the car in front of him (Fellendorf and Vortisch, 2010), based on the distance between the two 
vehicles. When the relative distance is large enough, the following vehicle will drive according 
to his desired speed. When the distance drops below a critical point, the vehicle reach the 
reaction zone (Figure 2.6, Saifuzzaman and Zheng, 2014) after which it changes its speed 
according to the speed of the leading vehicle. This phase is called the unconscious reaction, in 
which the speed of the following vehicle is determined based on the speed of the leading vehicle 
(Saifuzzaman and Zheng, 2014). The calculation of the vehicle speed it dependent on the state 
of the vehicle but in general has the following function: 
 
 ∆𝑣𝑣 =  𝛽𝛽1(∆𝑥𝑥 − 𝑎𝑎𝑎𝑎) + 𝛽𝛽2 [14] 
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Where Δv is the speed difference from the following vehicles desired speed, Δx is the distance 
between the following and leading vehicle, ax is the preferred minimal standstill distance and  
β1 and β2 are constants (Kim, 2006). Based on typical time headways for desired, risky and safe 
driving, the distances between the leading and following vehicle could be calculated for every 
phase by multiplying it by the driving speed. This approach suggests that at higher speeds, the 
time gap between two vehicles is bigger. This has been confirmed by Zhu et al. (2018). 

Wiedemann’s car-following model uses the parameters set in Table 2.5 (Fellendorf and 
Vortisch, 2010). Figure 2.6 shows a schematic representation of how a following driver 
approaches a slower vehicle and how the parameters have their effect on the following speed 
and distance. 
 
Table 2.5 Wiedemann parameters 

Quantity Unit Description 
ax m Desired minimal distance between two front bumpers during standstill 
bx m Desired minimal distance between two front bumpers during driving 
sdv  Point at which the driver reacts consciously to changes in front of him 
cldv  Additional safety line below the sdv for extra braking 
opdv  Point at which the following driver starts accelerating if he is slower 
sdx m Maximum following distance 

 

 
Figure 2.6 Wiedemann car-following model 

 
2.3.3 Lane-changing models 

Next to the car-following behavior, lane-changing models exist to simulate lateral movement of 
vehicles. Lateral movement is relevant in situations of road curvature, but also for lane-changing 
at multi-lane segments. Two different lane-changing situations could be distinguished: the 
mandatory (MLC) and discretionary lane change (DLC) (Ahmed, 1999). Mandatory lane 
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changes are required due to mostly infrastructural changes, such as on-ramp merging on 
highways. Discretionary lane changes are not required and are often performed to improve the 
driving conditions of an individual driver. Overtaking on highways is the most common 
example. An underlying model of the lane-changing model is always the gap-acceptance model. 
This latest model determines the gap a driver accepts between two vehicles on the target lane, 
before he makes a lane-changing move. This gap is often referred to as the safety distance 
(Fellendorf and Vortisch, 2010) and is assumed to have a linear relation with the desired speed. 
Lane discipline has been found to make models easier. A limitation of this method is that in 
highly congested situations, the minimum gap distance might never be reached, causing some 
cars to a standstill at the end of a lane segment. Ahmed (1999) tried to solve this with his forced 
merging model, where a certain understanding between the vehicles on the target lane and the 
lane-changing subject is reached. Different microsimulation software tools usually deal with 
these situations differently. While in VISSIM and ARTEMiS, vehicles disappear from the model 
after waiting too long to change lanes, in AIMSUN the vehicle will continue following the wrong 
route (Hidas, 2004). The acceptable gap has been determined by a base value for each behavioral 
scenario and a random term, which differs per driver and per situation. 
 
 𝐺𝐺𝑛𝑛𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐺𝐺𝑛𝑛 + ϵ𝑛𝑛𝑒𝑒𝑒𝑒(𝑡𝑡) [15] 

 
Where Gn

er is the acceptable gap for driver n at situation er, Gn represents the gap component 
of the behavioral model of driver n while ϵn

er represents the random term, changing for every 
driver n and situation er.  

Various researchers have tried to estimate lane-changing behavior. Gipps (1986) built 
the first lane change model for microsimulation (Toledo et al., 2003). It’s a comprehensive 
model assessing whether it is necessary, desirable and safe to change lanes based on amongst 
others the infrastructural situation, speed, other (heavy) vehicles and driver behavior. Yang and 
Koutsopoulos (1996) and Yang et al. (1999) also differentiate between MLC and DLC. Once a car 
enters the MLC state, it stays there until it has changed its lane. The DLC state is constantly 
reconsidered based on the utility of the current lane and the target lane. Kesting et al. (2007) 
distinguished symmetric passing (as performed in the US) and asymmetric passing (with the 
‘keep-right’ directive, as performed in Europe). Their model, MOBIL, contains a safety and 
incentive criteria and a politeness factor. Tang et al. (2018) proposed an estimation based on an 
Adapted Fuzzy Neural Network. Mahapatra and Maurya (2013) found a negative relationship 
between lateral acceleration and longitudinal speed, in other words vehicles tend to slow down 
when changing lanes. 

Modelling software has different ways of modelling lane-changing behavior. VISSIM 
uses the MLC and DLC distinction. For MLC, the behavior is modeled based on a maximum 
deceleration of the target vehicle and the trailing vehicle on the target lane, as well as the 
distance to the emergency stop, which is often the end of the lane. For DLC, the behavior is 
based on minimum gap distance which is considered safe. The aggressiveness of changing lanes 
could only be modeled by decreasing the gap distance (PTV Group, n.d.). 

 
2.3.4 Route choice models 

Yang and Koutsopoulos (1996) distinguish informed and uninformed drivers. They use a 
multinomial logit model which minimizes travel time based on route information. A basic 
theory which is underlying in most route choice models is based on Kirchhoff’s circuit laws, 
originating from electrical engineering theory (Lin et al., 2013). Kirchhoff’s circuit law states that 
the sum of currents in a network node is always zero. In other words, the currents flowing in 
are equal to the currents flowing out, as in equation 16: 
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�𝑖𝑖𝑘𝑘

𝑛𝑛

𝑘𝑘=1

= 0 [16] 

 
If in a node all inflows are outflows, the following probability distribution based on the Kirchhoff 
laws could be made: 
 
 

𝑝𝑝�𝑅𝑅𝑗𝑗� =
𝑈𝑈𝑗𝑗𝑘𝑘

∑ 𝑈𝑈𝑖𝑖𝑘𝑘𝑛𝑛
𝑖𝑖=1

=
𝑒𝑒𝑘𝑘∗𝑙𝑙𝑙𝑙𝑙𝑙𝑈𝑈𝑗𝑗

∑ 𝑒𝑒𝑘𝑘∗𝑙𝑙𝑙𝑙𝑙𝑙𝑈𝑈𝑖𝑖𝑛𝑛
𝑖𝑖=1

 [17] 

 
Where p(Rj) is the probability of choosing route j, Uj is the utility of route j and k is the sensitivity 
factor or Kirchhoff factor. The higher the sensitivity factor, the more sensitive the model is to 
differences in utility. A Kirchhoff factor of 0 would equally distribute all drivers over all routes, 
while a very high Kirchhoff factor will send all drivers to the best route (Fellendorf and Vortisch, 
2010). 

How the utility is being determined is model specific. Burghout (2004) describes a model 
in which the utility is based on the time-dependent travel time on a route. Fellendorf and 
Vortisch (2010) describe a utility function based on the generalized cost of each link. AIMSUN 
uses link cost/m for dynamic assignment, while VISSIM also uses surcharges to indicate extra 
costs on a link level (Bert et al., 2005; PTV Group, 2016b; PTV Group, n.d.) 

These utilities are being calculated by using a shortest-path algorithm. A “path search 
problem involves finding the optimum path between the present location and the destination 
under given conditions” (Noto & Sato, 2000). Many shortest-path algorithms exist, all with their 
advantages and disadvantages. The Dijkstra algorithm (Dijkstra, 1959) is one of the most 
frequently applied methods for routing problems and calculates the shortest path with the 
minimum cost (Singal & Chhillar, 2014). It finds the shortest path from one node to all the other 
nodes after doing several iterations. The optimization computation time of the algorithm 
increases significantly at larger number of nodes which might be a limitation (Nazari et al., 
2008; Noto & Sato, 2000). The Bellman-Ford algorithm is very similar to the Dijkstra algorithm, 
though it can solve problems with negative edges; something Dijkstra couldn’t do (Ford, 1956; 
Bellman, 1958). A difficulty regarding these two algorithms was that they would only find the 
shortest path, also known as the all-or-nothing route choice. This would in no case represent 
reality, since in most situations people would also use other paths than the shortest, and usually 
one path cannot accommodate all vehicles (Burghout, 2004). By using a k-shortest path 
algorithm, this problem is solved. Next to the shortest path, the k-shortest path algorithm also 
finds k-1 other paths (Yen, 1971). By combining k-shortest path algorithms with the Kirchhoff 
distribution equation, vehicles will be distributed amongst all relevant paths. In traffic 
simulation software, C-logit models are often used (Ben-Akiva et al., 2004). C-logit models make 
use of a commonality factor which considers different paths with a lot of similarities.  
 
 𝑝𝑝�𝑅𝑅𝑗𝑗� = 𝑒𝑒𝑈𝑈𝑗𝑗−𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗

∑ 𝑒𝑒𝑈𝑈𝑖𝑖−𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

   [18] 

Where CFin is the commonality factor of path i for person n, as calculated in the following 
equation: 
 
 𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 = 𝛽𝛽 ∗ ln∑ ( 𝐿𝐿𝑖𝑖𝑖𝑖

�𝐿𝐿𝑖𝑖𝐿𝐿𝑗𝑗
)𝛾𝛾𝑖𝑖=1   [19] 

 
Where Lij is the length of all links common to path i and j, Li and Lj are the path lengths of path 
i and j and β and γ are parameters. The C-logit model is part of a VISSIM extension, though the 
standard model (Kirchhoff distribution) is very similar (Fellendorf and Vortisch, 2010).   
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There are two ways of modelling demand. In the first method, the number of cars 
entering the network at each link is modeled. At each intersection, the turning percentages have 
to be set manually after which the cars will turn according to these rates. The destination of cars 
is thus determined by the turning percentages. The second method uses an OD-matrix for 
different time intervals (usually hourly or quarterly) to represent the demand. This second 
method proved to represent reality better than the first method (Burghout, 2004). 

Some models provide en-route switching. En-route switching is the process of switching 
the desired route during driving, due to new information about the traffic situation which 
changes the utility functions of the routes (Burghout, 2004).  

 
2.3.5 Additional models 

The high amount of detail microsimulation software could give as an output nowadays resulted 
in the development of more models and plugins. The output is used to calculate other results 
than only time and cost, such as GHG-emissions, noise pollution and total economic loss 
(Immers and Logghe, 2002). An example is TNO’s EnViVer, which couples TNO’s emission 
database with VISSIM to calculate GHG-emissions and particulate matter (Scholten, 2010). 
 
2.3.6 Microscopic modelling tools 

Different computer tools to simulate microscopic traffic models have been created during the 
last decades. They differ in their functionalities and user-display, but mainly in the models used 
to predict individual driving behavior. Since the software tools use different car-following, lane-
changing and route choice models, the individual driving behavior will be modeled with a 
different approach. Although this thesis will make use of VISSIM, some other relevant tools will 
also be assessed since they might give new insights in the modelling process. VISSIM has many 
tools to model individual driving behavior, which suits this research the best. Next to this, there 
are some practical considerations to use VISSIM. 
 
2.3.6.1  VISSIM 
VISSIM is a behaviour-based multi-purpose traffic flow simulator which outcome is determined 
by stochastic processes. It is a very common tool for traffic modelers and is able to model 
multiple traffic modes, such as private cars, pedestrian flows, public transport and mixed-traffic. 
Simulations are based on a wide variety of variables and use psycho-physical car-following 
models which are based both on psychological (behavioural) variables as well as physical 
variables. VISSIM reports different measures of effectiveness, such as speeds, acceleration, 
location, travel time along paths or at the entire networks and is therefore an effective tool for 
modelling the speed-profiles of a driver under various traffic intensity situations. VISSIM’s 
system architecture is built upon three building blocks: the road infrastructure, the technical 
features of vehicles and traffic flows and the traffic control block. Together, these blocks 
generate the output data (Fellendorf and Vortisch, 2010). 
 
2.3.6.2 PARAMICS 
PARAMICS is a micro-simulation software tool which is able to model large networks (Olstam, 
2004). PARAMICS is widely used due to its large number of tools (Gao, 2008). PARAMICS’ car-
following model is very similar to the models used in VISSIM, however, instead of using the 
Wiedemann models, it uses a Fritzsche model (Gao, 2008). An advantage of PARAMICS is the 
fact that users can override the software with API’s (Gao, 2008), while a limitation is the fact 
that it cannot model oncoming traffic (Olstam, 2004).  
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2.3.6.3 AIMSUN 
Similar to PARAMICS, AIMSUN enables users to override the software with API’s (Gao, 2008). 
It can also not model oncoming traffic (Olstam, 2004). As well as VISSIM and PARAMICS, 
different measures of effectiveness could be used to evaluate micro-simulated traffic scenarios 
(Gao, 2008). AIMSUN uses the Gipps car-following model to simulate car-following behavior 
(Higgs et al., 2011). 
 
2.3.7 Microscopic modelling principles 

Different software packages deliver different microscopic modelling approaches. However, a 
certain uniformity in the structure of these models exists. The behavior of all individual vehicles 
is simulated by using analytical models. Based on a certain time step i, the vehicle output is 
generated for every t+ i*t, based on the output on t. Since their behavior can never be modeled 
with individual models, a model with certain parameter settings is used for every single vehicle 
type (Immers and Logghe, 2002; Hamdar, 2012). These vehicle types are modeled as follows: 

Class
Car

Class
Truck

Type
Eco-driver

Type
Aggressive driver

Type
Light duty vehicle

Type
Heavy duty vehicle

Behavior
Eco-driving

Behavior
Aggressive driving

Behavior
Normal driving

Class

Type

Behavior

 
Figure 2.7 Vehicle type structure in VISSIM 

As Figure 2.7 (PTV Group, 2016) shows, different types could be made for a single vehicle 
class. Different behaviors could be assigned to all types. 
 
2.3.8 Limitations of microsimulation 

In microsimulation, major limitations have a relation with the high amount of detail of the 
models. For daily practice, it might be too time-consuming and thus expensive to build 
microsimulation models, since little errors in the model could change the results dramatically. 
Especially in somewhat larger networks, human errors are easily made. Secondly, it’s hard to 
model the demand. Microsimulation models are often very sensitive to calibrations which could 
dramatically influence the outcome of the model (Ge, 2016). Little variations in demand might 
lead to big variations in the traffic flow, causing congestions or stop-and-go traffic. Therefore, 
it’s important that the vehicle input is as close as possible to reality, in example by doing 
measurements on-site. Again, this is very time-consuming. 

Another limitation of the level of detail is that a lot of variables need to be calibrated. As 
no traffic situation is the same, there is no real standard for microsimulation parameters. Based 
on expert insights, trial and error seems to be the usual method to calibrate the model. It also 
means that once a model has been calibrated, these settings cannot be used for new projects. It 
requires a lot of expertise to calibrate these models. Most of the parameters are hard to measure, 
such as the deceleration rate. Therefore, estimations are used mostly to calibrate the model. By 
using measures of effectiveness (MOEs), often on link level, the calibrated model is compared 
to real situations. However, these MOEs don’t give information on the individual parameter 
settings; they only assess the aggregated results (Burghout, 2004; PTV Group, 2016; Fellendorf 
and Vortisch, 2010). 
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2.4 Modelling the influence of driving style 

The relevance of taking driving styles into account derivates from the gained interest in the 
concept of eco-driving. Eco-driving is one of the concepts optimizing the energy-efficiency of 
EVs. Various definitions of eco-driving exist. Boriboonsomsin et al. (2012) defines eco-driving as 
a “fuel-efficient operation of a vehicle to achieve better fuel economy and lower tailpipe 
emissions while not compromising the safety of oneself and other road users”. Jimenez et al. 
(2014) defined the term as a “driving style followed by vehicle drivers to save fuel”. Feedback is 
a very important element of eco-driving and could double the savings potential (Barkenbus, 
2010). A lot of attempts have been made, both in-car feedback systems as well as infrastructural 
elements such as the green wave. 

Although many researchers have slightly different definitions, the following three parts are 
widely recognized: 

- Informing the driver; 
- Choosing the most energy-efficient route based on the available (real-time) data; 
- Conforming with personal and societal preferences 

Based on the literature, this thesis will define eco-driving as: 
 
Eco-driving aims to inform the driver to choose the most energy-efficient route and driving 
style based on the available data, while not compromising personal and societal 
preferences. 

 
It’s good to mention that eco-driving is different from hypermiling (Barkenbus, 2010), which 
uses more extreme techniques to drive more energy efficient, often with increased safety risks. 

Driving style is widely known to be an influencing factor on energy consumption and 
emissions for years (De Vlieger, 1997). Brundell-Freij and Ericsson (2005) found seven 
significant factors of driving style on fuel consumption. The results show a significant effect of 
stopping and accelerations on the fuel consumption and various GHG-emissions. The relative 
positive acceleration (RPA) is usually higher at local streets with a lot of traffic lights and stops 
and a high traffic volume. An interesting finding is that the RPA is also higher for double-lane 
streets than on single-lane streets, as the acceleration during overtaking costs energy (Gundana 
et al., 2018). Gundana et al. (2018) found that aggressive drivers use more energy than normal 
drivers when changing lanes. Ericsson (2001) found that the major fuel consumption of ICEVs 
is dependent on acceleration, the amount of stops and speed oscillations.  

Many variables exist which could determine the driving style. Kedar-Dongarkar and Das 
(2012) conducted a Principal Component Analysis and a correlation analysis and found that 
acceleration and speed variables described 87% of the driving style, significantly increasing 
energy consumption and tailpipe emissions (Barth and Boriboonsomsin, 2009). Fonseca et al. 
(2010) found that aggressive drivers tend to accelerate more aggressively and more often. Wang 
et al. (2017) described the same for both acceleration and deceleration. Zhu et al. (2018) found 
that conservative (or ‘eco-‘) drivers drive about 14% slower than aggressive drivers. Barth and 
Boriboonsomsin (2009) found that eco drivers were about 8% slower than non-eco drivers.  

The acceleration rate is not measured by standard traffic management systems and 
therefore data is lacking (Boriboonsomsin et al., 2012). Nevertheless, a certain level of traffic 
intensity combined with a higher preferred acceleration and desired speed could be used to 
model a higher acceleration rate (Boriboonsomsin, 2009). Preferred lateral acceleration profiles 
have been created based on data from Wang et al. (2017) and Reymond et al. (2001). They are 
different for different driving styles and usually don’t reach the technical maximum lateral 
acceleration of the vehicle. Figure 2.11 in subchapter 2.6.2 shows an explanation of the different 
profiles. The regenerative braking efficiency differs per driving style because the aggressive 
driver is thought to use his mechanical brakes more often (Walsh et al.; 2010, Gao et al, 2007) 
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and. Finally, Barth and Boriboonsomsin (2009) found that oscillations in the driving speed were 
higher for non-eco drivers than for eco-drivers. These oscillations are strongly related to the 
acceleration percentage rate and the aggressiveness of the acceleration itself. 

The setup of different driving styles could be found in Table 2.6.  
 

Table 2.6 Model settings for driving styles 

 Eco-driving Normal driving Aggressive driving 
Speed relative to desired speed 95% 100% 105% 
Acceleration* 2 m/s2 3 m/s2 4 m/s2 
Deceleration* -1,5 m/s2 -2 m/s2 -3 m/s2 
Acceleration percentage rate n.a. n.a. n.a. 
Lateral acceleration (v=0 m/s) 4,5 6,5 8,5 
Regeneration efficiency** 90% 40% 15% 

* Based on Wang et al. (2017). 
** Based on Walsh et al. (2010). 
 
2.5 Modelling the influence of environmental variables 

Environmental effects, such as wind, air density and temperature, have an influence on the 
energy consumption (Hollweck et al., 2018). Wind and air density have an influence on the 
aerodynamic forces acting on the vehicle, especially for high driving speeds (Evtimov et al., 
2017). Temperature mainly influences the need for auxiliary energy through the climate system 
(Evtimov et al., 2017). The influence of temperature could therefore best being described per 
time interval, since the climate system uses more energy when it’s turned on for a longer period 
of time. The influence of wind and air density on their turns, differs for different routes and 
driving styles, based on the driving speed. 
 
Table 2.7 Weather scenarios 

Variable description Scenario 1 
Winter 

Scenario 2 
Average 

Ambient temperature (daily average)  0 ℃ 12,0 ℃ 
Air pressure 1011,3 hPa 1011,3 hPa 
Relative humidity 79% 79% 
Air density 1,2877 kg/m3 1.2306 kg/m3 
Wind speed - - 
Wind direction - - 
Minimal sight distance* - - 

* The minimal sight distance of 3 km at December 21 (KNMI, 2018) is assumed to have no influence 
on the driving behavior and is thus taken out of consideration. Though, data shows that the sight 
distance is significantly lower during rainy or foggy days. Future research is needed to find the 
effect of heavy rainfall and fog on sight and driving behavior. 
 

To generate a baseline situation for the predictions, data has been collected representing 
the average situation in the Netherlands (Table 2.7). Weather data is being gathered by using 
KNMI weather statistics of 2018 (KNMI, 2018). The average weather scenario in the Netherlands 
has been determined by taking the average namely winter solstice (or midwinter, at December 
21) and summer solstice (midsummer, at June 21) and will be used in the calculations in this 
research without further note. In order to assess the boundaries of the weather on the energy 
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consumption, another imaginary scenario has been taken into consideration: a very cold winter 
day. 

Air density has been calculated by using equation 20: 
 
 ρhumid air = pdMd+pvMv

RT
  [20] 

 
With pd and pv being the partial pressure of dry air and the partial pressure of water vapor (in 
Pa), Md being molar mass of dry air which is 0,028964 kg/mol and Mv being the molar mass of 
water vapor which is 0,018016 kg/mol. R is the universal gas constant (8,314 J/(K*mol)) (Omni 
calculator, n.d.). 

Urban wind could be either measured or calculated using Computational Fluid 
Dynamics (CFD). Measuring wind (real-time) would require measurement tools at a large 
quantity of streets, which has practical and financial implications. By using CFD, in theory it 
would be possible to calculate the wind on a microscale. Research showed that the accuracy of 
CFD simulations is close to real measurements. However, creating such models to predict wind 
is very time consuming and would require a lot of computational power (Blocken, 2014). 

As wind in urban situations is coming from all directions due to the presence of buildings, 
Bert Blocken (full professor in urban physics and wind engineering at the Eindhoven University 
of Technology) advised to consider wind speed in these situations to be 0 m/s. The effect of 
wind will be calculated in the individual calculations though, for eventual future use. Further 
research is needed to completely cover the effect of wind in real situations. 
 
2.6 Modelling the influence of infrastructural design elements 

The infrastructural design of a road and its posted speed limits influence the speed profile of a 
vehicle and thus the energy consumption, according to equation 9. By modelling individual 
infrastructural elements, their influence on the energy consumption could be measured. The 
following subchapters describe how infrastructural design could possibly influence the energy 
consumption through various design elements. 
 
2.6.1 Road type and rolling resistance 

The road surface and its material strongly influence the rolling resistance of a vehicle while 
driving. Different road types and surface materials have different rolling resistance coefficients. 
Next to this, amongst others the size, structure and material of the tires also influence the rolling 
resistance, as well as weather influences. Michelin (2003) researched the effect of changing black 
tires with green tires and found a decrease in rolling resistance of about 30%, resulting in 4% 
lower total fuel consumption. To lower extent, even the driving speed reduces the rolling 
resistance. Finally, the more cars pass a certain road link, the more the road wears down and 
the profile loses height, reducing the rolling resistance of older asphalt (Goubert and Sandberg, 
2016). Good to mention is the fact that most cars also perform better on noise reduction when 
having a lower rolling resistance (Goubert and Sandberg, 2016; Ejsmont et al., 2016). Wang et al. 
(2017) found rolling resistance coefficients for different roads under different temperatures 
through coasting down tests (Figure 2.8, Wang et al., 2017). These tests have been conducted by 
using an adapted Volkswagen Lupo 3L.  
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Figure 2.8 Rolling resistance coefficient for different temperatures and road types 

Different research has been done into tire rolling resistance. Many research projects are 
done in the PERSUADE project. Together, different researchers conducted a very extensive 
research project in various European countries on rolling resistance of tires, comparing many 
different tires on different road types (Ejsmont et al., 2015; Ejsmont et al., 2016; Ejsmont et al., 
2017; Goubert and Sandberg, 2016; Sandberg et al., 2013 and Bendtsen, 2015). They found similar 
results to the Michelin (2003) research. Many drum tests with different drum profiles have been 
done, as well as real road tests. According to Groenendijk (2010) and Ejsmont et al. (2015), the 
DAC and PERS drum profiles are the most similar to pervious concrete, the material most often 
used for Dutch highways (Rijkswaterstaat, n.d.). When combining the results from previous 
research, the rolling resistance of a BMW i3 on pervious concrete would follow the following 
equation: 
 
 𝑓𝑓𝑟𝑟,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0,0118 − 0,00013 ∗ 𝑇𝑇 [21] 

 
Where fr,pervious concrete is the rolling resistance coefficient on pervious concrete and T is the 
temperature in ℃. The equation assumes that the vehicle uses ECOPIA EP500 tires, the 
standard tires for the BMW i3 (BMW, 2018).  

Although it is hard to define an exact formula for the rolling resistance on all different 
roads in the Netherlands, Wang et al. (2017) made an estimation for different road types based 
on coasting down tests. When adapting this estimation to the situation in this thesis, the rolling 
resistance coefficient for all different road types in the Netherlands could be estimated (Figure 
2.9). 
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Figure 2.9 Rolling resistance coefficient of the BMW i3 for different road types and temperatures 

 
2.6.2 Road curvature 

In curved road sections, the maximum driving speed of a car is limited by the lateral 
acceleration. The lateral acceleration of a vehicle is being calculated by using the following 
formula (Wang et al., 2017): 
 
 𝑎𝑎𝑦𝑦 = 𝑣𝑣2

𝑅𝑅
  [22] 

 
Where ay is the lateral acceleration, v is the maximum speed which could be driven on the 
curved road segment, and R is the radius of the curve. The lateral acceleration of vehicles could 
usually reach 8 m/s2, though strongly reduces when the driving speed increases. According to 
driving tests by Reymond et al. (2001) the lateral acceleration would not surpass 7 m/s2 and drop 
to almost 1 m/s2 for highway driving (Figure 2.10). 
 

 
Figure 2.10 Lateral acceleration for different driving speeds 
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Based on the data given by Wang et al. (2017) and Reymond et al. (2001), a lateral 
acceleration profile has been conducted for all driving styles. The lateral acceleration does 
usually not reach the technical maximum of the vehicle; often drivers choose taking turns with 
a lower acceleration due to comfort reasons (Reymond et al., 2001). Figure 2.11 implies that the 
more aggressive the driving style, the faster a driver would drive through curved road sections. 
The different reductions in a curved road section relate to the higher energy consumption due 
to the required deceleration and acceleration. 
 

 
Figure 2.11 Assumed lateral acceleration for different driving speeds and styles 

 
2.6.3 Road slopes and hilly driving 

Slopes influence the energy consumption via the rolling resistance and the gravitational forces 
(equation 2 and 4). A higher slope leads to an increase of these gravitational forces, while the 
rolling resistance decreases. Liu et al. (2017) did an extensive research to the influence of road 
slopes on electric vehicle’s energy efficiency based on driving tests in Japan. One of the results 
found was that 75% of the total traveled distance had a grade of -1% to 1%, while 98% of the trips 
were in the range of -5% to 5%. The logarithmic regression models used by Liu et al. (2017) had 
a goodness of fit ranging from 0,616 to 0,726. Instead of modelling each individual slope, it 
assigned percentages of the trip distance to their matching road gradient categories. 
 
2.6.4 Traffic calming measures 

The speed profile for crossing a road bump depends not only on the driving style, but also on 
the type of road bump. Johnson and Nedzesky (2004) gathered data for the crossing speeds at 
different types of speed bumps. Although this thesis only considers passenger cars, it’s good to 
notice that the speed reduction of buses and service vans is significantly higher, thus having a 
larger influence on the energy consumption (Johnson and Nedzesky, 2004). Ahn and Rahka 
(2009) collected speed profiles for different speed humps and bumps as well based on GPS data. 
Gupta (2014) measured the effect of height of speed humps on speed reduction. Table 2.8 and 
Figure 2.12 show the different types of bumps concerned, and their estimated speed reduction. 
The selected speed bumps match the guidelines the Dutch CROW set up for traffic calming 
measures (Struyk Verwo Infra, n.d.). Struyk Verwo Infra (n.d.) also mentions that the speed 
reduction of speed bumps increases when the distance between multiple speed bumps 
decreases.  
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Table 2.8 Types of traffic calming measures 

Type Length Speed reduction 
Speed bump 30 cm 80% 
Watts speed hump (75 mm) 3,7 m 50% 
Watts speed hump (100 mm) 3,7 m 60% 
Seminole speed hump 6,7 m 40% 
Speed slot 6,7 m 20% 
Speed cushion 3,0 m 60% 

 

 
Figure 2.12 Different types of traffic calming measures 

Two ways of speed bump modelling have been distinguished. The first model used a 
speed profile which is as close to reality as possible, where a car should reach the desired speed 
reduction before the bump and starts accelerating after the bump. The second model is a 
simplification of this process, where only the centerline of the bump is considered the point 
where a speed reduction should be finished. Right after this speed reduction, the cars accelerate. 
A schematic overview of the two models is shown in Figure 2.13. An advantage of the second 
model is that it simplifies defining speed bumps in a larger network, because only one point for 
speed reduction is enough to calculate the energy consumption. Also, this second model doesn’t 
require the exact length of the bump, reducing the amount of data which is necessary for the 
prediction. Test runs resulted in very small differences between the models. Calculations 
starting right at the beginning of the bump and ending at the end of the bump showed 
differences under 3% in extreme conditions. Measurements by Gupta (2014) also showed similar 
speed profiles to the second modeling method. Due to the higher efficiency of the second model, 
this is considered the best model to use when predicting larger networks. 
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Figure 2.13 Schematic representation of the two used traffic calming measure models 

 
2.6.5 Signalized intersections 

Signalized intersections could be considered as stop-and-go situations, similar to the traffic 
calming measures. A difference is the speed reduction, which could be expressed in percentage 
of the original speed for traffic calming measures, whereas the speed reduction at traffic lights 
will be 100%. Another difference is the probability of this speed reduction. For traffic calming 
measures, one always needs to reduce its speed, while for signalized intersections this depends 
on the state of the traffic light. For green lights, the influence of traffic lights is considered to be 
zero since a driver doesn’t need to change its behavior. For amber and red lights, the vehicle is 
considered to stop and decelerate to 0 km/h. How this deceleration affects the energy 
consumption has been calculated. Next to this, the waiting time also has an influence on the 
energy consumption, since auxiliary systems such as the climate system will keep on running. 
The influence of this waiting time is therefore strongly related to the ambient temperature. To 
cover this effect, different scenarios have been calculated. 
 
2.7 Modelling the influence of traffic intensity 

Congestion has many negative externalities. Smeed (1949) proposed his Smeed’s law stating that 
traffic fatalities increase when traffic congestion increases. Barth and Boriboonsomsin (2009) 
mention that traffic instability could occur at high traffic intensities, resulting in significant 
speed variations of individual vehicles. As this traffic instability might increase the energy 
consumption of the individual vehicles, it’s interesting to measure the influence of different 
traffic intensities on individual vehicles’ energy consumptions. The following subchapters will 
discuss the relevant literature to do so. 
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2.7.1 Measuring traffic flow 

A common means to measure the amount of traffic is by measuring the traffic flow (Immers and 
Logghe, 2002). Traffic flow is a macroscopic traffic variable, however it has its influence on the 
microscopic behavior of vehicles (Barth and Boriboonsomsin, 2009). Its equation is: 
 
 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

𝑛𝑛𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡1 − 𝑡𝑡0

 [23] 

  
Where t1-t0 is representing a time interval (usually in hours) and nvehicles is the counted number 
of vehicles between t0 and t1. 

Another method which is noteworthy to mention is calculating the traffic density. 
 
 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑1−𝑑𝑑0
  [24] 

 
Where d1-d0 is representing a road segment length in km and nvehicles is the counted number of 
vehicles between d0 and d1 (Immers and Logghe, 2002).  
 
2.7.2 Level of Service  

One common way to categorize traffic flow is by using the level of service (LOS) (C/CAG of San 
Mateo County, 2005). The level of service describes the operational conditions of a road 
segment. It enables traffic engineers to compare different traffic scenarios based on the traffic 
intensity, which will give insight in the traffic situation (Mathew and Rao, 2007; C/CAG of San 
Mateo County, 2005). The traffic intensity could be calculated by dividing the traffic flow by the 
capacity of a road segment. 
 
 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

Traffic flow
Capacity

 [25] 

 
Typical traffic intensity values for different levels of service are given in Table 2.9 (C/CAG of San 
Mateo County, 2005). Barth and Boriboonsomsin (2009) state that the higher a LOS, the higher 
the influence of driving style on the energy efficiency.  
 
Table 2.9 Typical traffic intensity values for different levels of service 

LOS A B C D E F 
Traffic intensity <0,6 0,6-0,7 0,7-0,8 0,8-0,9 0,9-1 1> 

 
The capacity depends on the type of road, the number of lanes, the speed and other 

infrastructural elements. While it’s hard to calculate the capacity for each road segment in the 
entire country, standardized values have been set up (Rijkswaterstaat, 2018). The LOS of a road 
increases with an increasing traffic intensity, though typical traffic intensity values for each LOS 
level differ per road type and situation.  

A typical behavior in the speed flow curves for different traffic intensities, is that 
multilane streets can handle higher intensities way better than single lane streets (Figure 2.14). 
Speeds at multilane streets generally stay almost constant until traffic intensity values of 0,65 
and higher, while single lane streets drop in average speed right after the intensity increases 
(Rijkswaterstaat, 2018). Fellendorf and Vortisch (2010) found that aggressive drivers tend to 
drive with faster average speeds in high traffic intensities than eco-drivers. Though Barth and 
Boriboonsomsin (2009) state that for single lane streets, the aggressive driver adapts his speed 
to the slower eco-driver. 
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Figure 2.14 Speed flow curve of a motorway for different intensities and road layouts 

 
2.7.3 Implications of traffic flow on energy consumption 

Immers and Logghe (2002) describe the acceleration behavior in real traffic conditions as 
follows: 
 
 𝑎𝑎𝑎𝑎(𝑡𝑡 + 𝑇𝑇𝑟𝑟) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ ∆𝑣𝑣𝑎𝑎(𝑡𝑡)

𝑠𝑠𝑎𝑎(𝑡𝑡)2
  [26] 

 
Where the acceleration of the following car is dependent on the reaction time of the vehicle (Tr) 
and the sensitivity to react to the driver in front (Sens). The acceleration is calculated by dividing 
the difference in speed between the driver and the driver in front of him by the squared distance 
between the driver and the driver in front. Therefore, the closer two cars are to each other, the 
larger the acceleration. Considering the traffic density equation, which shows the amount of 
traffic per distance, the higher the traffic density, the lower the distances between cars and thus 
the higher the accelerations on a road segment. Higher accelerations would increase the tractive 
forces of cars significantly and therefore, the traffic flow is ought to have an impact on the 
energy consumption of cars. 

The effect is well visible in congested roads, in phenomena called shockwave traffic jams 
(Sugiyama et al., 2008). Measurements could be seen in Figure 2.15 (Sugiyama et al., 2008). The 
results show the sudden loss in speed on a circular circuit due to the shockwave effect. What’s 
also visible is that all cars have a different behavior regarding their braking behavior. Some tend 
to slow down more aggressively than others. 
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Figure 2.15 Individual vehicle traces 

 
2.7.4 Decreasing time headway and platoons 

Velocity oscillations proved to affect the energy consumptions within cars significantly. One 
trend in automotive industry is creating higher traffic flows by creating platoons to reduce 
congestion and thus velocity oscillations (Hoogendoorn and Knoop, 2013). The traffic flow could 
be calculated by using equation 27: 
 
 𝑄𝑄 = 𝑣𝑣

𝑙𝑙+𝑇𝑇𝑇𝑇𝑇𝑇∗𝑣𝑣
  [27] 

 
where Q is the vehicle flow (in s-1), v is the velocity (in m/s), l is the length of the vehicle (in m) 
and THW is the time headway (in s). 

As Schoenmakers (2018) states, the THW of vehicles will likely decrease with an increasing 
number of vehicle automation (such as platoon management) and in future situations fully 
automated vehicles. Another advantage of platoon driving is that it enables vehicles to drive in 
each other’s slip stream, resulting in lower aerodynamic forces. In highway situations, this might 
reduce the energy consumption significantly (Heijne, 2014). 
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Chapter 3. Methodology 
 
 

Chapter 3 will emphasize the methods which have been used to answer the research question and 
sub-questions. The question this research aimed to answer was: 
 
To what extent do driving style, environmental variables, infrastructural design and traffic 
intensity have an effect on the energy efficiency of electric vehicles and how could route 
optimization reduce the energy consumption within a driver’s time constraints? 
 
With its sub-questions: 
What is the effect of different driving styles on the energy efficiency of electric vehicles? 
Which environmental variables do have an effect on the energy efficiency of electric vehicles and 
to what extent? 
What is the influence of different infrastructural elements on the energy efficiency of electric 
vehicles? 
What is the effect of traffic intensity (intensity/capacity) on the energy efficiency of electric 
vehicles? 
Can route optimization and style optimization make more energy efficient routes within a driver’s 
time constraints, and if yes, to what extent? 
To what extent does this predicted efficiency correspond to reality? 
 
 
3.1 Research methodology 

The research started with a theoretical literature review. This review aimed to lay a foundation 
of fundamental knowledge in electric driving, traffic modelling and energy prediction. As the 
University of Alabama (n.d.) states: “Often [a theoretical review] is used to help establish a lack 
of appropriate theories or reveal that current theories are inadequate for explaining new or 
emerging research problems”. The theoretical review is therefore perfect to create a 
fundamental base from which new solutions could be built, which fits this research seamlessly. 
Different existing theories have been reviewed, after which the relationships between theories 
about electric driving, energy prediction and traffic modelling have been found.  
 After the theoretical review, a systematic review has been conducted. Systematic reviews 
focus on causal research questions in the form “to what extent does x contribute to y”. According 
to the University of Alabama (n.d.), “[the systematic review] consists of an overview of existing 
evidence pertinent to a clearly formulated research question, which uses pre-specified and 
standardized methods to identify and critically appraise relevant research, and to collect, report, 
and analyse data from the studies that are included in the review”. The method is therefore able 
to partially answer sub-questions 1, 2 and 3.  

In order to add strength to the results from the systematic literature review, the 
influences of individual elements related to the first three sub-questions have been calculated. 
This has been done by using an adapted CMEM model, mentioned to as energy consumption 
model in this research. This model has been based upon many researches and has a proven 
efficiency with an error smaller than 5% (Wang et al., 2017). The individual calculations have 
been made by using two techniques. First, each individual element has been set up manually 
and calculated manually, by manually creating the speed profiles and use these as an input for 
the physical model. Secondly, the individual elements have been modeled in VISSIM. Speed 
profiles have been taken as an output of the simulations, which again are used as input for the 
energy consumption model. All the parameters which form the input of each VISSIM model are 
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modeled based upon theoretical and systematic literature review to create a microsimulation 
which accurately represents reality. The combination of these two calculations will result in an 
overview of the influence of different individual elements on the energy consumption and 
therefore answer the first sub questions. A limitation of this method is that some influences, 
such as temperature and wind, couldn’t be modeled in VISSIM due to software limitations, 
which is why they are only researched using manual calculations.  

After calculating the individual influences, a case study has been performed in 
Nieuwegein, Utrecht (the Netherlands). A traffic model of the south-western part of Nieuwegein 
has been created by using VISSIM. The model has an area of about 10 km2 and contains all 
individual elements, such as different road types, traffic calming measures and slopes. By 
performing this case study, the sequence of different elements could be tested. Different 
scenarios have been created. After performing a baseline study, different traffic intensities, 
weather scenarios and driving style compositions have been tested. By doing so, the answer to 
sub-questions 1 and 2 got more accurate and complete, while simultaneously answering sub-
question 3. 

Sub-question 4 has been tackled by creating a generalized cost model. Generalized cost 
is a common tool to evaluate different economic options (Langbroek et al., 2016) and is also 
used a lot in travel research (Wang et al., 2019; Long et al., 2019; Tang et al., 2018). Route 
optimization in VISSIM is also done by using generalized cost models. The model is created by 
using the most recent data about wages, charging costs, CO2-emissions and CO2-emission 
allowances and uses theory from other models in travel research as a foundation. The different 
scenarios calculated in the Nieuwegein case have been optimized based on different trip 
purposes and income levels. Next to this, the influence of future CO2-emission allowance prices 
has been reviewed. The generalized cost model shows how different routes and driving styles 
are considered to be optimal for different scenarios, and therefore answers sub-question 4. 

To validate the model, three validation methods have been used. First, dynamometer 
measurements have been used to validate the physical model. The dynamometer research made 
use of the same vehicle type and has results for different driving cycles and weather conditions. 
Secondly, 30 driving tests in Nieuwegein have been conducted. The tests are conducted under 
average Dutch circumstances and are therefore a valid way to validate the calculations. Finally, 
the calculations are validated against the technical specifications of BMW itself, to compare the 
outcome of real driving tests with the information BMW provides. The threefold validation 
answered sub-question 5. 

The research closes with a conclusion and a critical discussion, reflecting on the results 
and their relevance for both science, enterprises and society. The limitations of this research 
have been discussed and recommendations for follow-up research have been made. 
 
3.2 Data collection 

As this research aims to provide insight in the influence of different urban characteristics on the 
energy consumption, urban data has been collected which is as close to reality as possible. Since 
the validation will be done in the Netherlands, a strong preference for Dutch data was present. 
Finally, as the research should be reproducible, open data had the preference over private data 
sources. The data collected could be categorized in four categories: 

1. Vehicle data 
2. Data to calculate the influence of individual characteristics 
3. Data to model the Nieuwegein case study 
4. Data to validate the model 

 
First, vehicle data has been collected by using technical data provided by BMW (BMW, 2018). 
In depth data about the vehicles which are being used for the driving tests has been gathered 
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by using internal Sweco information about their vehicles, such as the size of the tires and the 
range of the vehicles. By using information of Argonne National Laboratory (2015), the 
powertrain efficiency has been determined.  
 Secondly, data has been gathered to calculate the influence of individual characteristics. 
This data consists of weather data and infrastructural data. Weather data is gathered from the 
KNMI (2018). They cover the necessary weather data for this research. Infrastructure data is 
gathered by using many sources. First, rolling resistance has been researched by reviewing 
results from coasting down tests. Wang et al. ( 2018) found rolling resistance coefficients for 
various road types at ambient temperatures between 0 and 40 degrees Celsius. Wang et al. (2017) 
also specified minimum, maximum and nominal speeds for these road types. Ejsmont et al. 
(2016) tested multiple car tires in laboratories and on the road, amongst which the Bridgestone 
ECOPIA EP500 which are used at the BMW i3. These results have been combined with data 
from Rijkswaterstaat (2018) about the Dutch road categories. Road curvature has been 
calculated by using satellite photos from Google Maps. The slope of each road segment has been 
calculated by using data from the Actueel Hoogtebestand Nederland, which is a map showing 
the altitude of the Netherlands. The data, which is openly available via a digital map, contains 
the altitude for every square meter. The most recent altitude data for Nieuwegein is available 
through the AHN3 dataset and originates from 2014 (Actueel Hoogtebestand Nederland, n.d.). 
The layout of traffic calming measures and signalized intersections has been based upon the 
literature review.  
 To create a realistic traffic model of Nieuwegein, data has been gathered about the 
infrastructure and the traffic intensity. Data about the road network has been collected by both 
using satellite data as well as doing a site visit. Input for the traffic lights has been gathered from 
an internal Sweco file in VISVAP and manually edited in Notepad++. Data for creating public 
transport lines is openly available. For this area, the public transport map of Syntus Utrecht 
(2018) has been used. To create realistic traffic volumes, traffic count data has been used. Both 
internal counts by Sweco, as well as data from VRU2015 (Huisman, 2018).  
 Finally, different sources are consulted to be able to validate the results. As the 
validation is done in threefold, three data sources have been used. First, the dynamometer 
results from the D3 database of Argonne National Laboratory (2015) are used to validate the 
model against standard driving cycles. Secondly, BMW data is used to compare the results to 
the information provided by BMW. This data is originated from the same dataset as the data in 
category 1. Finally, own measurements are done by using two BMW i3 94Ah’s from 2017 and 
2018. Speed measurements have been performed by using a Transystem GL-770 GPS data logger. 
The logger can log data on a 5 Hz output rate, and measures amongst others speed, distance, 
elevation, latitude and longitude.  
 
3.3 VISSIM modelling methodology 

After predicting the energy consumption during different situations based on mathematical and 
physical formulas, the different scenarios are modeled in the microscopic traffic simulator 
VISSIM. This subchapter will elaborate on the modelling work done in this simulator. First, 
different settings will be discussed. By manually editing these settings, an attempt is made to 
simulate realistic traffic behavior based on the earlier findings of this research. Apart from the 
individual driving behavior, these settings also include the way different infrastructural 
situations are modeled, as well as how peak hour traffic is being simulated.  
 



 Donkers, A.J.A. 39 Methodology 
______________________________________________________________________________________________________________________________________________________ 

 

3.3.1 Driving behavior modelling 

As discussed earlier, driving styles in VISSIM are modeled through a system of vehicle classes 
(e.g. ‘truck’), vehicle types (e.g. ‘heavy truck’) and driving behavior (e.g. ‘heavy truck behavior’). 
For this research, the following structure is being used: 
 

Aggressive driving behavior

Eco-car

Eco-driver Aggressive driver MAggressive driverNormal driver Normal driver MEco-driver M Bus

BusNormal car Aggressive car

Tram

TramEco-car M Normal car M Aggressive car M

Eco-driving behavior Normal driving behavior Bus behavior Tram behavior

Vehicle class

Vehicle type

Driving behavior
 

Figure 3.1 Structure of vehicle classes, types and behaviors 

The structure contains the three driving behaviors, as well as a bus and tram behavior. 
For public transport, the standard VISSIM behavior for bus and tram has been used, because 
the little details in microscopic driving behavior of those few public transport vehicles is not 
expected to have a significant influence on the energy consumption of other vehicles. The other 
three driving behaviors are all related to two vehicle types and classes. The ‘eco-driver’ and the 
‘eco-driver M’ both have exactly the same settings, except for their color in the visualization. 
Though, the ‘eco-driver M’ class relates to the cars which follow a static, predefined route in the 
model (and thus could be used for the measurements), while the ‘eco-driver’ follows a dynamic 
route and could not be used for measurements. This method largely decreases the size of the 
data output of VISSIM and is therefore preferred over using a single vehicle type and class to 
model a driving style. 

The driving behavior consists of multiple settings, of which the most relevant ones will 
be discussed in the next subchapters. 
 
3.3.1.1 Desired speed 
One of the biggest differences of the three different driving styles is the difference in driving 
speed. This could be best modeled by using different desired speed profiles for each driving 
style. In VISSIM, each individual has a specific desired speed, around which the real driving 
speed will oscillate. The oscillations could happen due to the influence of other traffic, or due 
to its own speed oscillations. Desired speed distributions are connected to a link (street) and 
are often related to the design speed of a road. For a single vehicle type, one desired speed 
distribution is made, which is a distribution of different possible desired speeds on a certain 
road. These curves are very close to normal distributions with the lowest value slightly below 
the design speed and its highest value somewhat higher (Figure 3.2). The distribution implies 
that even when using only a single driving style, the software could still simulate small 
differences in driving behavior in order to create a more realistic scenario. To create different 
driving behaviors, three different desired speed distributions have been made for each situation. 
An example of the desired speed distributions for different driving styles could be found in 
Figure 3.2. The lowest and highest value of the normal driving behavior are extracted from 
VISSIM, and the lowest and highest value of the eco-driver and the aggressive driver are the 
same values, plus or minus five percent. On average, the desired driving speed is 5 percent 
higher than the design speed, which is the legal driving speed in the Netherlands. Each vehicle 
chooses a value for its desired speed based on the distribution of its driving style this position 
is the same for the entire simulation and is also used for the desired speed distributions at other 
streets. Thanks to this, the fastest car of the normal driving group will be the fastest car on all 
50 km/h roads, but also on all 30 km/h roads. 
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Figure 3.2 Desired speed distributions for a 50 km/h road 

 
3.3.1.2 Acceleration and deceleration 
A second measure to define driving behavior is the acceleration and deceleration behavior. 
Earlier in this thesis, different values for acceleration and deceleration were given for the 
different driving styles. Based on these values, the acceleration and deceleration profile of other 
vehicles, such as the TU/e’s Lupo EL (Wang et al., 2017) and the maximum acceleration of a 
BMW i3 based on its 0-100 km/h time (Automobile Catalog, n.d.), maximum and desired 
acceleration and deceleration profiles have been created for the three driving styles (Figure 3.4). 
These profiles have an average, a maximum and a minimum value for each driving speed (Figure 
3.3). The shape of the profile is extracted from VISSIM. As could be seen from the graph, the 
acceleration is higher for lower driving speeds. This corresponds to measurements done with 
the TU/e’s Lupo EL. The vehicle’s powertrain limits the acceleration and deceleration at higher 
speeds (Wang et al., 2017).  
 

 
Figure 3.3 Desired acceleration for eco-drivers 
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Figure 3.4 Average desired acceleration for different driving styles 

 
3.3.2 Infrastructure modelling 

Infrastructure in VISSIM is modeled by mainly using links and connectors, which represent the 
basic street network. However, for some infrastructural elements, such as signaled intersections, 
other additional VISSIM tools have to be used. Some infrastructural elements and their effects, 
such as the reduced speed at traffic calming measures or when driving on a curved road segment 
have no standard VISSIM tool and are modeled in a different way. The next subchapters discuss 
the modelling process of these elements. 
 
3.3.2.1 Signalized intersections 
The signalized intersections, or traffic lights, are being modeled by using different VISSIM tools. 
For both three-legged and four-legged crossings, signal heads and detectors are being used for 
each separate lane. Fixed numbers for the signal heads and detectors are used, which relate to 
turning right, left or going straight. Each traffic light is controlled by using a primary, secondary 
and tertiary detection loop. By using VISVAP 2.16, the traffic controls have been created. A 
standard control file setup by Sweco has been used as a base file, after which some of the control 
has been manually adapted based on expert judgement.  
 Some intersections contain bus or tram lanes and have bus and tram priority in the 
traffic light controls. Again, this has been controlled by using VISVAP 2.16. For busses, the same 
three detection loops are places similarly to the ones at normal lanes. When a bus enters a 
junction with bus priority, simply all other signals will turn red for a fixed time period after the 
bus have left the third detector. For trams, only two detectors have been used. The first detector 
is placed 30m before the tram’s signal head and will turn the signal head green when triggered. 
The second one is placed after the intersection and will detect when the tram completely 
crossed the intersection. After this, the standard signal control will continue. The detector 
layout is visualized in Figure 3.5 and Figure 3.6. It goes without saying that there’s no difference 
in settings for the different driving behaviors. 
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Figure 3.5 Detector layout for cars, busses and trucks 

 
Figure 3.6 Detector layout for trams 

 
3.3.2.2 Traffic calming measures 
The different traffic calming measures, which have been discussed earlier in this thesis, have no 
specific tool in VISSIM. Therefore, reduced speed areas are used. A reduced speed area is an 
area in which a different desired speed profile could be used, to create a temporary area of 
reduced speed. The vehicles decide when they start decelerating based on their own speed, the 
speed at the reduced speed area and their desired deceleration, but always reach the reduced 
speed at the exact start of the reduced speed area. Each vehicle will keep this reduced speed 
when driving in the reduced speed area and start accelerating after the reduced speed area. This 
way of modelling traffic calming measures is similar to model 1, as being discussed Figure 2.13 
in subchapter 2.6.4. When creating very short reduced speed areas (in order to approach model 
2 of Figure 2.13), most cars skip the speed reduction. This is caused due to the fact that time in 
VISSIM is a discrete variable, with a minimum interval of 0,1 s. For this reason, all traffic calming 
measures in the Nieuwegein model have been modeled with their real length, with a minimum 
of 1 m.  

Three different desired speed profiles have been created for each traffic calming 
measure, related to the three driving styles. The values of these speed profiles are calculated as 
follows: 
 
 𝑣𝑣.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑣𝑣.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) [28] 
 𝑣𝑣.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑣𝑣.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) [29] 

 
3.3.2.3 Curved road sections 
For curved road sections, the reduced speed depends on the curve radius and diameter. As it 
would be time consuming to create different speed profiles for every single turn, some general 
profiles have been created based on the most occurring situations. The individual influence of 
these profiles on the energy consumption has been calculated in subchapter 4.3.2. These profiles 
are based on the radius and diameter of the curved road section. The length of the reduced 
speed area has been determined based on expert judgement. In general, shorter curves have 
shorter reduced speed areas.  
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Figure 3.7 Reduced speed area on a curved road segment 

 
3.3.2.4 Public transport 
Two types of public transport are being used in this research; bus and tram. Both are modeled 
by using public transport lines and public transport stops. They are used in the model to create 
random delays to the other traffic. In the Nieuwegein model, the tram track is completely 
separated from the normal road, though it crosses the road sometimes. The bus stops are 
sometimes placed on the normal road itself, or on separate bus lanes, as being visualized in 
Figure 3.8. Since the entire model is within the built-up area of Nieuwegein, all buses go first 
when leaving their bus stops. This causes the vehicles on the normal road to reduce their speed. 
 

 
 

 
Figure 3.8 Different bus stop configurations 

 
3.3.3 Excel model 

The energy consumption model has been implemented in an Excel script to quickly perform the 
energy prediction calculations. The excel file contains some sheets covering the different 
variables related to the environmental influence, auxiliary energy consumption, road types, 
rolling resistance and car performance. For the manual calculations of individual scenarios, such 
as a speed bump, different sheets have been created which could quickly simulate speed profiles 
of these elements. 

The major input of the model will be the speed profile, either created manually or 
extracted from VISSIM. The speed input is first corrected to exclude negative speeds (which 
sometimes occurred during standstill due to measurement inaccuracies). Afterwards, the 
acceleration at each timestep is calculated using: 
 
 𝑎𝑎𝑡𝑡 = 𝑣𝑣𝑡𝑡+1−𝑣𝑣𝑡𝑡−1

(𝑡𝑡+1)−(𝑡𝑡−1)
= 𝑣𝑣𝑡𝑡+1−𝑣𝑣𝑡𝑡−1

2
  [30] 

 
where t represents a timestep. 
 
An average speed is calculated at every timestep using: 
 
 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡 = 𝑣𝑣𝑡𝑡 + 0,5 ∗ 𝑎𝑎𝑡𝑡 [31] 

BUS STOP 

BUS STOP 

BUS STOP 

BUS STOP 
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The driven distance is calculated using: 
 
 𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑡𝑡−1 + 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡 ∗ �𝑡𝑡 − (𝑡𝑡 − 1)� = 𝑑𝑑𝑡𝑡−1 + 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡 [32] 

 
Since the model is instantaneous, for every t, the forces are being calculated using the 

average speed at every time interval t. The tractive and regenerative powers are being calculated 
using the driving speed. To calculate the energy discharged and charged by the tractive power 
and regenerated power, these powers are multiplied by the powertrain efficiency and the 
regenerative braking efficiency first. The last efficiency is related to the different driving styles. 
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Chapter 4. Individual elements 
 
 
The influence of the individual elements on an EVs energy consumption has been tested 
extensively. Chapter 4 highlights these influences. Results are shown both qualitatively and 
quantitatively. By both performing manual calculations and using VISSIM, the influence of driving 
style, environmental variables and infrastructure has been calculated. This chapter covers these 
influences in this respective order. 
 
 
4.1 Influence of elements related to driving style 

In the following subsections the influence of elements related to driving style will be 
emphasized. As discussed in the literature review, speed differences, preferences for 
acceleration and deceleration and speed oscillations typify one’s driving style. Therefore, the 
influence of each of these individual characteristics will be discussed. 
 
4.1.1 Speed differences 

First, speed differences have been researched. The speed a driver drives on a road segment is 
often being regulated by law, defined as the posted speed limit. Different standardized posted 
speed limits occur in the Netherlands, often related to the design of a road (design speed). As 
could be seen in Table 4.1, the most efficient driving speed is 30 km/h. The higher the speed, 
the higher the energy consumption and the bigger the differences between the different driving 
styles (Figure 4.1). This is caused by the dominant aerodynamic drag force at high speeds. 
Interesting is the fact that at very low speeds, the energy consumption rises, and that eco-driving 
is less efficient as aggressive driving. The cause of this phenomena is the use of climate control 
(which uses energy every second). At very slow driving speeds, the time it takes a vehicle to 
drive 500 m is so high that the influence of the climate control is dominant. As the eco-driver – 
with his lower speed – takes longer to drive 500 m than the aggressive driver, the eco-driver will 
use more energy. Since most of the roads in the Netherlands has a design speed of 30-km/h or 
faster, one could state that for most design speeds, eco-driving is the most energy-efficient 
driving style. 
 Figure 4.2 shows the percentual differences per driving style. For desired speeds of about 
30 km/h, the energy consumption is not influenced by the driving style anymore. This is the 
speed where the auxiliary power and the driving style differences extinguish each other’s effects. 
Though, one should notice that this point is strongly influenced by the auxiliary power 
consumption, meaning that during extremely cold conditions (and thus a high auxiliary power 
consumption), the point would occur at higher speeds. In strong Dutch winter conditions, this 
point would only be reached at 50 km/h. 
 
Table 4.1 Energy consumption after driving 500 m 

Desired speed 
[km/h] 

Eco-driving  
 

Normal driving  Aggressive driving  

15 0,0563 kWh 
102,7% 

0,0548 kWh 
100% 

0,0535 kWh 
97,6% 

30 0,0437 kWh 
100,9% 

0,0433 kWh 
100% 

0,0431 kWh 
99,5% 

50 0,0451 kWh 
98,3% 

0,0459 kWh 
100% 

0,0469 kWh 
102,2% 



 Donkers, A.J.A. 47 Individual elements 
______________________________________________________________________________________________________________________________________________________ 

 

60 0,0489 kWh 
97,0% 

0,0504 kWh 
100% 

0,0520 kWh 
103,2% 

80 0,0605 kWh 
95,1% 

0,0636 kWh 
100% 

0,0668 kWh 
105,0% 

100 0,0768 kWh 
93,8% 

0,0819 kWh 
100% 

0,0872 kWh 
106,5% 

130 0,109 kWh 
92,3% 

0,118 kWh 
100% 

0,127 kWh 
107,6% 

 

 
Figure 4.1 Energy consumption for different desired speeds 

 
Figure 4.2 Percentual differences in energy consumption for different desired speeds 
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4.1.2 Acceleration and deceleration 

Table 4.2 shows the energy consumption during acceleration for different levels of 
aggressiveness of acceleration. The measurement starts at the moment the acceleration process 
starts and ends immediately when the desired speed is reached. It shows that for the full 
acceleration process, the most aggressive acceleration is more energy efficient than the eco-
acceleration. Especially at high speeds, the more aggressive the acceleration, the lower the 
energy consumption. Though, the driven distance of the eco-acceleration is way bigger than the 
aggressive acceleration, since the process took longer. At high speeds, the driven distance of the 
eco-acceleration could be 100% higher than the aggressive one. Therefore, a second way of 
measuring the energy consumption during acceleration has been proposed, as could be seen in 
Figure 4.3. The results of this second model could be found in Table 4.3. 
 
Table 4.2 Energy consumption during different accelerations, model 1 

Speed [km/h] E for a = 2 m/s2  E for a = 3 m/s2  E for a = 4 m/s2  
0-15 0,0522 kWh 

103,2% 
0,0506 kWh 
100% 

0,0505 kWh 
99,8% 

15-30 0,0134 kWh 
101,5% 

0,0132 kWh 
100% 

0,0134 kWh 
101,5% 

30-50 0,0329 kWh 
103,1% 

0,0319 kWh 
100% 

0,0313 kWh 
98,1% 

50-60 0,0224 kWh 
104,2% 

0,0215 kWh 
100% 

0,0208 kWh 
96,7% 

60-80 0,0587 kWh 
104,1% 

0,0564 kWh 
100% 

0,0550 kWh 
97,5% 

80-100 0,0776 kWh 
105,0% 

0,0739 kWh 
100% 

0,0717 kWh 
97,0% 

100-130 0,157 kWh 
106,8% 

0,147 kWh 
100% 

0,142 kWh 
96,6% 

 

Normal acceleration

Eco-acceleration

Aggressive acceleration

Model 1 Model 2

 
Figure 4.3 Two ways of measuring the energy consumption during acceleration 
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Table 4.3 Energy consumption during different accelerations, model 2 

Speed [km/h] a = 2 m/s2  a = 3 m/s2  a = 4 m/s2  
0-15 0,00522 kWh 

97,9% 
0,00533 kWh 
100% 

0,00514 kWh 
96,4% 

15-30 0,0140 kWh 
97,9% 

0,0143 kWh 
100% 

0,0145 kWh 
101,4% 

30-50 0,0329 kWh 
98,5% 

0,0334 kWh 
100% 

0,0336 kWh 
100,6% 

50-60 0,0224 kWh 
97,0% 

0,0231 kWh 
100% 

0,0232 kWh 
100,4% 

60-80 0,0587 kWh 
98,3% 

0,0597 kWh 
100% 

0,0599 kWh 
100,3% 

80-100 0,0776 kWh 
98,2% 

0,0790 kWh 
100% 

0,0792 kWh 
100,3% 

100-130 0.157 kWh 
98,7% 

0.159 kWh 
100% 

0.159 kWh 
100% 

 
Although the eco-acceleration is slightly more efficient overall, the difference is still very 

small. This is logical. One the one hand, higher acceleration means higher acceleration forces. 
Though if the acceleration is multiplied by two, the acceleration time (so also the time these 
acceleration forces are active) is divided by two. Therefore, the acceleration itself has no effect. 
Though, these calculations are still based on a fixed speed acceleration. In practice, the 
aggressive driver will be driving a bit faster than the average, while the eco-driver will be driving 
a bit slower. If we consider this effect, and thus combine the influence of slight speed differences 
and acceleration differences, the results show more varied results. Table 4.4 shows an overall 
improvement of over 10% for eco-drivers compared to normal drivers, while aggressive drivers 
overall use 10% more energy for accelerating at all design speed levels. In Figure 4.4, these results 
are visualized.  
 
Table 4.4 Energy consumption during acceleration for different driving styles 

Desired speed [km/h] Eco-driving  Normal driving Aggressive driving 
0-15 0,0121 kWh 

85,2% 
0,0142 kWh 
100% 

0,0157 kWh 
110,6% 

15-30 0,0202 kWh 
87,4% 

0,0231 kWh 
100% 

0,0255 kWh 
110,4% 

30-50 0,0297 kWh 
88,9% 

0,0334 kWh 
100% 

0,0368 kWh 
110,2% 

50-60 0,0202 kWh 
91,4% 

0,0221 kWh 
100% 

0,0266 kWh 
120,4% 

60-80 0,0523 kWh 
87,9% 

0,0595 kWh 
100% 

0,0657 kWh 
110,4% 

80-100 0,0696 kWh 
88,7% 

0,0785 kWh 
100% 

0,0870 kWh 
110,8% 

100-130 0,140 kWh 
89,2% 

0,157 kWh 
100% 

0,174 kWh 
110,8% 
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Figure 4.4 Differences in energy consumption while accelerating  

Apart from differences in acceleration, aggressive drivers also tend to have a more 
aggressive decelerations style, as found in the literature review. The deceleration results (Table 
4.5 and Figure 4.5) show the total energy consumption during deceleration for the different 
driving styles. The results show an incredible increase in regen efficiency for eco-driving 
compared to aggressive driving. The difference grows at higher speeds, due to the higher 
influence of aerodynamic drag force on the aggressive driver at these speeds. At very low speeds, 
the absolute difference is lower, due to the high influence of the auxiliary energy. 
 
Table 4.5 Energy consumption during deceleration for Paux = 906 W 

Desired speed [km/h] Eco-driving  Normal driving Aggressive driving 

15-0 
-0,00143 kWh 
397,2% 

-0,00036 kWh 
100% 

0.000404 kWh 
-112,2% 

30-15 
-0,00591 kWh 
233,6% 

-0,00253 kWh 
100% 

-0,00027 kWh 
10,7% 

50-30 
-0,0147 kWh 
222,7% 

-0,0066 kWh 
100% 

-0,0012 kWh 
18,2% 

60-50 
-0,00985 kWh 
220,9% 

-0,00446 kWh 
100% 

-0,00076 kWh 
17,0% 

80-60 
-0,0251 kWh 
226,1% 

-0,0111 kWh 
100% 

-0,0014 kWh 
12,6% 

100-80 
-0,0308 kWh 
233,3% 

-0,0132 kWh 
100% 

-0,00028 kWh 
21,2% 

130-100 
-0,0550 kWh 
364,2% 

-0,0151 kWh 
100% 

0,0039 kWh 
-25,8% 
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Figure 4.5 Differences in energy consumption while decelerating with Paux=960 W 

Table 4.6 and Figure 4.6 shows the energy consumption during deceleration for lower 
auxiliary energy consumptions. The results show that the differences, especially for slow speeds, 
are more stable.  
 
Table 4.6 Energy consumption during deceleration for Paux = 350 W 

Desired speed [km/h] Eco-driving  Normal driving  Aggressive driving  
15-0 -0,00163 kWh  

171,6% 
-0,00095 kWh 
100% 

-0,00025 kWh 
26,3% 

30-15 -0,00545 kWh 
172,5% 

-0,00316 kWh 
100% 

-0,00102 kWh 
32,3% 

50-30 -0,0131 kWh 
174,7% 

-0,0075 kWh 
100% 

-0,0023 kWh 
30,7% 

60-50 -0,00867 kWh 
173,4% 

-0,00500 kWh 
100% 

-0,00148 kWh 
29,6% 

80-60 -0,0220 kWh 
178,9% 

-0,0123 kWh 
100% 

-0,0032 kWh 
26,0% 

100-80 -0,0268 kWh 
182,3% 

-0,0147 kWh 
100% 

-0,0028 kWh 
19,0% 

130-100 -0,0476 kWh 
191,2% 

-0,0249 kWh 
100% 

-0,0016 kWh 
6,4% 
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Figure 4.6 Differences in energy consumption while decelerating with Paux=350 W 

 
4.1.3 Speed oscillations 

VISSIM’s Wiedemann 74 model uses random accelerations and decelerations to create 
oscillations in the driving speed. With this behavior, the software tries to simulate realistic 
driving behavior, as the real driving speed would normally also oscillates a bit. The model 
chooses a random acceleration by multiplying a random value of an N(0,5; 0,15)-distribution by 
0,4. This leads to accelerations and decelerations of approximately 0,2 m/s2 (W. Moerland, 
personal communication, April 12, 2019). The effect of these oscillations has been calculated in 
Table 4.7. It shows energy consumptions for the measured speeds of 60 vehicles, compared to 
the energy consumption without oscillations of these vehicles (by using the average speed as 
driving speed). The results are an indication of the positive influence technological 
developments, such as cruise control, might have on the energy consumption.  
 First, manual calculations have been performed (Table 4.7), based on the speed profiles 
shown in Figure 4.7, Figure 4.8 and Figure 4.9. As could be seen in Figure 4.10, the speed 
oscillations don’t influence the eco-driver very much, while they do have a huge influence on 
the aggressive driver. The combination of a slightly higher speed with some small speed 
oscillations results in a fair increase in energy consumption.  
 
Table 4.7 Influence of speed oscillations on the energy consumption for different driving styles 

Oscillation Eco-driving Normal driving Aggressive driving 
Baseline,  
V=30 km/h,  
d=500 m 

0,0437 kWh 
100,9% 

0,0433 kWh 
100% 

0,0431 kWh 
99,5% 

0,1 m/s2 0,0427 kWh 
98,6% 

0,0434 kWh 
100,2% 

0,0444 kWh 
102,5% 

0,2 m/s2 0,0456 kWh 
105,3% 

0,0506 kWh 
116,9% 

0,0549 kWh 
126,8% 

0,3 m/s2 0,0492 kWh 
113,6% 

0,0592 kWh 
136,7% 

0,0663 kWh 
153,1% 
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Figure 4.7 Different speed oscillations for eco-driving 

 
Figure 4.8 Different speed oscillations for normal driving 

 
Figure 4.9 Different speed oscillations for aggressive driving 

 
Figure 4.10 Total energy consumption per driving style for high speed oscillations 
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After the manual calculations, the oscillations have been tested in VISSIM by using the 
Wiedemann 74 model (Table 4.8 and Figure 4.11). The output shows an average acceleration and 
deceleration of approximately 0,2 m/s2 and shows similar results to the manual calculations. 
The oscillations again have significant effects on the energy consumption of aggressive drivers. 
This proves the efficiency of cruise control and other driving assistance technologies in terms 
of energy savings. Another interesting result is the deviation in energy consumption within each 
driving style (Figure 4.12). For each of the three driving styles, cars are found that use over 0,0075 
kWh (although this refers to only one eco-driver compared to 9 aggressive drivers) and under 
0,0015 kWh.   

The Wiedemann 99 model doesn’t include these random speed oscillations. This model 
only contains speed oscillations in the car-following model, so that they only occur after a 
certain traffic intensity. 

 
Table 4.8 Effect of speed oscillations on energy consumption, VISSIM results 

Scenario 
- 50 m 

Eco-driving Normal driving Aggressive driving 

Average desired speed 8,510 m/s 8,897 m/s 9,388 m/s 
Average speed 8,465 m/s 8,853 m/s 9,458 m/s 
Lowest speed measured 7,558 m/s 7,603 m/s 8,428 m/s 
Highest speed measured 9,428 m/s 10,003 m/s 10,722 m/s 
Average acceleration 0,192 m/s2 0,208 m/s2 0,202 m/s2 
Average deceleration -o,205 m/s2 -0,191 m/s2 -0,179 m/s2 
Without oscillations 0,00439 kWh 

100,2% 
0,00438 kWh 
100% 

0,00438 kWh 
100% 

With oscillations 0,004438 kWh 
101,3 % 

0,005186 kWh 
118,4% 

0,005340 
121,9% 

 

 
Figure 4.11 Speed distribution for different driving styles with speed oscillations 
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Figure 4.12 Energy consumption for different driving styles due to speed oscillations 

 
4.2 Influence of elements related to environmental variables 

The second part of this chapter is dedicated to the influence of environmental variables on the 
energy efficiency of electric vehicles. Although many environmental variables exist and likely 
influence the energy consumption, three variables have been researched. First, the influence of 
temperature will be discussed, after which the influence of head- and tailwind will be analyzed. 
Finally, the increase in auxiliary energy due to the use of the lighting system on different 
moments of the day has been quantified. 
 
4.2.1 Temperature 

To measure the influence of temperature on the energy consumption, a single trip has been 
calculated in excel for different temperature scenarios, ranging from 0 °C to 35 °C. This has been 
done for driving 30 km/h and driving 130 km/h to compare the influence for slow and fast traffic. 
The calculations consider the use of the climate system, the influence of the temperature on the 
aerodynamic forces through the changing air density and the influence of the temperature on 
the rolling resistance. Although temperature might influence the efficiency of a vehicle through 
more variables, these three are likely to give a good insight, especially because the energy 
consumption of the climate system is so large. Further research is necessary to define the 
influence of these other factors.  

Table 4.9 and Figure 4.13 show the results of the 30 km/h calculations. The influence of 
temperature is significant, doubling the energy consumption at very low temperatures 
compared to the 20 °C scenario. The energy consumption at 20 degrees and at 0 degrees Celsius 
differ so much that the range is strongly related to the ambient temperature. 
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Table 4.9 Influence of ambient temperature on the energy consumption while driving at 30 km/h 

Scenario Eco-driving Normal driving Aggressive driving 
Baseline  

- V = 30 km/h 
- T = 12 °C 
- ρ = 1,230599 

0,0437 kWh 
100,9% 

0,0433 kWh 
100% 

0,0431 kWh 
99,5% 

T = 0 °C 0,0685 kWh 
158,2% 

0,0672 kWh 
155,2% 

0,0660 kWh 
152,4% 

T = 5 °C 0,0582 kWh 
134,4% 

0,0572 kWh 
132,1% 

0,0565 kWh 
130,5% 

T = 10 °C 0,0478 kWh 
110,4% 

0,0473 kWh 
109,2% 

0,0469 kWh 
108,3% 

T = 15 °C 0,0375 kWh 
86,6% 

0,0374 kWh 
86,4% 

0,0374 kWh 
86,4% 

T = 20 °C 0,0271 kWh 
62,6% 

0,0275 kWh 
63,5% 

0,0279 kWh 
64,4% 

T = 25 °C 0,0300 kWh 
69,3% 

0,0301 kWh 
69,5% 

0,0303 kWh 
70,0% 

T = 30 °C 0,0328 kWh 
75,8% 

0,0327 kWh 
75,5% 

0,0327 kWh 
75,5% 

T = 35 °C 0,0356 kWh 
82,2% 

0,0353 kWh 
81,5% 

0,0350 kWh 
80,8% 

 

 
Figure 4.13 Energy consumption for different ambient temperatures when driving at 30 km/h 

The effect of temperature is lower for higher speeds, as could be seen in Table 4.10 and 
Figure 4.14. Due to the high speeds, the time a vehicle is on a road segment is lower. Therefore, 
the climate system (which uses energy every second) has less time to consume energy. An 
interesting result, as this implies that different seasons might have different optimal routes. In 
heavy winters, these optimal routes are likely to be related to the fastest route, while in summer 
this might differ. 
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Table 4.10 Influence of ambient temperature on the energy consumption while driving at 130 
km/h 

Scenario Eco-driving Normal driving Aggressive driving 
Baseline  

- V = 130 km/h 
- T = 12 °C 
- ρ = 1,230599 

0,109 kWh 
92,3% 

0,118 kWh 
100% 

0,127 kWh 
107,6% 

T = 0 °C 0,122 kWh 
103,4% 

0,131 kWh 
111,0% 

0,140 kWh 
118,6% 

T = 5 °C 0,116 kWh 
98,3% 

0,126 kWh 
106,8% 

0,134 kWh 
113,6% 

T = 10 °C 0,111 kWh 
94,1% 

0,120 kWh 
101,7% 

0,129 kWh 
109,3% 

T = 15 °C 0,106 kWh 
89,8% 

0,115 kWh 
97,5% 

0,124 kWh 
105,1% 

T = 20 °C 0,101 kWh 
85,6% 

0,111 kWh 
94,1% 

0,119 kWh 
100,8% 

T = 25 °C 0,099 kWh 
83,9% 

0,108 kWh 
91,5% 

0,116 kWh 
98,3% 

T = 30 °C 0,097 kWh 
82,2% 

0,105 kWh 
89,0% 

0,114 kWh 
96,6% 

T = 35 °C 0,095 kWh 
80,5% 

0,103 kWh 
87,3% 

0,111 kWh 
94,1% 

 

 
Figure 4.14 Energy consumption for different ambient temperatures when driving at 130 km/h 
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4.2.2 Wind 

Wind has an influence on the aerodynamic drag force and is therefore influencing the energy 
consumption. Although wind won’t be taken into account in the Nieuwegein case study, it’s 
interesting to quantify the influence of different wind speeds in individual scenarios. 
Comparable to the temperature calculations, a 30 km/h (Table 4.11 and Figure 4.15) and a 130 
km/h (Table 4.12 and Figure 4.16) scenario have been tested. As could be seen for both scenarios, 
the relation between wind and energy consumption is non-linear. This could be explained by 
the quadratic relationship between wind speed and aerodynamic drag force. This also explains 
the enormous influence of high wind speeds on the energy consumption. In absolute terms, the 
influence of wind is higher for high speeds than for low speeds, though relatively the graphs are 
very similar. When the wind speed is the same as the driving speed and the wind is coming from 
the tailwind direction, the aerodynamic drag force will be 0N and therefore no influence of wind 
on the energy consumption will be present. 
 
Table 4.11 Influence of head- and tailwind on the energy consumption when driving at 30 km/h 

Scenario Eco-driving Normal driving Aggressive driving 
Baseline 

- v = 30 km/h 
- no wind 

0,0437 kWh 
100,9% 

0,0433 kWh 
100% 

0,0431 kWh 
99,5% 

Headwind, 100 km/h 0,128 kWh 
295,6% 

0,129 kWh 
297,9% 

0,131 kWh 
302,5% 

Headwind, 50 km/h 0,0723 kWh 
167,0% 

0,0728 kWh 
168,1% 

0,0734 kWh 
169,5% 

Headwind, 10 km/h 0,047 kWh 
108,5% 

0,0471 kWh 
108,8% 

0,0470 kWh 
108,5% 

Tailwind, 10 km/h 0,0411 kWh 
94,9% 

0,0407 kWh 
94,0% 

0,0403 kWh 
93,1% 

Tailwind, 30 km/h 0,0393 kWh 
90,8% 

0,0385 kWh 
88,9% 

0,0378 kWh 
87,3% 

 

 
Figure 4.15 Energy consumption for different wind speeds when driving at 30 km/h 
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Table 4.12 Influence of head- and tailwind on the energy consumption when driving at 130 km/h 

Scenario Eco-driving Normal driving Aggressive driving 
Baseline 

- v = 30 km/h 
- no wind 

0,109 kWh 
92,3% 

0,118 kWh 
100% 

0,127 kWh 
107,6% 

Headwind, 100 km/h 0,296 kWh 
250,8% 

0,312 kWh 
264,4% 

0,328 kWh 
278,0% 

Headwind, 50 km/h 0,189 kWh 
160,2% 

0,202 kWh 
171,2% 

0,214 kWh 
181,4% 

Headwind, 10 km/h 0,123 kWh 
104,2% 

0,133 kWh 
112,7% 

0,142 kWh 
120,3% 

Tailwind, 10 km/h 0,097 kWh 
82,2% 

0,105 kWh 
89,0% 

0,113 kWh 
95,8% 

Tailwind, 50 km/h 0,0564 kWh 
47,8% 

0,0615 kWh 
52,1% 

0,0671 kWh 
56,9% 

Tailwind, 100 km/h 0,0301 kWh 
25,5% 

0,0319 kWh 
27,0% 

0,0334 kWh 
28,3% 

Tailwind, 130 km/h 0,0273 kWh 
23,1% 

0,0270 kWh 
22,9% 

0,0268 kWh 
22,7% 

 

 
Figure 4.16 Energy consumption for different wind speeds when driving at 130 km/h 

 
4.2.3 Daytime and nighttime driving 

A final environmental influence is the difference of daytime and nighttime driving. Four 
scenarios have been tested, differentiating in day and night and in LED and conventional 
lighting systems. The results are shown in Table 4.13 and Figure 4.17. Although both the absolute 
and relative effects show very little difference, it is visible that LED lighting could potentially 
save 1-2% of energy. For an average driver, driving 13.000 km/year, this would save about 20 
kWh yearly, based on BMW i3 average consumption data (BMW, 2018). 
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Table 4.13 Influence of daytime and nighttime driving and LED lighting on the energy 
consumption 

Scenario Eco-driving Normal driving Aggressive driving 
Day, without LED 0,0437 kWh 

100,9% 
0,0433 kWh 
100% 

0,0431 kWh 
99,5% 

Day, with LED 0,0426 kWh 
98,4% 

0,0423 kWh 
97,7% 

0,0422 kWh 
97,5% 

Night, without LED 0,0440 kWh 
101,6% 

0,0437 kWh 
100,9% 

0,0434 kWh 
100,2% 

Night, with LED 0,0435 kWh 
100,5% 

0,0431 kWh 
99,5% 

0,0430 kWh 
99,3% 

 

 
Figure 4.17 Influence of daytime and nighttime driving and LED lighting on the energy 
consumption 

 
4.3 Influence of elements related to infrastructural design 

After quantifying the influence of driving style and environmental variables, chapter 4.3 
quantifies the influence of infrastructural design elements. The influence of a broad set of 
elements has been calculated. First, the road type has been dealt with, which influences the 
energy consumption through a changing rolling resistance. After this, road curvature has been 
emphasized. Different turns require vehicles to decelerate and accelerate causing the vehicle to 
use more energy than on straight road elements. The influence of road slopes has been 
calculated for single slopes, as well as for some hilly driving scenarios. Finally, typical stop-and-
go traffic elements, such as traffic calming measures and signalized intersections, influence the 
energy consumption through the deceleration and acceleration caused by these elements. These 
effects are quantified in the last two subchapters. 
 
4.3.1 Road type 

The effect of road types has been calculated based on their different rolling resistances. Table 
4.14 and Figure 4.18 show the calculations of the energy consumption on different road types 
based on the same driving speed. One could see that the lower the rolling resistance, the lower 
the energy consumption. An increase of 40% rolling resistance results in an increase of about 
20% in energy consumption in this scenario. The relative influence on energy consumption is 
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highly dependent on other factors. Apart from this, driving 30 km/h on a motorway is an 
unlikely scenario. Therefore, Table 4.15 and Figure 4.19 show the influence of rolling resistance 
on the energy consumption for realistic driving speeds on these different road types. They show 
how eco-driving gets more efficient at higher speeds, compared to aggressive driving. 
Comparing these results to the influence of speed differences in chapter 4.1.1, also shows that a 
20% higher rolling resistance increases the energy consumption with about 10%. Again, one 
should notice that these percentages highly depend on other factors, such as the use of auxiliary 
energy use. However, in absolute numbers, the influence of rolling resistance shows very stable 
results. For all driving styles, the influence of adding 1% to the rolling resistance results in an 
increased energy consumption of 0,00047 kWh/km. Although this little increase in rolling 
resistance would only add 0,35% to the total energy consumption of a trip (according to an 
average consumption of 0,131 kWh/km. BMW, 2018), the influence is significant when 
comparing two road types, since the relative differences in rolling resistance are quite big. 
 
Table 4.14 Rolling resistance scenario for different road types, road segments of 500 m 
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Result [kWh] and [%] 

Eco-
driving 

Normal 
driving 

Aggressive 
driving 

Motorway 30 8,333 1,00 0,01215 0,0437 
100,9% 

0,0433 
100% 

0,0431 
99,5% 

Trunk road 30 8,333 1,00 0,01215 0,0437 
100,9% 

0,0433 
100% 

0,0431 
99,5% 

Distributor 
road 

30 8,333 1,05 0,0127575 0,0447 
103,2% 

0,0445 
102,8% 

0,0443 
102,3% 

Access road 30 8,333 1,15 0,0139725 0,0472 
109,0% 

0,0469 
108,3% 

0,0466 
107,6% 

City access 
road 

30 8,333 1,20 0,01458 0,0483 
111,5% 

0,0480 
110,9% 

0,0478 
110,4% 

Neighborhood 
access road 

30 8,333 1,25 0,0151875 0,0495 
1114,3% 

0,0492 
113,6% 

0,0490 
113,1% 

Homezone* 30 8,333 1,40 0,01701 0,0530 
122,4% 

0,0527 
121,7% 

0,0525 
121,5% 
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Figure 4.18 Energy consumption per 500 m for different road types 

Table 4.15 Rolling resistance scenario for different road types and speeds, road segments of 500 
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Result [kWh] and [%] 

Eco-
driving 

Normal 
driving 

Aggressive 
driving 

Motorway 130 
36,111 

1,00 0,01215 0,109 
92,4% 

0,118 
100% 

0,127 
107,6% 

Trunk road 100 
27,778 

1,00 0,01215 0,0769 
93,9% 

0,0819 
100% 

0,0872 
106,4% 

Distributor 
road 

80 
22,222 

1,05 0,0127575 0,0617 
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Figure 4.19 Energy consumption per 500 m for different road types and speeds 

 
4.3.2 Road curvature 

Different curved road profiles have been analyzed. The rise in energy consumption is caused by 
the deceleration and acceleration during the turn. The maximum speed in these curves is 
dependent on the radius of the curve and the preferred lateral acceleration of a driver. Figure 
4.20 shows the influence of radius on the maximum driving speed for different lateral 
accelerations. The lateral accelerations used for the calculations (eco-driving, normal driving 
and aggressive driving at 50 km/h) have been shown in green, yellow and red. What could be 
seen is that a turn with a radius of 24 m, the aggressive car can take this turn with 50 km/h, 
while the eco-driver needs double the radius to take the turn with the same speed. Although 
the eco-driver is less affected by acceleration and deceleration, he is more likely to be influenced 
by curves than the aggressive driver once the curve’s radius is big enough. 
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Figure 4.20 Influence of radius on maximum driving speed for different lateral accelerations 

Two common curve types with a different radius have been compared to a baseline 
scenario of a straight 50 km/h road of 130 m (Table 4.16). A significant influence of the radius 
has been found. As could be seen in Figure 4.23, curved road sections with a high radius don’t 
influence the speed of most aggressive drivers. Therefore, the energy consumption of all driving 
styles is comparable (Figure 4.24). For sharper turns, aggressive drivers and normal drivers also 
need to slow down (Figure 4.21). This results in a higher energy consumption for the normal 
and aggressive drivers (Figure 4.22). Because the aggressive driver still takes the sharper turn 
with a relatively high speed (v=46,1 km/h compared to v=38,4 km/h for the normal driver), the 
energy consumption is comparable with the normal driver. For even sharper turns, the gap 
between the normal driver and aggressive driver is likely to increase. Figure 4.25 shows an 
overview of the influence of the radius and shows the significant influence the radius of curved 
road sections has on the energy consumption, especially for non-eco drivers. 
 
Table 4.16 Energy consumption for different curved road segments 

Scenario Eco-driving Normal driving Aggressive driving 
Baseline 
130 m, straight road 

E = 0,012 kWh E = 0,012 kWh E = 0,012 kWh 

R=30m 
α=90°  
Single curve 

ay = 3,9 m/s2 

vcurve = 38,9 km/h 
E = 0,014 kWh 

ay = 5,7 m/s2 
vcurve = 47,1 km/h 
E = 0,016 kWh  

ay = 8,2 m/s2 
vcurve = 52,5 km/h 
E = 0,016 kWh 

R=20m 
α=90°  
Single curve 

ay = 3,9 m/s2 
vcurve = 31,8 km/h 
E = 0,017 kWh 

ay = 5,7 m/s2 
vcurve = 38,4 km/h 
E = 0,027 kWh 

ay = 8,2 m/s2 
vcurve = 46,1 km/h 
E =0,029 kWh 
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Figure 4.21 Speed profile for a 90 degrees curve with a radius of 30 meter 

 
Figure 4.22 Energy consumption for a 90 degrees curve with a radius of 30 meter 

 
Figure 4.23 Speed profile for a 90 degrees curve with a radius of 20 meter 
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Figure 4.24 Energy consumption for a 90 degrees curve with a radius of 20 meter 

 

Figure 4.25 Influence of radius on the energy consumption per driving style 

 
4.3.3 Hilly driving 

The quantitative influence of slopes has been calculated for different downward and upward 
slopes, both for slow driving (30 km/h, Table 4.17 and Figure 4.26) and fast driving (130 km/h, 
Table 4.18 and Figure 4.27). For the uphill scenarios, there seems to be no difference between 
the driving styles. This is caused by the fact that driving style doesn’t influence the gravitational 
and rolling resistance forces. Therefore, relative differences between the driving styles degrade 
with higher uphill slopes. For downhill slopes, the influence of driving style is very big, caused 
by the differences in the efficiency of creating regenerative energy as well as the differences in 
driving speed. The higher the slope, the bigger the absolute and relative differences are.  
 Interesting is the fact that the absolute difference between uphill driving is not only 
equal for different driving styles, but also for different driving speeds. The increase in energy 
consumption is about 0,08 kWh/km for every added degree in gradient. Based on an average 
consumption of 0,131 kWh/km (BMW, 2018), a constant slope of 1° would increase the energy 
consumption by 61%. The relative difference is lower for fast driving than for slow driving, 
simply because the baseline energy consumption is higher. 
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Table 4.17 Influence of up- and downhill driving on the energy consumption when driving 30 
km/h 

Scenario Height 
difference 

Eco-driving Normal driving Aggressive 
driving 

Baseline, 30 km/h 
- 500 m 

0 0,0437 kWh 
100,9% 

0,0433 kWh 
100% 

0,0431 kWh 
99,5% 

Downwards, slope 10° 88,2-0 -0,224 kWh 
-517,3% 

-0,09 kWh 
-208,9% 

-0,02 kWh 
-46,2% 

Downwards, slope 5° 43,7-0 -0,095 kWh 
-219,4% 

-0,034 kWh 
-78,5% 

-0,002 kWh 
-4,6% 

Downwards, slope 2° 17,5-0 -0,018 kWh 
-41,6% 

0,0002 kWh 
4,6% 

0,0101 kWh 
23,3% 

Downwards, slope 1° 8,7-0 0,008 kWh 
18,5% 

0,0118 kWh 
27,3% 

0,0144 kWh 
33,3% 

Upwards, slope 1° 0-8,7 0,0835 kWh 
192,8% 

0,0832 kWh 
192,1% 

0,0830 kWh 
191,7% 

Upwards, slope 2° 0-17,5 0,123 kWh 
284,1% 

0,123 kWh 
284,1% 

0,123 kWh 
284,1% 

Upwards, slope 5° 0-43,7 0,243 kWh 
561,2% 

0,242 kWh 
561,2% 

0,242 kWh 
561,2% 

Upwards, slope 10° 0-88,2 0,440 kWh 
1016,1% 

0,440 kWh 
1016,1% 

0,440 kWh 
1016,1% 

 

 
Figure 4.26 Influence of up- and downhill driving on the energy consumption when driving 30 
km/h 
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Table 4.18 Influence of up- and downhill driving on the energy consumption when driving 130 
km/h 

Scenario Height 
difference 

Eco-driving Normal driving Aggressive 
driving 

Baseline, 130 km/h 
- 500 m 

0 0,109 kWh 
92,3% 

0,118 kWh 
100% 

0,127 kWh 
107,6% 

Downwards, slope 10° 88,2-0 -0,187 kWh 
-158,4% 

-0,079 kWh 
-66,9% 

-0,026 kWh 
-22,0% 

Downwards, slope 5° 43,7-0 -0,058 kWh 
-49,2% 

-0,021 kWh 
-17,8% 

-0,0045 kWh 
-3,8% 

Downwards, slope 2° 17,5-0 0,029 kWh 
24,6% 

0,028 kWh 
23,7% 

0,047 kWh 
39,8% 

Downwards, slope 1° 8,7-0 0,069 kWh 
58,5% 

0,078 kWh 
66,1% 

0,087 kWh 
73,7% 

Upwards, slope 1° 0-8,7 0,149 kWh 
126,3% 

0,159 kWh 
134,7% 

0,167 kWh 
141,5% 

Upwards, slope 2° 0-17,5 0,189 kWh 
160,2% 

0,198 kWh 
167,8% 

0,207 kWh 
175,4% 

Upwards, slope 5° 0-43,7 0,31 kWh 
262,7% 

0,32 kWh 
271,2% 

0,33 kWh 
279,7% 

Upwards, slope 10° 0-88,2 0,51 kWh 
432,2% 

0,52 kWh 
440,7% 

0,52 kWh 
440,7% 

 

 
Figure 4.27 Influence of up- and downhill driving on the energy consumption when driving 130 
km/h 

After calculating the effect of individual slopes, four scenarios have been tested, as could 
be seen in Table 4.19 and Figure 4.28, Figure 4.29, Figure 4.30 and Figure 4.31. An interesting 
result is that the order of uphill and downhill driving makes no difference in energy 
consumption. This has been calculated for slopes of 1° and 10°. It implies that it’s possible to 
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the driving distances at each slope. The approach created by Liu et al. (2017), which assigns 
percentages of a trip to their matching road gradient categories, seems valid. 

The graphs also show the steeper the downhill slope, the bigger the differences in energy 
consumption for the different driving styles. There’s almost no difference between the driving 
styles when driving uphill. The most interesting is the fact that for low gradients, such as the 
slope of 1°, the difference between the baseline scenario and the scenario with slope is relatively 
low compared to the difference at high slopes. However, the energy consumption would still 
increase about 5-10% for low slope scenarios, which still makes them relevant when they occur 
often.  

  
Table 4.19 Hilly driving scenarios 

Scenario Height 
difference [m] 

Eco-driving Normal 
driving 

Aggressive 
driving 

Baseline 
- 500 m 

0 0,0437 kWh 
100,9% 

0,0433 kWh 
100% 

0,0431 kWh 
99,5% 

Uphill-downhill 
slope 1° 

0  8,7  0 0,0458 kWh 
105,8% 

0,0469 kWh 
108,3% 

0,0477 kWh 
110,2% 

Downhill-uphill 
slope 1° 

0  -8,7  0 0,0458 kWh 
105,8% 

0,0471 kWh 
108,8% 

0,0477 kWh 
110,2% 

Uphill-downhill 
slope 10° 

0  88,2  0 0,108 kWh 
249,2% 

0,173 kWh 
399,5% 

0,208 kWh 
480,4% 

Downhill-uphill 
slope 10° 

0  -88,2  0 0,108 kWh 
249,2% 

0,175 kWh 
404,2% 

0,208 kWh 
480,4% 

 

 
Figure 4.28 Uphill-downhill with a slope of 1°, compared to baseline 
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Figure 4.29 Downhill-uphill with a slope of 1°, compared to baseline 

 
Figure 4.30 Uphill-downhill with a slope of 10°, compared to baseline 

 
Figure 4.31 Downhill-uphill with a slope of 10°, compared to baseline 

 
4.3.4 Traffic calming measures 

The influence of traffic calming measures on the energy consumption could be explained by the 
fact that a vehicle needs to slow down before and accelerate after the traffic calming measure. 
This results in high acceleration forces. Five traffic calming measures have been manually 
calculated. Table 4.20 and Figure 4.32 show the huge differences between the three driving 
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styles. The aggressive driver uses about two times the amount of energy an eco-driver needs to 
do the same maneuver. At the speed bump, the toughest traffic calming measure, an eco-driver 
would use over two times the amount of energy compared to the baseline, while the aggressive 
driver almost uses five times the amount of energy. Figure 4.33 shows the relation between the 
speed reduction of a traffic calming measure and the extra energy consumption. 
 
Table 4.20 Results of the individual calculations 

Scenario Eco-driving Normal driving Aggressive driving 
Baseline 0,00443 kWh 

100,9% 
0,00440 kWh 
100% 

0,00438 kWh 
99,5% 

Speed bump 0,0102 kWh 
231,8% 

0,0163 kWh 
370,5% 

0,0207 kWh 
470,5% 

Watts speed bump 0,00857 kWh 
194,8% 

0,0133 kWh 
302,3% 

0,0167 kWh 
379,5% 

Seminole speed bump 0,00788 kWh 
179,1% 

0,0118 kWh 
427,3% 

0,0147 kWh 
334,1% 

Speed slot 0,00626 kWh 
142,3% 

0,00838 kWh 
190,5% 

0,00987 kWh 
224,3% 

Speed cushion 0,00920 kWh 
209,1%  

0,0145 kWh 
329,5% 

0,0184 kWh 
418,2% 

 

 
Figure 4.32 Energy consumption at different traffic calming measures 
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Figure 4.33 Relation between speed reduction and increase in energy consumption 

 Apart from the manual calculations, all traffic calming measures have been individually 
modeled in VISSIM (Table 4.21). The influence of traffic calming measures has been slightly 
underestimated in the manual calculations. However, the VISSIM calculations already include 
the speed oscillations caused by the Wiedemann 74 model, causing this higher influence on the 
energy consumption.  
 
Table 4.21 Results of the VISSIM simulations 

Scenario Eco-driving  Normal driving Aggressive driving 
Baseline 0,004438 kWh 

85,6% 
0,005186 kWh 
100% 

0,005340 kWh 
103,0% 

Speed bump 0,0115 kWh 
221,8% 

0,0182 kWh 
350,9% 

0,0240 kWh 
462,8% 

Watts 0,00799 kWh 
154,1% 

0,0146 kWh 
281,5% 

0,0194 kWh 
374,1% 

Seminole 0,00690 kWh 
133,1% 

0,0130 kWh 
250,7% 

0,0176 kWh 
339,4% 

Speed slot 0,00502 kWh 
96,8% 

0,00902 kWh 
173,9% 

0,0117 kWh 
225,6% 

Speed cushion 0,00953 kWh 
183,8% 

0,0160 kWh 
208,5% 

0,0221 kWh 
426,1% 

 

100

150

200

250

300

350

400

450

500

0 20 40 50 60 80

Di
ffe

re
nc

e 
in

 e
ne

rg
y 

us
e 

[%
]

Speed reduction due to traffic calming measures [%] 

Difference in energy use at traffic calming measures compared 
to normal baseline scenario

Eco-driving

Normal driving

Aggressive driving



 Donkers, A.J.A. 73 Individual elements 
______________________________________________________________________________________________________________________________________________________ 

 

4.3.4.1 Speed bump 

 
Figure 4.34 Energy consumption at the speed bump 

 
Figure 4.35 Energy consumption breakdown at the speed bump 

 
Figure 4.36 Speed profiles at the speed bump 
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Figure 4.37 Energy consumption at the speed bump 

 
4.3.4.2 Watts speed bump 

 
Figure 4.38 Energy consumption at the Watts speed bump 

 

 
Figure 4.39 Energy consumption breakdown at the Watts speedbump 
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Figure 4.40 Speed profiles at the Watts speed bump 

 
Figure 4.41 Energy consumption at the Watts speed bump 

 
4.3.4.3 Seminole speed bump 

 
Figure 4.42 Energy consumption at the Seminole speed bump 
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Figure 4.43 Energy consumption breakdown at the Seminole speed bump 

 
Figure 4.44 Speed profiles at the Seminole speed bump 
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Figure 4.45 Energy consumption at the Seminole speed bump 

4.3.4.4 Speed slot 

 
Figure 4.46 Energy consumption at the speed slot 
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Figure 4.47 Energy consumption breakdown at the speed slot 

 
Figure 4.48 Speed profiles at the speed slot 
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Figure 4.49 Energy consumption at the speed slot 

4.3.4.5 Speed cushion 

 
Figure 4.50 Energy consumption at the speed cushion 
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Figure 4.51 Energy consumption breakdown at the speed cushion 

 
Figure 4.52 Speed profiles at the speed cushion 

 
Figure 4.53 Energy consumption at the speed cushion 
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4.3.4.6 Sequence of speed bumps 
In some traffic situations, it might happen that speed bumps follow up on each other very 
quickly. Apart from measuring the influence of a speed bump, it might also be interesting to 
measure the influence of a sequence of speed bumps. When the distance between two speed 
bumps is large enough, theoretically cars will accelerate to the desired speed and start 
decelerating afterwards for the next speed bump. For these situations, knowing the influence of 
a single speed bump is sufficient. However, two other situations could occur: 

1. The speed bumps are so close to each other that the distance a car needs to accelerate 
to the desired speed and decelerate afterwards is too short. In this case, the vehicle will 
accelerate towards the maximum possible speed for this situation. 

2. The distance between the speed bumps is far enough to accelerate to the desired speed, 
but the driver chooses not to for environmental or comfort reasons. 

Figure 4.54 shows a schematic representation of the speed profile of these alternative 
situations. The effect on the energy consumption depends on the distance between the two 
speed bumps, which is different for different speeds and bump types. Every situation has a 
different critical point for which the normal situation doesn’t apply anymore and alternative 
situation 1 (Figure 4.54) should be calculated. These distances could be calculated by calculating 
the distance it requires a vehicle to accelerate to the desired speed and the distance which is 
required to decelerate again. Differences in driving styles will occur due to their different 
preferred accelerations and decelerations, while differences for different traffic calming 
measures occur due to the difference in speed reduction. Table 4.22 shows the distance between 
two traffic calming measures for which this critical point applies. As could be seen, the 
minimum distances between two traffic calming measures when driving 30 km/h is so small 
that in reality the ‘alternative situation 1’ will not often apply on these roads. Though, as the 
minimum distance to reach this critical point when driving 50 km/h is way higher, ‘alternative 
situation 1’ might occur in these situations.  
 

 
Figure 4.54 Three scenarios for driving at a sequence of traffic calming measures 
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Table 4.22 Different distances between two traffic calming measures before the critical point 

Desired 
speed 

Traffic calming 
measure 

Eco-driving Normal driving Aggressive driving 

30 Speed bump 35,1 m 27,8 m 21,4 m 
30 Watts 27,4 m 21,7 m 16,7 m 
30 Seminole 23,4 m 18,5 m 14,3 m 
30 Speed slot 13,2 m 10,4 m 8,0 m 
30 Speed cushion 30,7 m 24,3 m 18,8 m 
50 Speed bump 97,5 m 77,2 m 59,5 m 
50 Watts 76,2 m 60,3 m 46,5 m 
50 Seminole 65,0 m 51,4 m 39,7 m 
50 Speed slot 36,6 m 28,9 m 22,3 m 
50 Speed cushion 85,3 m 67,5 m 52,1 m 

 
Table 4.23 Energy consumption for different scenarios of ‘alternative scenario 1’ 

Distance between 
two speed bumps 

Eco-driving Normal driving Aggressive driving 

Baseline 
- v=50km/h 
- d=500m 
- No bumps 

0,0451 kWh 
98,3% 

0,0459 kWh 
100% 

0,0469 kWh 
102,2% 

50 m 0,0663 kWh* 
144,4% 

0,0967 kWh* 
210,7% 

0,1248 kWh* 
271,9% 

70 m 0,0690 kWh* 
150,3% 

0,1042 kWh* 
227,0% 

0,1339 kWh 
291,7% 

90 m 0,0717 kWh* 
156,2% 

0,1078 kWh 
234,9% 

0,1339 kWh 
291,7% 

110 m 0,0729 kWh* 
158,8% 

0,1078 kWh 
234,9% 

0,1339 kWh 
291,7% 

* distance is below critical point 
 

The calculated energy consumptions (Table 4.23) could be explained by using the speed 
profiles of the different driving styles for every situation. Figure 4.55, Figure 4.56 and Figure 4.57 
represent the speed profiles of the three driving styles for the four different situations when 
driving 50 km/h. They show that whether a driver can reach the desired speed in between two 
speed bumps depends on the acceleration of the driver. Therefore, the aggressive driver can 
reach his desired speed when the spacing between the bumps is only 70 meters, while the eco-
driver needs a larger spacing. As could also be seen in Table 4.23, when the distance between 
two speed bumps is above the critical point for that situation and driving style, it doesn’t 
influence the vehicle’s energy consumption any more.  
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Figure 4.55 Speed profiles of the eco-driver for different distances between two speed bumps 

 
Figure 4.56 Speed profiles of the normal driver for different distances between two speed bumps 

 

 
Figure 4.57 Speed profiles of the aggressive driver for different distances between two speed bumps 
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Figure 4.58 Total energy consumption with two speed bumps with 50 m spacing 

 
Figure 4.59 Total energy consumption at two speed bumps with 70 m spacing 
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Figure 4.60 Total energy consumption at two speed bumps with 90 m spacing 

 

Figure 4.61 Total energy consumption at two speed bumps with 110 m spacing 
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In order to reduce the energy consumption between two speed bumps, a driver could 
choose to not fully accelerate to the desired speed in between two bumps. ‘Alternative scenario 
2’ in Figure 4.54 show a schematic representation of this strategy. The amount of energy this 
strategy saves has been calculated in Table 4.24. As is shows, energy consumption between the 
two speed bumps reduces significantly when not accelerating to the full desired speed in 
between the two bumps. When performing this strategy, the travel time would obviously 
increase. As the table shows, the payoff for eco-driving with higher speeds in between the bumps 
seems to be better than aggressive driving with low speeds in between the bumps. It could be 
concluded that the driving style has a higher influence than the speed in between the bumps 
and that before performing this last strategy, an aggressive or normal driver should first consider 
changing driving behavior.  
 
Table 4.24 Energy consumption for different scenarios of ‘alternative scenario 2’ 

Distance between two speed 
bumps 

Eco-driving Normal driving Aggressive driving 

Baseline 
- v=50km/h 
- d=500m 
- two bumps, 110m 

spacing 
- accelerating to full 

desired speed 

0,0729 kWh* 
67,7% 
 
Δt = 47,8 s 
110,1% 

0,1078 kWh 
100% 
 
Δt = 43,4 s 
100% 

0,1339 kWh 
124,2% 
 
Δt = 39,7 s 
91,5% 

Accelerating to 75% of speed 
difference 

0,0678 kWh 
62,9% 
 
Δt = 48,4 s 
111,5% 

0,0961 kWh 
89,1% 
 
Δt = 44,3 s 
102,1% 

0,1173 kWh 
108,8% 
 
Δt = 40,8 
94,0% 

Accelerating to 50% of speed 
difference 

0,0639 kWh 
59,3% 
 
Δt = 50,4 s 
116,1% 

0,0871 kWh 
80,8% 
 
Δt = 46,6 s 
107,4% 

0.1045 kWh 
96,9% 
 
Δt = 43,2 s 
99,5% 

Accelerating to 25% of speed 
difference 

0,0619 kWh 
57,4% 
 
Δt = 56 s 
129,0% 

0,0814 kWh 
75,5% 
 
Δt = 52,1 s 
120,0% 

0,0961 kWh 
89,1% 
 
Δt = 48,7 s 
112,2% 

No acceleration 0,0648 kWh 
60,1% 
 
Δt = 75,9 s 
174,9% 

0,0821 kWh 
76,2% 
 
Δt = 71,3 s 
164,3% 

0,0951 kWh 
88,2% 
 
Δt = 67 s 
154,4% 
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4.3.5 Signalized intersections 

Different scenarios have been calculated to cover the influence of signalized intersections on 
the energy consumption. As mentioned before, the scenarios consider a vehicle to decelerate to 
0 km/h at a traffic light. As it’s interesting to quantify the different effects of traffic lights for 
different driving speeds, scenarios for a vehicle driving 30 km/h (Table 4.25) and one driving 80 
km/h (Table 4.26) have been calculated. For both cases, a traffic light with 30s waiting time and 
one without waiting time are compared to a baseline scenario. Since the influence of waiting 
time for different weather scenarios is also relevant, these scenarios are covered in Table 4.27 
and Table 4.28. The difference between an ambient temperature of 12 °C and 0 °C has been 
quantified per second waiting time. 

Table 4.25, Table 4.26 and Figure 4.62 show the energy consumption at one traffic light 
for speeds of 30 and 80 km/h. One could observe that the influence of a traffic light on the 
energy consumption becomes bigger when driving at higher speeds, both relatively as well as in 
absolute numbers. This could be explained by the longer period of acceleration, which 
consumes a lot of energy. Next to this fact, the results also show an increasing influence of the 
driving style on the energy consumption for driving at higher speeds. This could be explained 
both by the more aggressive acceleration of the aggressive driver (which consumes more energy) 
as well as by the higher efficiency of the regenerative braking for the eco-driver. 
 
Table 4.25 Influence of a traffic light when driving 30 km/h 

Scenario Eco-driving Normal driving Aggressive driving 
Baseline 

- V = 30 km/h 
- D = 500 m 
- T = 12 °C 

0,0437 kWh 
100,9% 

0,0433 kWh 
100% 

0,0431 kWh 
99,5% 

1 traffic light 
- 200m 
- No waiting time 

0,0502 kWh 
115,9% 

0,0562 kWh 
129,8% 

0,0607 kWh 
140,2% 

1 traffic light 
- 200m 
- Waiting time at traffic 

light = 30s 

0,0578 kWh 
133,5% 

0,0638 kWh 
147,3% 

0,0683 kWh 
157,7% 

 
Table 4.26 Influence of a traffic light when driving 80 km/h 

Scenario Eco-driving Normal driving Aggressive driving 
Baseline 

- V = 80 km/h 
- D = 500 m 
- T = 12 °C 

0,0605 kWh 
95,1% 

0,0636 kWh 
100% 

0,0668 kWh 
105,0% 

1 traffic light 
- 200m 
- No waiting time 

0,0911 kWh 
143,2% 

0,1393 kWh 
219,0% 

0,1770 kWh 
278,3% 

1 traffic light 
- 200m 
- Waiting time at traffic 

light = 30s 

0,0987 kWh 
155,2% 

0,1469 kWh 
231,0% 

0,1846 kWh 
290,3% 
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Figure 4.62 Comparison of energy consumption at traffic lights for different initial speeds 

Table 4.27, Table 4.28 and Figure 4.63 show the influence of waiting time for different weather 
scenarios. Figure 4.64 shows a typical speed profile for two stops at traffic lights. The energy 
consumption during the standstill period at a traffic light has a significant effect on the total 
energy consumption and is the same for all vehicles (Figure 4.65 and Figure 4.66). In normal 
situations (when the outdoor temperature is 12 degrees Celsius), each car consumes 0,252 Wh 
for every second it’s waiting for a traffic light to turn green. For longer periods of waiting, this 
could reduce the range significantly. This result directly couples the traffic flow and average 
waiting time of a traffic light to the energy consumption. 

Figure 4.67 and Figure 4.68 show how the total energy consumption at the traffic lights 
increases during more extreme weather conditions. When calculating the same situation, but 
with an ambient temperature of 0 degrees Celsius, a significant rise could be seen in the energy 
consumption during the waiting period. About 0,585 Wh is used by an idling car every second 
during these circumstances.  
  
Table 4.27 Influence of traffic lights on the energy consumption 

Scenario Eco-driving Normal driving Aggressive driving 
Baseline 

- V = 30 km/h 
- D = 250 m 
- T = 12 °C 

0,0218 kWh 
100,9% 

0,0216 kWh 
100% 

0,0215 kWh 
99,5% 

2 traffic lights 
- 100 m 
- 200 m 
- No waiting time 

0,0350 kWh 
162,0% 

0,0474 kWh 
219,4% 

0,0567 kWh 
262,5% 

2 traffic lights 
- 100 m 
- 200 m 
- Waiting time per 

traffic light = 30s 

0,0501 kWh 
231,9% 

0,0625 kWh 
289,4% 

0,0718 kWh 
332,4% 
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Table 4.28 Influence of traffic lights on the energy consumption during winter 

Scenario Eco-driving Normal driving Aggressive driving 
Winter baseline 

- V = 30 km/h 
- D = 250 m 
- T = 0 °C 

0,0343 kWh 
102,3% 

0,0336 kWh 
100% 

0,0331 kWh 
98,5% 

2 traffic lights 
- 100 m 
- 200 m 
- No waiting time 

0,0504 kWh 
150,0% 

0,0615 kWh 
183,0% 

0,0699 kWh 
208,0% 

2 traffic lights 
- 100 m 
- 200 m 
- Waiting time per 

traffic light = 30s 

0,0855 kWh 
254,5% 

0,0966 kWh 
287,5% 

0,1050 kWh 
312,5% 

 

 
Figure 4.63 Comparison of energy consumption at traffic lights for different ambient 
temperatures 
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Figure 4.64 Speed profile with stops at two traffic lights at d=100m and d=200m 

 
Figure 4.65 Total energy consumption with stops at two traffic lights at d=100m and d=200m 

 
Figure 4.66 Total energy consumption with stops at two traffic lights at d=100m and d=200m 
during winter 
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Figure 4.67 Total energy consumption with stops at two traffic lights at d=100m and d=200m 
when waiting 30s 

 

Figure 4.68 Total energy consumption with stops at two traffic lights at d=100m and d=200m 
when waiting 30s during winter 
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Chapter 5. Nieuwegein case study 
 
 
After quantifying the influences of individual elements on the energy consumption, it’s valuable to 
qualitatively and quantitatively describe the interconnection of these individual elements. This 
interconnection has been found by predicting the energy consumption for different routes and 
scenarios in the city of Nieuwegein. This chapter describes the VISSIM model and its 
configurations, the different scenarios tested and their results. Afterwards, a route optimization 
model has been used to find the best route for different scenarios, based on travel time, cost and 
CO2-emissions. Will the optimal route be the shortest route or the fastest route? And will the 
optimal route change for different scenarios and personal preferences? Finally, a validation study 
has been performed to validate the results. 

 
 
5.1 Model and methodology 

In order to test the effect of different variables on the energy consumption of EVs in real 
scenarios, a microscopic traffic model has been made of the southern part of Nieuwegein. A 
section with three competitive routes has been chosen. Table 5.1 shows the comparison of travel 
distance and travel times at different moments of the day. Apart from their competitive nature, 
the three routes have been chosen because they contain numerous infrastructural elements, 
amongst others different traffic calming measures, traffic lights, several bus and tram lines, 
slopes, different design speeds and different levels of urbanization. First, the routes will be 
discussed, after which the different scenarios which have been predicted will be elaborated. 
 
5.1.1 Routes 

The residential route leads drivers through the middle of the area. It contains both 30- and 50-
km/h roads and crosses two residential areas and a park. Due to the proximity of multiple sport 
associations and schools, the street houses many speed bumps. The entire route consists of one-
lane streets, making it almost impossible to overtake other vehicles. As could be seen in Table 
5.1, the route is the shortest one in distance, and its travel time fluctuates the least. 

The second route could be typified by its complex signalized intersections. The route, 
which leads vehicles to Nieuwegein’s largest shopping mall, contains 50-roads with multiple 
lanes. Furthermore, the route contains separate bus-lanes and is crossed by four tram-lanes. 
The route also serves as a connection between a residential area and different larger roads, 
resulting in many commuters during peak hours. Travel times on this route fluctuate more 
during peak hours, due to the uncertainty of the traffic lights. 
 The last route, which is the route with the longest travel distance, leads drivers around 
the area via the A2, a large national motorway connecting Amsterdam and Maastricht. Although 
it is the longest route, the travel times are likely to be comparable to the other two routes, since 
higher driving speeds are possible on this route. About two-third of the route contains 
motorway driving, while the first part of the route serves as a thoroughfare between two 
residential neighborhoods. 
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Table 5.1 Comparison of routes based on Google Maps data 

Route Distance 
[km] 

Travel time [min] 
Tuesday, 03:00 

Travel time [min] 
Tuesday, 08:00 

Travel time [min] 
Tuesday, 17:00 

Residential 3,1  6 5-8 5-7 
City center 3,7 6 5-12 6-12 
Motorway 4,5 5 5-9 5-9 

 
5.1.2 Scenarios 

To create the most realistic results, four scenarios have been tested (Table 5.2). They differ in 
time of the day, the mix of driving styles and the outdoor temperature. The other traffic is 
modeled with a dynamic assignment based on morning or evening hour OD-matrices, while the 
measured traffic drives a static route. The first scenario is tested to measure the energy 
consumption without any other traffic on the road. It is used as a baseline scenario, while 
simultaneously showing the effect of a sequence of different individual infrastructural elements. 
The second scenario is used to measure the influence of peak hour traffic on the energy 
consumption and travel time. Barth and Boriboonsomsin (2009) found that for high traffic 
intensities, the overall energy consumption would drop with a higher share of eco-drivers. The 
third scenario is therefore used to see what will happen if all cars – even the non-measured ones 
– would switch to an eco-driving strategy. Finally, the last scenario measures the influence of a 
low outdoor temperature on the total energy consumption in a real-life scenario. To reduce the 
influence of randomness, 180 measurements have been done for each scenario, consisting of 20 
measurements per driving style per route. Since for the third scenario, the influence of the 
moment entering the network was very large, more simulations have been performed. A full 
analysis of the influence of eco-driving on the travel times and energy consumption has been 
made by performing 450 simulations with different entering times; 50 of each driving style for 
every route. 
 
Table 5.2 Tested scenarios in Nieuwegein 

Scenario Time of the day Other traffic Outdoor temperature [°C] 
1 - None 12 
2 07:00-09:00 Mix 12 
3 07:00-09:00 All eco-driving 12 
4 07:00-09:00 Mix 0 

 
5.1.3 Traffic intensity 

The traffic intensity is being modeled by using OD-matrices. Real traffic counts have been 
performed at the N210, the motorway through the modeled area. By using OmniTRANS, these 
traffic counts have been exported to OD-matrices. A limitation of this method is that the OD-
matrix will never be exactly the same as the traffic counts, however, a reasonable estimation will 
be the outcome. Since for this research, the traffic intensity will mainly be used to create slower 
traffic and more interactions between vehicles, this estimation is assumed to be sufficient. 
OmniTrans has been used to predict the traffic volumes for the N210 and the roads next to it 
(Figure 5.1). Some intersections of the city center route had to be calculated manually. The 
incoming and outgoing traffic volumes of each road has been estimated based on the predicted 
traffic volumes of the left part of the model, some older traffic counts on the north side of the 
model and the sociodemographic data of this neighborhood, named Fokkesteeg (AlleCijfers.nl, 
2019). The working population is about 4000, of which half of the population is expected to 
drive through the modeled network during morning and evening peak hours, which is divided 
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over the Graaf Florisweg, the Muiderschans, the Zwolsveste and the Henri Dunantlaan. The 
other traffic is expected to leave the area via the eastern part of the neighborhood or via the 
route alongside the water, directly connected to a major road. Some people will use other means 
to go to their work, such as public transport or their bicycles) and others won’t leave the area at 
all (as they are working for one of the 285 companies in the neighborhood) or outside the peak 
hours. 

The distribution of the traffic inside the city center area is done based on the outgoing 
traffic of each street. If street x has a lot of outgoing traffic compared to the other streets, more 
cars from street y are expected to leave at street x. The exact amounts are calculated as follows: 
 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 𝑡𝑡𝑡𝑡 𝑦𝑦 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ∗
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡 𝑦𝑦

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 [33] 

 
The traffic from the city center going to the left part of the network is distributed with the same 
relative distribution as the distribution from OmniTRANS. 

The traffic volumes from four VISSIM simulations have been measured at five 
measurement locations for the full morning peak and compared to the VRU2015 measurements. 
The measurements at the motorway gave realistic results. The number of vehicles leaving the 
residential area has been overestimated. Although the accuracy at some individual points is low, 
in absolute numbers the traffic is relatively representative compared to the VRU2015 in the total 
network. In absolute terms, the total of all measurements shows an accuracy of 95%. 
Individually, the measurement locations show a relative accuracy of 80% compared to the 
individual VRU2015 measurements. As the OD-matrix’ major function is to add a representation 
of the traffic in the total network, the volumes are representative enough for this research. The 
traffic volumes are also being compared with the typical traffic at Tuesday morning during peak 
hours by using Google Maps. These volumes also show similar results to the VISSIM 
measurements. 

The measured vehicles are modeled by using a static route. They are being distributed 
by using a Poisson distribution which determines the time gap between two successive vehicle 
departures (Fellendorf & Vortisch, 2010). After selecting the total amount of vehicles λ, the 
Poisson distribution creates a distribution with a mean of λt while the time gaps are calculated 
with an exponential distribution with a mean of 1/λ. The probability of the time gap is calculated 
by using the following equation: 
 
 𝑝𝑝(𝑥𝑥, λ) = λ𝑒𝑒−λx [34] 

 
With p being the probability, x being the time gap and λ being the total amount of vehicles. 
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Figure 5.1 Schematic representation of zones calculated manually and by using OmniTRANS 

 
5.1.4 Slope 

As the area of Nieuwegein is relatively flat, only eight significant slopes have been identified. 
The first two are up- and downhill near the entrance of the A2 at the height of the 
Zandveldseweg, the third and fourth slope are the up- and downhill slopes when the A2 crosses 
the Hollandsche IJssel, the fifth and sixth could be found at the exit of the A2 at the height of 
Weg naar de Poort, while finally the last two slopes could be found at the point where the 
Zuidstedeweg crosses the Doorslag. Table 5.3 and Figure 5.2 show an overview of the slopes. 
 

OmniTRANS prediction 

Manual calculation 
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Table 5.3 Slopes in the Nieuwegein model 

Number Location Length [m] Δ Height [m] Slope [°] 
1 Entrance A2 600 3,5 0,29 
2 Entrance A2 600 -3,5 -0,29 
3 A2-Hollandsche IJssel 400 4,5 0,64 
4 A2-Hollandsche IJssel 400 -4,5 -0,64 
5 Exit A2 400 4,5 0,64 
6 Exit A2 400 -4,5 -0,64 
7 Zuidstedeweg-Doorslag 250 5,5 1,26 
8 Zuidstedeweg-Doorslag 250 -5,5 -1,26 

 

 
Figure 5.2 Locations of the slopes in the Nieuwegein model 

 
5.2 Results 

The results of the Nieuwegein case study are presented following the same order as the 
scenarios. First, the simulations in the empty network are analyzed, after which morning peak 
simulations are being discussed. The third scenario presented analyzes what would happen with 
the energy consumption and travel times if everybody would choose for the eco-driving style. 
Finally, the fourth scenario emphasized the influence of cold weather on the energy 
consumption. 
 
5.2.1 Scenario 1: Driving on an empty network 

In the first scenario, vehicles have been simulated individually while no other vehicle was 
present at the network. This scenario shows the effect on the energy consumption when 
combining multiple individual elements into a network. It shows how three typical different 
streets compare in terms of energy efficiency and travel time. As expected, the eco-driving 
outperforms the normal and aggressive driving styles in energy efficiency on all routes. On 

Entrance A2 

A2-Hollandsche IJssel  

Exit A2 Zuidstedeweg-Doorslag 
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average, the eco driver uses about 25% less energy than the normal driver and 35% less than the 
aggressive driver. The consequence is an increase in travel time of 6% compared to the normal 
driver and 11% compared to aggressive drivers. 
Calculations also show a huge difference between the different routes (Figure 5.3). Drivers on 
the residential route use about 25% less energy than drivers on the city center route, while using 
about 50% less energy than motorway drivers. However, this does come with a significant 
increase in travel time. The residential route is 10-15% slower than the city center route and 25-
30% slower than the motorway route. When combining the different routes and driving styles, 
the most ecological route only uses 35% of the energy the worst ecological route uses, while 
increasing the travel time with 42%. With these energy savings on a route of 3 km, one could 
charge an iPhone for almost a year (Helman, 2013).   
 

 
Figure 5.3 Average travel times and energy consumptions for scenario 1 

 An analysis in the graphical representations clearly shows the repetition of individual 
infrastructural elements. The residential route in example, shows gains in the energy 
consumption every time a speed bump occurs, while these increases also occur at every traffic 
light at the city center route. The energy profiles at these specific elements in the case study are 
similar to the individual energy profiles calculated in chapter 4. They also show the influence of 
the driving speed through the steepness of the curve as well as the high efficiency of regenerative 
braking of the eco-driver compared to the other driving styles. 
 
5.2.2 Scenario 2: Driving during the morning peak hour 

The second scenario measures the influence of traffic intensity. By adding a realistic amount of 
morning peak hour traffic to the simulation, the influence of this traffic on the energy 
consumption could be measured by comparing the results with the first scenario. A significant 
increase in travel times has been measured for all driving styles on all routes. While in relative 
terms the difference between the gain in travel times for the different driving styles is very small, 
the difference between the routes is very big. The travel times on the residential route increased 
with approximately 20% and the travel times on the motorway increased with about 35%. 
However, the travel times on the city center route increased with a stunning 55%, making the 
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route the worst in travel time. The gain in travel times has a leveling effect, decreasing the 
relative difference between the routes and the driving styles. 
 The energy profiles show interesting results (Figure 5.4). A first observation is that the 
effect of the traffic intensity on the energy consumption is way smaller than the influence on 
the travel times. The energy consumptions on the residential route and city center route 
increase with about 5%. However, the energy consumption on the motorway slightly decreases. 
The slower driving speeds due to the large amount of traffic largely decrease the aerodynamic 
drag, resulting in a lower energy consumption.  
 

 
Figure 5.4 Average travel times and energy consumptions for scenario 2 

 When analyzing the energy consumption profiles, the most interesting results occur in 
the city center route. As this route contains a lot of signalized junctions, the increase in traffic 
directly influences the traffic flow through these traffic lights. These traffic lights have a 
divergent effect on the energy profiles, resulting in a bigger spread of energy consumptions. The 
higher amount of traffic mainly increased the randomness on this road, as some cars are ‘lucky’ 
and are not affected by the traffic lights, while some vehicles have to wait longer and thus 
consume more energy. One could conclude that the higher the amount of traffic, the higher the 
randomness in energy consumption, and therefore the harder it is to predict the energy profile. 
Interesting is that the divergent effect is weaker for eco-drivers since they are less affected by 
the stop-and-go situations. 
 
5.2.3 Scenario 3: Driving in an all-eco scenario  

The first two scenarios clearly showed that eco-driving is more energy efficient in all scenarios. 
Though, the travel times of the eco-driver are longer, their acceleration and deceleration take 
longer, and thus eco-drivers are more likely to cause delays in the network. What would happen 
if all cars switch to an eco-driving style? This has been researched in scenario 3.  
 As could be seen in Figure 5.5, there is an incredible gain in travel times at the motorway 
route (18%), causing traffic on this route to drive almost with the same speed as traffic on the 
residential route. This makes the residential route favorable for all driving styles, which could 
lead to undesirable effects such as noise disturbance, safety concerns and a higher local emission 
of fine particles. 
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 The energy consumption doesn’t seem to be affected by this scenario compared to 
scenario 2. Therefore, it could be concluded that in terms of energy consumption, it would be 
favorable to have an all-eco scenario, however, the traffic flow on certain roads should be closely 
monitored as huge delays could occur. Some roads would possibly need an increase in capacity 
to prevent shortage traffic. 

 
Figure 5.5 Average travel times and energy consumptions for scenario 3 

 
5.2.3.1 Influence of the morning peak on travel times in an all-eco scenario 
The all-eco scenario influences the traffic flow so badly that congestions occur. This subchapter 
dives into the influence of applying an all-eco strategy to the travel times and energy 
consumption. It tries to find out whether there is a relationship between those. 
 The morning peak – which lasts from 07:00 till 09:00 – is hugely affected by the all-eco 
scenario. Figure 5.6, Figure 5.8 and Figure 5.10 show the relationship between the moment a car 
enters the network and its travel time. As could be seen, the effect is different for the different 
routes. The residential route is so affected by the traffic that the influence of driving style on 
the travel time is completely faded away (Figure 5.6). Small effects of congestion on the travel 
time start to occur after 40 minutes, while the travel times rise to 1800 seconds in the end of the 
simulations. The energy consumption follows the travel times, with increasing energy 
consumptions later in the simulations (Figure 5.7). The conclusion would be that the higher 
energy consumption is not caused by the higher travel times, but by other effects of the 
congestion. 
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Figure 5.6 Travel time for different starting times when driving the residential route 

 
Figure 5.7 Energy consumption for different starting times when driving the residential route 

 
 The city center route shows different effects. The spread in travel times is way bigger 
than at the residential route, though there seems to be no relation between the travel times and 
the driving style (Figure 5.8). Variations in travel time are likely caused by the randomness of 
the signalized junctions. In the end of the network, congestion does occur, causing the travel 
times to boom. The energy consumption shows rational results, with all eco-drivers consuming 
the least amount of energy, followed by the normal drivers and finally the aggressive drivers 
consuming the most (Figure 5.9). There seems to be no significant relation between the moment 
entering the network and the energy consumption.  
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Figure 5.8 Travel time for different starting times when driving the city center route 

 
Figure 5.9 Energy consumption for different starting times when driving the city center route 

 At the motorway route, there seems to be a slight relationship between the driving style 
and the travel times, while the moment entering the network doesn’t seem to affect the travel 
times (Figure 5.10). The 4-lane motorway simply has such a high capacity that no congestion 
occurs during peak hours. The energy consumption shows similar results as the city center 
route, as results are completely rational (Figure 5.11). 
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Figure 5.10 Travel time for different starting times when driving the motorway route 

 
Figure 5.11 Energy consumption for different starting times when driving the motorway route 

 
5.2.4 Scenario 4: Driving during a winter morning peak hour 

Chapter 4 showed that a temperature of 0 °C could increase the energy consumption with 50-
60%. However, these calculations were based on a straight road section of 500 meter without 
the influence of other traffic or infrastructural elements. The increase in energy consumption 
in real driving situations has been modeled in scenario 4.  
 As Figure 5.12 shows, the travel times are the same. VISSIM contains no weather 
variables and therefore the influence of temperature on the energy consumption has been 
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calculated outside the VISSIM environment. The energy consumption results are interesting 
though, since the increase in energy consumption is way higher for the eco-drivers than for the 
aggressive drivers, reducing the influence of driving style on the energy consumption. This 
result could be linked to the fact that the eco-drivers spend more time in the network and 
therefore their climate systems are running for a longer time. The eco-driver’s energy 
consumption increases with 32%, while the normal and aggressive driver respectively consume 
23% and 18% more energy.  
 

 
Figure 5.12 Average travel times and energy consumptions for scenario 4 

 
5.3 Power breakdown 

After analyzing the energy consumption and travel times at different routes, it’s interesting to 
find how these energy consumptions are built up. To research this, power breakdowns have 
been made of all the routes, which show the different powers working on the vehicle during the 
trip. The results of this analysis could be used to find strategies to make parts of the road 
network more sustainable, based on the dominant forces in that segment. First, power 
breakdowns have been created based on scenario 1. They show the power consumed by a vehicle 
based on the infrastructural design of a road. After this, power breakdowns have been made of 
scenario 2 and 4, to show how other traffic and cold weather influence the power breakdowns 
and ultimately, the strategical decisions which should be made to make a road network or a 
driving style more sustainable. 
 
5.3.1 Power breakdown when driving in an empty network 

Figure 5.13 shows the comparison between the share of different powers working on a vehicle 
for the three different routes. As could be seen, there’s a big variation in dominant forces for 
every route, indicating that it takes different strategies to improve the energy efficiency on these 
routes. On the residential route, the rolling resistance is dominant, closely followed by the 
acceleration power. Compared to the other routes, the auxiliary power is relatively high. The 
city center route is dominated by acceleration forces. This could be explained by the high 
frequency of signalized junctions, requiring vehicles to decelerate and accelerate very often. The 
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power consumption by aerodynamic drag forces is very high on the motorway route compared 
to the other routes.  
 

 
Figure 5.13 Power breakdown of the three different routes when driving in an empty network 

 Figure 5.14, Figure 5.15 and Figure 5.16 show the individual power breakdown profiles of 
each different route. As could be seen, the rolling resistance power follows the speed profile, 
while a quadratic relationship between the aerodynamic drag and the speed exist. Therefore, 
the power to overcome these forces rises significantly while driving on the motorway. 

 
Figure 5.14 Power breakdown of a normal driver on the residential route 
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Figure 5.15 Power breakdown of a normal driver on the city center route 

 
Figure 5.16 Power breakdown of a normal driver on the motorway route 

 
5.3.2 Power breakdown when driving during a morning peak hour 

Figure 5.17 shows the route comparison for normal drivers driving in a morning peak. The 
morning peak increased the share of auxiliary energy for all routes, since the travel times have 
gone up. Interesting is the decrease in aerodynamic drag on the motorway. Since the power of 
aerodynamic drag has a quadratic relationship with the driving speed, small decreases in speed 
result in a large drop in aerodynamic drag. Therefore, the shares of other powers have risen. The 
share of forces for other routes is almost similar to the empty network, which shows that the 
traffic intensity may influence travel times and energy consumption but doesn’t really influence 
the share of powers. 
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Figure 5.17 Power breakdown of the three different routes when driving in a morning peak 

 
Figure 5.18 Power breakdown of a normal driver on the residential route 
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Figure 5.19 Power breakdown of a normal driver on the motorway route 

 
Figure 5.20 Power breakdown of a normal driver on the motorway route 

 
5.3.3 Power breakdown when driving during a winter morning peak hour 

Power breakdown profiles of the winter scenario show the impact of the temperature on the 
auxiliary energy. Figure 5.21 shows that the auxiliary power consumption with an ambient 
temperature of 0  ͦC rises significantly to 16% of the power consumption on the motorway route 
to 40% of the energy consumption on the residential route. Technological improvements in the 
climate system are urgent to sustain a commercially attractive range in the winter period. 
 The ambient temperature also influences the rolling resistance and the aerodynamic 
drag. The rolling resistance coefficient of a road would increase 18% in the winter, directly 
affecting the rolling resistance forces. Simultaneously the aerodynamic drag forces increase with 
4% due to a higher air density. Figure 5.21 clearly shows that the share of rolling resistance stayed 
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the same on the motorway, thus rising significantly in absolute terms. Though, the shares of 
power consumed by aerodynamic drag and acceleration force dropped a bit. Most interesting is 
that 70% of the power consumed on the residential route during winter morning peaks is caused 
by the rolling resistance and the auxiliary energy, which makes strategies to decrease those 
powers extremely effective. Figure 5.22, Figure 5.23 and Figure 5.24 show the high constant share 
of auxiliary energy during all routes, while also showing a massive increase in rolling resistance 
power consumption while driving at high speeds. 
 

 
Figure 5.21 Power breakdown of the three different routes when driving in a winter morning peak 

 
Figure 5.22 Power breakdown of a normal driver on the residential route in a winter morning peak 
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Figure 5.23 Power breakdown of a normal driver on the city center route in a winter morning peak 

 

Figure 5.24 Power breakdown of a normal driver on the motorway route in a winter morning 
peak 
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5.4 Route optimization 

The simulations in Nieuwegein showed that a driver has different options concerning driving 
style and route. They also show that different scenarios have different influences on the energy 
consumption and the travel time. A route optimization model has been created to predict the 
optimal route based on charging costs, travel time valuation and CO2-pricing. The model tries 
to find if the optimal route is similar to the fastest or shortest route. Next to this, it also analyzes 
whether the optimal route changes for different scenarios and personal preferences. First, the 
principles of the model are explained after which the generalized costs 12 scenarios have been 
calculated. 
 
5.4.1 Charging costs 

The first and most concrete costs are the costs for charging the vehicle. Based on the different 
routes and driving styles, different amounts of energy are required, and thus different costs are 
charged for charging the vehicle. As there are many different providers and regulations, the 
charging costs per kWh differ significantly in the Netherlands. First, there are two options for 
charging at home. Conventional energy has a price of approximately €0,22/kWh and could be 
directly used to charge EVs. Houses with solar panels could also use the energy generated by 
these panels to charge their vehicle. Although the energy is free, one misses the change to set 
this energy off to the grid. As energy suppliers pay about €0,11/kWh (GreenChoice, n.d.), the 
costs of charging an EV with solar energy is set to this €0,11/kWh. 
 Public charging is more expensive, and according to Westeneng (2019), one would pay 
€0,34/kWh on average at public charging points. As these providers might use a dynamic pricing 
system based on energy supply and demand, prices might fluctuate. Fast charging is usually the 
most expensive and is on average set on €0,65/kWh. Though, as the market is new, providers 
sometimes dramatically decrease their prices (Fastned, n.d.; Business Insider, 2019). Finally, 
some companies are also offering charging opportunities. Charging at these charging points is 
usually cheaper than charging at home and will cost about €0,11/kWh (Klut, 2016).  

As only 5% of the charging events occurs at public charging points (Mathieu, 2018), this 
research uses the price of home charging (€0,22/kWh) to calculate the charging costs. 
 
5.4.2 Travel time 

A different valuation of travel time is usually made based on trip purpose and income level. 
McEvoy, Prince and Ferreira (1995) found that there is a strong correlation between income and 
value of time (VoT). Litman (2009) describes the VoT of business travel as a direct function of 
the hourly income. He also sketches a difference VoT based on trip purpose, estimating the VoT 
per person in Europe of business travel to be €21/h, of commuting to be €6/h and of leisure 
travelling to be €4/h. Wardman and Toner (2018) used a bit higher numbers based on UK 
recommendations, though the differences between the trip purposes are similar.  
 Based on the literature, it is reasonable to value business trips based on the labor costs. 
These labor costs are approximately 130% of the gross salary (Persoon Advies, 2017; Tentoo, 
n.d.), which is €22/h in the Netherlands, according to CBS (2016). This results in average labor 
costs of €28,60/h. According to the research of Litman (2009) and Wardman and Toner (2018), 
the costs for non-work-related trips are approximately 0,3 times the gross salary, resulting in a 
VoT of €6,60/h. Raijmakers (2019) confirmed the higher valuation of travel time for business 
trips.  
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5.4.3 CO2-emissions 

The European Union created a trading system for CO2 emission allowances. Companies could 
buy and sell these allowances, which represent a ton of emitted CO2. If a company exceeds its 
cap of CO2-emissions, it could buy these allowances to compensate for their emissions. On the 
other hand, if a company stays under its cap, it could sell allowances (Carbon Expert, n.d.). The 
price of these allowances varies over time but has been rising steadily since 2017 (Figure 5.21, 
Markets Insider, 2019) and has a closing price of about €25/tCO2eq.  

 
Figure 5.25 Price development of CO2 emission allowances since the Paris Agreement 

The CO2-emissions of electric vehicles could be calculated by using the carbon intensity of the 
current energy mix. In the Netherlands, this energy mix has a carbon intensity of 459 
gCO2eq/kWh (ElectricityMap, 2019). Considering the current price of CO2 allowances, the price 
for one kWh of energy in the Netherlands would cost €0,011475. The significance of this number, 
compared to the actual price of charging one kWh, is very low. With an average travel distance 
of 13.000 km/year (CBS, 2017), the average person would be charged with approximately €25 per 
year. Though, it is not unimaginable that, under pressure of policy makers and climate 
organizations, the price of allowances will rise. Economists calculated that the pricing of CO2 
allowances should at least increase with about 200-300% to achieve the Paris temperature target 
(Stern and Stiglitz 2017). Stanford scientists Moore and Diaz concluded that the social cost of a 
ton CO2 should be €200/tCO2eq (Than, 2015). 
 
5.4.4 Generalized cost model 

Combining the cost for charging, the value of travel time and the price for CO2 would result in 
a generalized cost function: 
 
 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐸𝐸 ∗ �𝐶𝐶𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐶𝐶𝐶𝐶𝐶𝐶2� [35] 

 
with t being the travel time in hours, VoT being the value of time in €/h, E being the energy 
consumption of the trip in kWh and Ccharging and CCO2 are the costs for charging and emitting 
CO2 in €/kWh. 
 
5.4.5 Route optimization results 

Table 5.4 shows the results of the generalized cost model. Interesting is the fact that an 
increased traffic intensity affects the city center the most considering generalized cost. The 
normal driving style never seems to be the best; according to the model, one should either drive 
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sustainable or fast. Whether one should drive with an aggressive or eco-driving style and which 
route one should take, largely depends on the trip purpose and the income. 
 
Table 5.4 Output of the generalized cost model for different scenarios and driving styles 
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1 - None 12 Business 22 Eco: 2,84 
Normal: 2,68 
Aggr.: 2,72 

Eco: 2,65 
Normal: 2,54 
Aggr.: 2,42 

Eco: 2,38 
Normal: 2,28 
Aggr.: 2,20 

2 - None 12 Business 12 Eco: 1,59 
Normal: 1,52 
Aggr.: 1,54 

Eco: 1,50 
Normal: 1,46  
Aggr.: 1,41 

Eco: 1,38 
Normal: 1,35 
Aggr.: 1,32 

3 - None 12 Leisure 22 Eco: 0,92 
Normal: 0,89 
Aggr.: 0,91 

Eco: 0,88 
Normal: 0,88 
Aggr.: 0,86 

Eco: 0,84 
Normal: 0,85 
Aggr.: 0,85 

4 - None 12 Leisure 12 Eco: 0,54 
Normal: 0,54 
Aggr.: 0,56 

Eco: 0,53 
Normal: 0,56 
Aggr.: 0,56 

Eco: 0,54 
Normal: 0,57 
Aggr.: 0,59 

5 07:00-
09:00 

Mix 12 Business 22 Eco: 3,39 
Normal: 3,42 
Aggr.: 3,18 

Eco: 3,95 
Normal: 3,86 
Aggr.: 3,65 

Eco: 3,06 
Normal: 3,01 
Aggr.: 2,93 

6 07:00-
09:00 

Mix 12 Business 12 Eco: 1,89 
Normal: 1,92 
Aggr.: 1,80 

Eco: 2,21 
Normal: 2,18  
Aggr.: 2,09 

Eco: 1,75 
Normal: 1,74  
Aggr.: 1,72 

7 07:00-
09:00 

Mix 12 Leisure 22 Eco: 1,09 
Normal: 1,11 
Aggr.: 1,06 

Eco: 1,27 
Normal: 1,28  
Aggr.: 1,24 

Eco: 1,04 
Normal: 1,06 
Aggr.: 1,06 

8 07:00-
09:00 

Mix 12 Leisure 12 Eco: 0,64 
Normal: 0,66 
Aggr.: 0,64 

Eco: 0,75 
Normal: 0,78 
Aggr.:0,77 

Eco: 0,65 
Normal: 0,68 
Aggr.: o,70 

9 07:00-
09:00 

Mix 0 Business 22 Eco: 3,43 
Normal: 3,45 
Aggr.: 3,21 

Eco: 3,99 
Normal: 3,90 
Aggr.: 3,69 

Eco: 3,10 
Normal: 3,04 
Aggr.: 2,96 

10 07:00-
09:00 

Mix 0 Business 12 Eco: 1,93 
Normal: 1,96  
Aggr.: 1,83 

Eco: 2,26 
Normal: 2,23 
Aggr.: 2,12 

Eco: 1,79 
Normal: 1,78  
Aggr.: 1,75 

11 07:00-
09:00 

Mix 0 Leisure 22 Eco: 1,12 
Normal: 1,15 
Aggr.: 1,09 

Eco: 1,32 
Normal: 1,32  
Aggr.: 1,28 

Eco: 1,08 
Normal: 1,10 
Aggr.: 1,10 

12 07:00-
09:00 

Mix 0 Leisure 12 Eco: 0,68 
Normal: 0,70 
Aggr.: 0,68 

Eco: 0,80 
Normal: 0,82 
Aggr.: 0,81 

Eco: 0,69 
Normal: 0,72 
Aggr.: 0,73 

 
Liu et al. (2017) found that privately used EVs use less energy than commercially used EVs. 

This matches the generalized cost model outcome, where business travelers tend to use the 
aggressive driving style on the motorway route more often than leisure travelers. 
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5.5 Validation 

5.5.1 Validation against laboratory measurements 

Argonne National Laboratory (ANL) shares a large publicly available dataset, the Downloadable 
Dynamometer Database, generated at the Advanced Mobility Technology Laboratory (AMTL) 
at Argonne National Laboratory under the funding and guidance of the U.S. Department of 
Energy (DOE). The mission of the research conducted by ANL and DOE was to “enable 
petroleum displacement through technology assessment & data dissemination” (Stutenberg, 
2014). The database consists of dynamometer data from research performed in a research facility 
with a controlled environment. The data from tests with a 2014 BMW i3 are used to compare 
this research with the ANL results. The i3 has been tested under different circumstances, 
amongst others with different ambient temperatures and with different preferred indoor 
temperatures. The dynamometer had a fixed route installed, based on multiple standard driving 
cycles. The route started with an UDDS cycle of 12 km followed by a Hwy cycle of 16,5 km. After 
the Hwy cycle, another UDDS cycle was driven, to finish the test with an US06 cycle of 12,8 km. 
Figure 5.22 shows the speed profile of the ANL tests. This combination of driving cycles shows 
a rich variety of different driving scenarios, with the UDDS being a typical urban driving cycle 
and the US06 and Hwy cycles being more similar to highway driving. 
 

 
Figure 5.26 Speed profile of the ANL tests 

Table 5.5 Validating the results against the ANL measurements 

ID Tambient 

[°C] 
Ttarget 
[°C] 

Cycle 
length 
[km] 

Emeasured 
[kWh] 

Epredicted 

[kWh] 
Prediction/ 
measurement 
[%] 

61505028 3,14 22,22 53,46 9,47279 9,51517 100,4 
61505019 23,65 23,65 53,29 6,280 6,12275 97,5 
61505024 36,43 22,22 53,46 6,957 6,51796 93,7 

 
Table 5.5 shows the validation of three predictions against three different ANL 

measurements. As could be seen, the model is very accurate (within 2,5% difference of the 
measurements) for temperatures between 3 and 24 °C. For extremely high temperatures (over 
35 °C), the difference becomes bigger than 6%. It’s reasonable to believe that the climate 
system’s energy consumption has been underestimated in the model for these extreme 
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temperature differences. Further research, preferably in a controlled research facility such as 
the ANL facility, is needed to quantify the influence of auxiliary systems more accurate.   
 
5.5.2 Validation against driving test measurements 

The ANL measurements show very precise measurements of the energy consumption of the 
BMW i3. A limitation of the ANL measurements – and many dynamometer tests in general – is 
that they don’t cover some real driving circumstances. The dynamometer cannot cover traffic 
intensity and since the speed profile is fixed, it also doesn’t cover different driving styles. The 
research performed at the ANL dynamometer only made use of a single drum, resulting in the 
fact that also different road types are not covered by these tests. To create a more realistic 
validation, 30 driving tests have been performed in Nieuwegein. All tests have been made in the 
same week. They include driving with and without the climate system running. All routes are 
being tested on all different timeslots to reduce the influence of the day. Different days of the 
week, as well as timeslots, are chosen to cover possible differences. June is considered one of 
the best periods for performing driving tests, as the average amount of days raining and the 
amount of rain are close to the yearly average. Furthermore, the average temperature within the 
measurement period ranges between a minimum of 10,8 °C and a maximum of 19,2 °C which is 
also representative for the Netherlands during morning driving tests (KNMI, 2019; MeteoGroup, 
n.d.).  
 The aggregated results of the measurements could be found in Table 5.6. The table 
shows the measured efficiency, which has been acquired by measuring dashboard data during 
the driving tests. Secondly, the table shows the predicted energy, which has been predicted by 
using the GPS speed measurements of the different routes. The table contains aggregated trip 
results of each route per testing day. The prediction error is calculated using the Mean Absolute 
Percentage Error (MAPE), which is frequently used to evaluate forecasting studies (De 
Myttenaere et al., 2017) and has also been used by other energy prediction studies (Wang et al., 
2017). The MAPE is calculated with the following equation: 
 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
100%
𝑛𝑛

��
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟
�

𝑛𝑛

𝑡𝑡=1

 [36] 

 
Table 5.6 Driving test results 

Date 
(dd-
mm-
yyyy) 

Timeslot Climate 
system 
on 

Measured 
efficiency 
(kWh/100km) 

Predicted 
efficiency 
(kWh/100km) 

Average 
MAPE 
per trip 
[%] 

MAPE of 
total 
daypart 
[%] 

11-06-
2019 

12:30-16:00 No R: 12,42 
C: 12,96 
M: 13,20 

R: 12,06 
C: 12,86 
M: 14,05 

7,6% 
8,3% 
3,1% 

2,9% 
0,8% 
6,7% 

12-06-
2019 

09:30-
13:00 

No  R: 10,25 
C: 11,57 
M: 12,90 

R: 10,60 
C: 12,07 
M: 12,55 

12,7% 
7,3% 
7,9% 

3,5% 
4,4% 
2,7% 

12-06-
2019 

09:30-
13:00 

Yes, ΔT = 
7,5˚C 

R: 18,15 
C: 20,45 
M: 21,45 

R: 19,03 
C: 20,76 
M: 14,91 

4,4% 
13,8% 
30,0% 

4,8% 
1,5% 
30,5% 

Average     10,57% 6,42% 
Average without the last motorway measurement  7,82% 3,41% 
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The MAPE has been calculated per trip (to represent the accuracy of short distance trips), and 
for the total daypart (aggregating all individual trips in that daypart, representing long distance 
trips). The MAPE per trip shows an average MAPE of 10%, meaning that there’s a significant 
error rate in the short individual measurements. However, a large part of this is caused by the 
measurements with the climate system on. The last measurement at the motorway is a 
significant outlier, since the model predicted a way too low energy consumption. This could be 
explained by the fast driving speed of the vehicle, especially on the motorway route and partially 
on the city center route. Shitzer (2005) found that at higher speeds, the heat transfer coefficient 
rises almost linearly with the driving speed. Since a higher heat transfer coefficient requires 
more thermal power to heat up an object, the climate system would need more power at higher 
driving speeds. This effect isn’t considered in the energy model. Further research should 
determine how to model the power consumption of the climate systems at high driving speeds, 
since the energy consumption rises significantly. If the last measurement isn’t considered, the 
MAPE per trip is 7,82%. The last column of Table 5.6 shows the MAPE of the total daypart, 
consisting of the sum of all trips on a certain route. It represents the accuracy of the prediction 
for longer trips (5-20 km) and shows a significant increase in accuracy, resulting in an average 
MAPE of 3,41% when not taking the last motorway measurement into account. Wang et al. 
(2017) concluded the MAPE of other papers is around 10% and therefore a significant gain in 
efficiency has been realized for trips of 5 km and higher. 
 The prediction error of all individual trips (representing short trips) and the daypart 
averages (representing long trips) could be found in Figure 5.27. 
 

 
Figure 5.27 Difference between measured and predicted energy consumption 

The influence of the climate system on the measured energy consumption has been 
visualized by Figure 5.23. Measurements done with the climate system off show a peak at 10-12 
kWh/100km, with an average efficiency of 12,3 kWh/100km. Simultaneously, the measurements 
performed with the climate system on have an average efficiency of 20,0 kWh/100km.  
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Figure 5.28 Influence of the climate system on the energy efficiency 

These test measurements match with the real driving tests which have been performed 
by members of Spritmonitor (n.d.). Measurements have been performed by using 59 different 
BMW i3’s with in total 5445 fuelings. The results could be found in Table 5.6. 

  
Table 5.7 Electricity consumption of 59 BMW i3’s 

Count (-) Fuelings 
(-) 

Min 
(kWh/100km) 

Max 
(kWh/100km) 

Mean 
(kWh/100km) 

Median 
(kWh/100km) 

59 5445 8,18 22,88 16,31 15,11 
 
5.5.3 Validation against BMW measurements  

BMW (2018) also did measurements with the i3 based on the Worldwide Harmonised Light 
Vehicle Test Procedure (WLTP) in order to compare the i3 with other vehicles. The WLTP 
replaces the former NEDC-driving cycle test and is aimed to be a more realistic simulation of 
real driving circumstances (Pavlovic et al., 2018). The WLTP has a speed profile which is very 
similar to the profile used in the ANL test, with about 50% of the cycle being an urban cycle, 
and the other 50% being outside the city (e.g. motorway driving). Figure 5.24 shows the WLTP 
driving cycle: 

 
Figure 5.29 Speed profile of the WLTC (class 3) driving cycle 
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BMW predicts an average energy consumption of 13,1 kWh/100 km. When predicting a 
standard WLTC driving cycle with the energy prediction model in, the outcome is 13,4 kWh/100 
km. As the difference is very small, one would say that the prediction made by BMW (which 
based on EU legislations) is very close to reality. However, a critical note has to be made here. 
To reach 13,4 kWh/100 km, the model needed to be calibrated in the most extreme Eco-settings. 
No wind or slopes were used in the prediction, as well as no auxiliary energy (meaning that the 
climate system, navigation system, radio and lighting were all turned off).  
 Comparing the BMW prediction to the Nieuwegein results would give more realistic 
results. In scenario 1, the Nieuwegein model indeed shows 13,1 kWh/100 km, although this is on 
the most sustainable route with the most sustainable driving style. When considering different 
scenarios, the results get worse. The winter scenario, in the middle of the morning peak, shows 
an energy consumption of 28,8 kWh/100 km for the aggressive driving style on the city center 
route. Also, highway driving reaches 28,0 kWh/100 km there, meaning that the range would be 
less than 50% of the range promoted by BMW.  
 A critical review of the system has been made by shifting from testing with NEDC-cycles 
towards WLTC-cycles, which created more realistic results in terms of CO2 (Pavlovic et al., 
2018). However, to be able to inform drivers about the possibilities of electric vehicles, the 
industry should be fair about the variations in driving range. Legislation could be a means to 
stimulate the industry towards better provision of information. 



 Donkers, A.J.A. 120 Nieuwegein case study 
______________________________________________________________________________________________________________________________________________________ 

 

  



 Donkers, A.J.A. 121 Nieuwegein case study 
______________________________________________________________________________________________________________________________________________________ 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Chapter 6 
Conclusion and discussion 
  



 Donkers, A.J.A. 122 Conclusion and discussion 
______________________________________________________________________________________________________________________________________________________ 

 

Chapter 6. Conclusion and discussion 
 
 
6.1 Conclusion 

This thesis aimed to quantify the effects of various environmental variables, traffic intensities 
and driving styles on the efficiency of electric vehicles, in order to provide the car with 
optimized route information based on the most energy efficient route and travel time 
preferences. The desire to gain more insight in this underdeveloped field of research led to the 
following research question: To what extent do driving style, environmental variables, 
infrastructural design and traffic intensity have an effect on the energy efficiency of electric 
vehicles and how could route optimization reduce the energy consumption within a driver’s time 
constraints? Major changes in the mobility sector are necessary to reduce the influence of the 
greenhouse effect, of which shifting from combustion engines to electric vehicles is one of the 
major developments. However, the persistent consumer constraints regarding range anxiety 
have a negative influence on the market penetration of EVs. Creating new quantitative insights 
in the relation between weather, infrastructural design, driving style and traffic intensity and 
the energy consumption of these vehicles might lead to an acceleration of sustainability 
strategies and could reduce range anxiety.  

One’s driving style has a significant influence on the way a vehicle is used and propels 
on the road network. To measure the influence of the driving style on the energy consumption, 
the following sub-question has been answered: What is the effect of different driving styles on 
the energy efficiency of electric vehicles? Combinations of a higher driving speed and a higher 
acceleration resulted in a significant increase in energy consumption for the aggressive drivers, 
confirming the findings of Wang et al. (2017). However, individually, these elements are found 
to have a very low effect on the energy consumption. This leaves an interesting research gap: 
determining the optimal eco-driving style considering both energy efficiency and travel time. 
Ericsson (2001) found that speed oscillations influence the energy consumption. This thesis 
extended this knowledge, finding that speed oscillations have a higher impact on aggressive 
drivers compared to eco-drivers. Using cruise-control turned out to be the most efficient for all 
driving styles.  
 Based on a literature review, many weather variables have been found to influence the 
energy consumption. To quantify these influences, the following sub-question has been 
answered: Which environmental variables do have an effect on the energy efficiency of electric 
vehicles and to what extent? Temperatures of 0°C have been found to have a significant impact 
on the energy consumption, mainly due to the use of the climate system, and could increase the 
energy consumption with 50% compared to average Dutch temperatures, confirming the 
findings of Hollweck et al. (2018) and Evtimov et al. (2017). Hollweck et al. (2018) also found a 
higher influence of temperature on urban driving cycles, which has also been found in this 
thesis. However, this thesis gives new insights by taking an increasing aerodynamic drag (5%) 
and an increasing rolling resistance (18%) into account. A quadratic relationship between wind 
speed and the energy consumption has been found, resulting in extreme aerodynamic drag 
forces for high wind speeds. This explains findings of Evtimov et al. (2017) who found that wind 
mainly influences motorway driving. The influence of the lighting system is found to be very 
small compared to other forces, as also found by Evtimov et al. (2017). 
 A road’s infrastructural design is the main determinant of the speed profile on that road. 
Typical infrastructural elements, such as curves, road slopes, road types, traffic calming 
measures and signalized junctions have been researched to answer the following research 
question: What is the influence of different infrastructural elements on the energy efficiency of 
electric vehicles? Rolling resistance has been found to have a relatively high effect on low driving 
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speeds. As Michelin (2003) mentions, the main reason is that these roads surfaces typically have 
a higher resistance. Road curves are found to have an influence on the energy consumption if 
the lateral acceleration of a vehicle requires the vehicle to slow down during the curve. The 
lower the radius of the curve and the higher the initial driving speed of the vehicle, the higher 
the influence on the energy consumption. Since aggressive drivers tend to take turns with a 
higher lateral acceleration, they slow down less during some curves, resulting in a lower 
influence compared to less aggressive driving styles. This extends the knowledge of recent 
models (Wang et al., 2017) which didn’t consider different lateral accelerations for different 
driving styles. Hilly driving influences the energy consumption through the increased 
gravitational forces. For very steep hills, the influence of the gravitational force is so large that 
differences between driving styles disappear. Another finding is that the order of hills doesn’t 
matter: uphill-downhill scenarios resulted in the same energy consumption as downhill-uphill 
scenarios. These insights help to explain findings by Liu et al. (2017), however more research to 
create practical hilly driving predictions is necessary. Traffic calming measures influence the 
energy consumption through the acceleration forces and are typical elements in stop-and-go 
traffic scenarios. The elements cause cars to decelerate and accelerate, resulting in higher energy 
consumptions. A linear relation has been found between the speed reduction on a speed bump 
and the increase in energy consumption. This influence is about twice as much for the normal 
driver compared to the eco-driver, while the influence is three times as much for aggressive 
drivers. Calculations also showed that in a sequence of speed bumps, a significant improvement 
in energy efficiency could be achieved if a driver chooses to keep his speed lower in between the 
speed bumps. The influence of a signalized intersection depends on the waiting time and the 
ambient temperature. During normal weather, the deceleration and acceleration itself have a 
higher influence than a waiting time of 30 seconds. However, during winter, the climate system 
causes a significant increase in energy consumption during the waiting time. While the 
influence of traffic calming measures is weather independent, the temperature does have a 
significant influence on signalized intersections. To the best of my knowledge, this is the most 
extensive research into the microscopic influence of traffic calming elements on a vehicle’s 
energy consumption. 
 Roads have a maximal capacity, and traffic is found to be influenced by the traffic 
intensity if this intensity reaches the capacity. The influence this intensity has on the energy 
efficiency has been researched in the following sub-question: What is the effect of traffic 
intensity (intensity/capacity) on the energy efficiency of electric vehicles? The morning peak 
traffic only had a little influence on the energy consumption, however travel times rose 
significantly. The city center route, which contains a lot of signalized junctions, is affected the 
most by a gain in traffic due to the longer waiting times at the traffic lights. In a winter scenario, 
the long waiting times at the traffic lights negatively influence the energy consumption. 
Calculations have shown that the city center is affected the worst by the winter scenario. Due 
to their longer travel times, eco-drivers are also more heavily affected by cold weather than 
aggressive drivers, reducing the gap in energy efficiency between the different driving styles. If 
all drivers in the network would switch to an eco-driving strategy, the traffic intensity has huge 
implications for the travel times. The low driving speed and calm acceleration and deceleration 
cause the network to collapse during peak hours, as the intensity outreaches the capacity. 
Concluding, eco-driving is positive for the energy efficiency of vehicles, though the network 
capacity should be closely monitored from a macro-perspective. Most researched microscopic 
models lack in taking traffic intensity into account and therefore don’t give a full overview of 
the energy efficiency and travel times. 
 Strategies to create a higher energy efficiency and thus reduce range anxiety could be 
performed on an individual level as well as on larger scale levels. To get insights in the larger 
scale, power breakdowns have been created for the different routes, to get new insights in the 
relation between different routes and scenarios and the different power consumptions of a 
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vehicle. Individual strategies relate to the decision-making process of the individual, based on 
the extended knowledge of travel time and energy consumption. These two methods aim to 
answer the following sub-question: Can route optimization and style optimization make more 
energy efficient routes within a driver’s time constraints, and if yes, to what extent? The power 
breakdown profiles give insights in the power consumption and could be used to create more 
sustainable infrastructure and vehicles on the longer run. Different powers turned out to be 
dominant for different routes. In the residential route, the rolling resistance was the dominant 
power. Acceleration forces caused the high energy consumption at the city center, while 
aerodynamic drag dominated the power consumption on the motorway route, confirming 
findings of Evtimov et al. (2017). The immense share of the auxiliary power consumption during 
winter driving has been quantified by running winter simulations, resulting in a share of 30-
40% of the total power consumption. Individual strategies relate to the decision-making process 
of route and driving style decisions. A generalized cost model based on charging costs, travel 
time valuation and CO2-emission pricing has been created. The model showed that the 
preferences have a significant influence in the preferred route and driving style. Business travel, 
cold weather and a high income turned drivers towards aggressive driving on the motorway, as 
the travel time has a huge influence on these drivers. Drivers which perform leisure trips in 
average weather conditions and have a lower income tend to switch towards more sustainable 
driving styles and routes. The results extend findings of Litman (2009), who found that business 
travelers have a higher travel time valuation and Liu et al. (2017), who found that business 
travelers consume more energy per driven kilometer. Calculations found that shifting to a more 
sustainable driving style has more effect on the energy efficiency than shifting to a more 
sustainable route. The research proved that different optimal routes exist for different scenarios 
and different personal preferences. These routes have different dominant energy sources, 
resulting in different strategical choices to make these routes more sustainable.  

To validate the accuracy of the model, the last sub-question which has been answered 
was: To what extent does this predicted efficiency correspond to reality? The accuracy has been 
validated in threefold. First, the results have been compared to laboratory measurements. The 
model showed an accuracy of 99% compared to the lab measurements for Dutch driving 
conditions. Secondly, the model has been validated against real driving tests performed in 
Nieuwegein with a BMW i3. The measurements show similar energy efficiency values as 
modeled in chapter 5 and show the differences between the different routes. They also prove 
the influence of the climate system on the energy efficiency. These measurements have been 
compared to data from 5445 fuelings by 59 BMW i3’s gathered from Spritmonitor, showing 
similar minimum and maximum efficiencies. Finally, the efficiency given in the technical 
specifications of BMW itself have been compared to the model, resulting in some critical notes 
to BMW. 
 When combining the answers to the sub-questions, an answer on the main research 
question could be formulated. To what extent do environmental variables, traffic intensity and 
driving style have an effect on the energy efficiency of electric vehicles and how could route 
optimization reduce the energy consumption within a driver’s time constraints? Environmental 
variables, traffic intensity, driving style and the infrastructural design all have an influence on 
the energy consumption. Combining these variables into a network creates complex scenarios, 
resulting in different optimal routes in terms of energy efficiency and travel time for each 
scenario. Combined with different personal preferences, personalized route and driving style 
information could be provided based on the available urban data.  
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6.2 Discussion 

This thesis adds knowledge to a fundamental basic understanding of electric vehicles and their 
use in cities and is therefore relevant for both scientific and societal purposes. Simultaneously, 
the findings of this thesis could be used by numerous professionals. Subchapter 6.2.1, 6.2.2 and 
6.2.3 emphasize the most important findings for different practical applications and suggest 
further research in these fields.  
 Academic understanding has been created by quantifying the relationship between built 
environment variables and the energy consumption of electric vehicles. A fundamental 
understanding of our cities and their influence on vehicles is scientifically relevant as research 
in electric driving is emerging. A gap in knowledge has been filled by not only quantifying the 
energetic influence of individual elements, but also combining these to create insight in the 
interconnection of these elements.  
 A refreshing method has been used, by using methods from multiple research fields. 
Combining knowledge from electrical engineering, automotive, traffic engineering and the built 
environment resulted in new insights. The combination of physical calculations, traffic 
modelling, energy modelling and driving tests created a better understanding at the interfaces 
of the different research directions. It also led to many new questions being raised. The method 
has the potential to perform many more research with.  

Likewise, the findings are obviously also societally relevant, as any research that 
accelerates the transition towards electric driving brings society closer to the UN’s Sustainable 
Development Goals. The findings in this research give new insight in the energy consumption 
of electric vehicles and thus contributes to reducing range anxiety. 

Further research topics should focus on the further development and implementation 
of the energy prediction model. Eboli et al. (2017) mention the underdevelopment of the 
influence of e.g. socioeconomic and behavioral differences, as well as mood, on the driving style 
and energy consumption of electric vehicles. Further developing this knowledge would also 
create more accurate driving style profiles. Another interesting topic is the emergence of 
automated vehicles and MaaS. The rising amount of interest for these research topics is 
promising. Yet, still more research is needed in how automated vehicles could positively 
influence energy consumption on roads, and how the energy prediction models could be game 
changers for MaaS business models. As this research has created a basic understanding of the 
energetic influence of basic driving style parameters, further research could determine an 
optimal driving style for AVs, both individually as well as in a network (such as the positive 
influence of platoons). Incorporating the model activity-based travel research would be 
interesting to research how mobility decisions relate to people’s activity planning and how route 
optimization could lead to a more sustainable mobility decision making process. A current 
limitation of eco-driving is that it assumes that the driver has knowledge about a route. Jimenez 
(2014) created some first insights in how to inform eco-drivers, however, more research is 
necessary. Finally, research should be done towards a practical implementation of this thesis. 
What data is necessary, how to link all this data and how to create traffic management systems 
which (centralized or decentralized) manage the vehicles. A mesoscopic approach would be 
interesting as it allows estimations at a larger scale. 
 
6.2.1 Application for navigation companies 

This thesis has proven that optimal routes are dependent on many variables. It showed that the 
shortest route is not always the most sustainable. The generalized cost model proved that the 
most attractive route also differs for personal preferences. Research and development could be 
performed to create better navigation systems which could better inform the driver. Not only 
the calculations in the system, but also the way information is shared through the navigation 
system and the driver is nudged towards a better driving style and route deserves more research. 
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6.2.2 Application for car manufacturers 

This thesis gives insight in the changing dominant powers working on a vehicle at different 
routes. It proves that different sustainability strategies to reduce energy consumption on a route 
work the best for different scenarios. This research could help car manufacturers in making 
design choices based on the energetic consequences of these choices. Especially on motorways, 
better aerodynamic performance would save a significant amount of energy. The efficiency of 
the motor and the regenerative braking also have a big effect on the energy consumption. As 
bidirectional charging systems are emerging (Hoelen, 2019), reaching a destination with as 
much energy as possible could make some profit with the remaining energy in the vehicle. 
Therefore, knowledge about eco-driving and eco-routing combined with vehicle to grid 
technologies is a promising research field which is currently underdeveloped. 
 
6.2.3 Application for traffic engineers 

The thesis gives qualitative insight in the energetic consequences of a road design. It shows that 
relatively, the road type has a big influence on the energy consumption, especially in winter and 
on residential roads. Stop-and-go traffic situations (such as speed bumps) should be avoided if 
possible, as they significantly increase the energy consumption. Other ways of slowing down 
traffic more constantly, such as different linings or smaller roads, would increase a vehicles 
energy efficiency. Furthermore, focusing on lower delay times at signalized junctions is proven 
to be a sustainable measure, especially in winter. Focusing on the vehicle flow on a macro-scale 
would significantly reduce travel times but has not found to be a very effective sustainability 
strategy. However, when all cars shift to an eco-driving strategy, traffic flow is affected badly. 
Therefore, monitoring the traffic flow on a macroscopic level and improving it where necessary 
is a requirement for improving the energy efficiency of the total network. 
 
6.2.4 Data 

Finally, this thesis gives insight in how different datasets could be used to create an energy 
prediction model, and how much of an influence the variables are on the energy consumption. 
It gives insights in how different types of data could be used in the models. Very important is 
correct vehicle data about the rolling resistance of the tires, the aerodynamic drag coefficient 
and the energetic performance of the vehicle (both discharge as regenerative). Concerning the 
weather, the outdoor temperature should be used to determine the air density and rolling 
resistance. Wind has a significant influence, though more research is needed to create a good 
wind model for cities to properly determine the wind speed and it’s direction. The influence of 
day- and night should not necessarily be modelled, as the energy consumption by the lighting 
system could be measured by the vehicle itself. The same goes for the climate system. Road 
slopes also have an effect on the energy consumption, but this effect turned out to be very minor 
in the Nieuwegein case study, especially if the regenerative braking efficiency is high. Therefore, 
the advice is to only model significant slopes. Road curvature influences the energy efficiency 
but is hard to model manually. More research is needed to create faster and more consequent 
ways of determining the energy consumption at curves, in example by using GIS. Traffic calming 
measures and signalized intersections should be modeled if energy predictions are to be made. 
This thesis found that for traffic calming measures, only modelling the bump centerline and the 
speed reduction would give accurate results. 
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6.2.5 Limitations 

Multiple limitations have been identified during the performance of this research, affecting the 
accuracy of the results. Limitations have been found in the method, as well as in gathering the 
data.  

First, finding accurate data has been a challenge. There’s no complete dataset of electric 
vehicles containing the powertrain efficiency, regenerative braking efficiency and power use of 
auxiliaries. Therefore, parts of the model had to be made based on assumptions. For the 
environmental variables, wind speed and direction could still not be modeled accurately on 
large scales and therefore remains a gap in the energy prediction model. Infrastructural data 
had to be acquired manually. As microscopic traffic models contain a lot of information, 
modelling the Nieuwegein case was very time consuming. Information about infrastructural 
design elements was often based on visual observations or assumptions. As there seems to be 
no guideline to create these microscopic models, and no method has been commercialized to 
automatically create complete microscopic models, this method doesn’t seem to be suitable to 
use on a larger scale. The development of mesoscopic models, combining the strengths of micro- 
and macroscopic models, is interesting and should be closely kept an eye on. 

The knowledge about traffic behavior and driving styles is still too scarce to create a 
complete overview of all the effects on energy consumption. Driving styles have been 
generalized into three categories for this thesis, while in practice many combinations of 
variables representing the driving style are likely to be possible. Further research into the 
behavior and decision-making process of a driver would be necessary and it would be interesting 
to see this knowledge to be combined with energy prediction modelling.  

Finally, the driving tests for the validation has been done with only one driver. Testing 
multiple drivers would be extremely valuable since this would not only create a more reliable 
validation but could also give new insights in the differences in driving style.  
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Appendix A - Routes in Nieuwegein 

  

City center route 

Residential route 

Motorway route 
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Appendix B – VISSIM model of Nieuwegein 
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Appendix C - Desired speed distrubutions 

30 km/h, eco-driving: 
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30 km/h, normal driving: 

 
 
30 km/h, aggressive driving: 
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Appendix D – Driving tests 

Driving test period #1 
Date:   11-06-2019 
Car:   BMW i3 
Passengers:  Driver only 
Lights on:  Yes, daytime 
Climate system on: No 
 

Trip # Route Average 
speed 
[km/h] 

Average 
consumption 
[kWh/100km] 

Driving 
style 

Notes 

1 Residential 28,0 10,1 Eco  
2 City center 36,6 11,2 Normal  
3 Motorway 46,1 12,6 Eco  
4 Residential 39,2 10,4 Normal  
5 City center 34,3 15,3 Aggressive Many traffic lights turned 

red 
6 Motorway 51,6 13,6 Aggressive Regen efficiency better 

than expected 
7 Residential 39,3 15,2 Aggressive  
8 City center 32,0 10,1 Eco  
9 Motorway 47,8 11,4 Normal  
10 Residential 40,8 17,8 Aggressive  
11 City center 37,4 17,3 Aggressive  
12 Motorway 44,1 15,2 Aggressive Congestion 
13 Residential 28,8 8,6 Eco Extreme eco-driving, 

other vehicles annoyed by 
me 

14 City center 29,0 10,9 Normal Congestion 
15 Motorway 41,8 12,6 Normal No congestion 
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Driving test period #2 
Date:   12-06-2019 
Car:   BMW i3 
Passengers:  Driver only 
Lights on:  Yes, daytime 
Climate system on: No 
 

Trip # Route Average 
speed 
[km/h] 

Average 
consumption 
[kWh/100km] 

Driving 
style 

Notes 

16 Residential 27,0 9,5 Eco  
17 City center 38,3 11,3 Normal  
18 Motorway 53,2 12,7 Normal  
19 Residential 35,0 10,4 Normal  
20 City center 34,6 12,7 Eco  
21 Motorway 45,3 11,1 Eco  
22 Residential 34,7 10,2 Normal  
23 City center 44,8 10,7 Normal Rain 
24 Motorway 45,6 14,9 Normal Rain 
25 Residential 30,9 10,9 Normal Rain 
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Driving test period #3 
Date:   12-06-2019 
Car:   BMW i3 
Passengers:  Driver only 
Lights on:  Yes, daytime 
Climate system on: Yes 
 

Trip # Route Average 
speed 
[km/h] 

Average 
consumption 
[kWh/100km] 

Driving 
style 

Notes 

26 City center 40,0 16,9 Normal  
27 Motorway 48,8 20,3 Normal  
28 Residential 33,1 14,7 Normal  
29 City center 35,7 24,0 Aggressive  
30 Motorway 49,3 22,6 Aggressive  
31 Residential 33,3 21,6 Aggressive  
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Appendix E – Nieuwegein results: Scenario 1 

 

 Eco-driving 
Normal 
driving 

Aggressive 
driving 

Residential route       
d [m] 3140 3140 3140 
t [s] 344.92 322.475 325.47 
E [kWh] 0.41039327 0.52418624 0.580296431 
E/d [kWh/km] 0.13069849 0.166938293 0.184807781 
E*t [kWh*s] 141.552848 169.0369576 188.8690794 
E*t^2 [kWh*s^2] 48824.4083 54510.19291 61471.21929 
Range [km] 289.980387 227.0299962 205.0779457 
City center route       
d [m] 3735 3735 3735 
t [s] 318.745 298.53 279.585 
E [kWh] 0.51566825 0.731335853 0.843954242 
E/d [kWh/km] 0.13806379 0.195806119 0.225958298 
E*t [kWh*s] 164.366675 218.3256922 235.9569468 
E*t^2 [kWh*s^2] 52391.0559 65176.76888 65970.02296 
Range [km] 274.510794 193.5588136 167.7300651 
Motorway route       
d [m] 4570 4570 4570 
t [s] 277.585 257.76 242.765 
E [kWh] 0.76572959 1.024617428 1.1645837 
E/d [kWh/km] 0.16755571 0.224205127 0.25483232 
E*t [kWh*s] 212.555047 264.1053883 282.720162 
E*t^2 [kWh*s^2] 59002.0928 68075.80489 68634.56014 
Range [km] 226.193428 169.0416298 148.7252483 
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Appendix F – Nieuwegein results: Scenario 2 

 

 Eco-driving 
Normal 
driving 

Aggressive 
driving 

Residential route       
d [m] 3140 3140 3140 
t [s] 414.18 414.32 381.205 
E [kWh] 0.42546668 0.536528976 0.639040056 
E/d [kWh/km] 0.13549894 0.170869101 0.203515941 
E*t [kWh*s] 176.21979 222.2946852 243.6052644 
E*t^2 [kWh*s^2] 72986.7127 92101.13398 92863.54483 
Range [km] 279.706979 221.807219 186.2261981 
City center route       
d [m] 3735 3735 3735 
t [s] 481.06 463.36 433.025 
E [kWh] 0.55146503 0.75552778 0.907089911 
E/d [kWh/km] 0.14764793 0.202283207 0.242862091 
E*t [kWh*s] 265.287768 350.0813521 392.7926087 
E*t^2 [kWh*s^2] 127619.333 162213.6953 170089.0194 
Range [km] 256.691707 187.3610789 156.0556438 
Motorway route       
d [m] 4570 4570 4570 
t [s] 362.695 350.205 335.575 
E [kWh] 0.76090369 0.97932554 1.129687344 
E/d [kWh/km] 0.16649971 0.214294429 0.247196355 
E*t [kWh*s] 275.975964 342.9647007 379.0948306 
E*t^2 [kWh*s^2] 100095.102 120107.953 127214.7478 
Range [km] 227.628019 176.8594741 153.3194125 
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Appendix G – Nieuwegein results: Scenario 3 

 

 Eco-driving 
Normal 
driving 

Aggressive 
driving 

Residential route       
d [m] 3140 3140 3140 
t [s] 414.18 414.32 381.205 
E [kWh] 0.59076163 0.692971374 0.783010985 
E/d [kWh/km] 0.18814065 0.22069152 0.249366556 
E*t [kWh*s] 244.681652 287.1118995 298.4877025 
E*t^2 [kWh*s^2] 101342.247 118956.2022 113785.0046 
Range [km] 201.445039 171.7329237 151.9850964 
City center route       
d [m] 3735 3735 3735 
t [s] 481.06 463.36 433.025 
E [kWh] 0.74395834 0.941761585 1.077179287 
E/d [kWh/km] 0.19918563 0.252145003 0.288401415 
E*t [kWh*s] 357.888599 436.3746478 466.4455605 
E*t^2 [kWh*s^2] 172165.89 202198.5568 201982.5889 
Range [km] 190.274767 150.3103358 131.4140569 
Motorway route       
d [m] 4570 4570 4570 
t [s] 362.695 350.205 335.575 
E [kWh] 0.92436281 1.135182434 1.278167014 
E/d [kWh/km] 0.20226757 0.248398782 0.279686436 
E*t [kWh*s] 335.261769 397.5465644 428.9208956 
E*t^2 [kWh*s^2] 121597.767 139222.7946 143935.1295 
Range [km] 187.375561 152.5772376 135.5088953 
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Appendix H – Nieuwegein results: Scenario 4 

 

 Eco-driving 
Normal 
driving 

Aggressive 
driving 

Residential route       
d [m] 3140 3140 3140 
t [s] 428.935 415.07 412.34 
E [kWh] 0.42879198 0.534452521 0.614096772 
E/d [kWh/km] 0.13655796 0.170207809 0.195572221 
E*t [kWh*s] 183.923889 221.8352081 253.2166632 
E*t^2 [kWh*s^2] 78891.3933 92077.13982 104411.3589 
Range [km] 277.537839 222.6689841 193.7903036 
City center route       
d [m] 3735 3735 3735 
t [s] 482.9 474.235 471.895 
E [kWh] 0.55761208 0.759879525 0.890448075 
E/d [kWh/km] 0.14929373 0.203448333 0.238406446 
E*t [kWh*s] 269.270875 360.3614666 420.1979946 
E*t^2 [kWh*s^2] 130030.905 170896.0201 198289.3326 
Range [km] 253.861967 186.2880829 158.9722117 
Motorway route       
d [m] 4570 4570 4570 
t [s] 411.305 400.835 384 
E [kWh] 0.8153217 1.060815588 1.041444728 
E/d [kWh/km] 0.17840737 0.232125949 0.227887249 
E*t [kWh*s] 335.345891 425.2120162 399.9147757 
E*t^2 [kWh*s^2] 137929.442 170439.8585 153567.2739 
Range [km] 212.435166 163.2734303 166.3103142 
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