Improving the design process: The implications of automated
verification of client specific requirements using semantic web
standards and rule checking techniques

By L.T. (Luuk) Moonen BSc

Master Thesis
Construction Management and Engineering
Eindhoven University of Technology

November 2016

Supervisors:

Prof. Dr. Ir. B. (Bauke) de Vries - TU/e

Dr. Dipl.-Ing. J. (Jakob) Beetz - TU/e

PhD. Student C. (Chi) Zhang - TU/e

Ir. W.F. (Wilfred) van Woudenberg - BAM Advies & Engineering
C.(Carin) Barreveld - BAM Advies & Engineering

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Colophon

General
Report

Date
Date Presentation
Place

Student

Author

Student Number
E-mail

University

Master Track

Chair

Graduation Company
Company

Division

Supervisors

Chairman

The implications of automated verification of client specific requirements
using semantic web standards and rule checking techniques

2 November 2016
24 November 2016
Eindhoven, The Netherlands

Luuk Thomas Moonen

0716516

L.t.moonen@student.tue.nl
Itmoonen@gmail.com

Eindhoven University of Technology
Construction Management and Engineering
Information Systems in the Built Environment

BAM Advies & Engineering
BIM center

Prof. Dr. Ir. B. (Bauke) de Vries — TU/e

First Supervisor

Dr. Dipl.-Ing. J. (Jakob) Beetz — TU/e

Second Supervisor

PhD. Student C. (Chi) Zhang - TU/e

Company Supervisors

Ir. W.F. (Wilfred) van Woudenberg - Senior BIM advisor
C. (Carin) Barreveld - Process manager Systems Engineering

BAM Advies & Engineering

Construction Management and Engineering
Eindhoven University of Technology

De Wielen

Postbus 513, 5600 MA Eindhoven

Tel. +31(0)40 247 5051

BAM Advies & Engineering

Koninklijke BAM Groep
Runnenburg 12
3981 AZ Bunnik
Tel. +31(0)30 659 8933

mailto:l.t.moonen@student.tue.nl
mailto:ltmoonen@gmail.com

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Preface

This thesis represents the end of my master Construction Management and Engineering at Eindhoven
University of Technology. A master which I enjoyed immensely to further develop my skills in the field of
process and project management in the construction sector. This research is carried out in collaboration with
BAM Advies & Engineering. This collaboration has resulted in an interesting research that makes use of the
knowledge of both the academic world and the current practice in the construction industry. This
combination has contributed tremendously to my personal development and has driven me to continue to
work and develop in this field of expertise. To execute this research and to gain the knowledge in this field of
expertise | have received help and guidance from a couple of people. Without this help and guidance it
wouldn’t have been possible to execute the research. This section is dedicated to those that helped me
during my graduation project.

Firstly I want to thank Jakob Beetz for his guidance in this process. From the first until the last meeting you
have challenged me to think about the further possibilities and opportunities with the available techniques.
This has resulted in interesting discussions about the applicability towards the current sector and future
development in the construction industry. Thank you for the continuous support and helping me bring this
research to the next level.

Secondly I want to thank Chi Zhang for the help you have given me. As I still remain a beginner in
programming, I must thank you greatly for helping me develop the prototype of the tool. I learned very
much from our discussions about the use of the checker and I highly appreciate the time you have invested
in helping me.

Wilfred van Woudenberg & Carin Barreveld, thank you greatly for giving me the opportunity to conduct this
research at BAM Advies & Engineering. You both have helped me greatly to improve my research and to
ensure that the research was applicable to the current processes. The extensive advice you both gave me has
enabled me to understand the current practice and what developments are happening. The meetings were
always challenging my knowledge and after every meeting I knew how to continue and improve my work. |
look forward continuing working together. Aside from my graduation supervisors I also want to thank the
people from BAM whom I interviewed. | greatly appreciate the time you all have taken for the interviews
which enabled my research.

Eline, Joost, Carin, my special thanks to you for the continuous support during the total process. The lack of
clarity when you start formulating your research has been hard sometimes and your support has given me
the strength to reach my goal. Last but not least, HDP. Thanks to all of you who made my life as a student
unforgettable.

I hope that every reader will enjoy reading (and learning from) this thesis report.

Luuk Thomas Moonen

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Contents
Colophon 2
Preface 4
Contents 6
Summary 8
1. Introduction 9
1.1 Motivation 9
1.2 Problem definition 10
1.3 Research scope 10
1.4 Research Questions 11
1.5 Research Design 11
1.6 Expected results 12
2. Glossary 14
List of figures 14
List of tables 14
List of Listings 15
List of abbreviations 15
3. Literature review 16
3.1 Motivation 16
3.2 Design Process 16
3.2.1 Information exchange in the Design process 18
3.2.2 Systems engineering 19
323 Requirements 24
324 Verification 25
33 Rule Checking 27
3.3.1 Types of rule checkers 27
3.3.2 Rule checking process 29
333 Rule checking platforms 31
334 Difficulties in automated rule checking 31
4. Qualitative research 34
41 Motivation 34
4.2 Interview setup 34
Setup per subject 35
43 Interview outcome 36
43.1 Design Process 37
432 Verification 40
433 Automation of Verification 42
4.4 Conclusions on research questions 43
5. Model 45

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

5.1 Introduction 45
5.1.1 Research Problem 45

51.2 Importance 45

513 Previous Work 46

514 Primary hypothesis & objective 48

52 Method 48
5.2.1 Tasks for developing the requirements checker 50

53 Results 51
53.1 Rule interpretation 52

53.2 Building model preparation 61

533 Rule execution 63

534 Rule Reporting 67

54 Use case validation 69
5.5 Discussion 70

6. Conclusion 73
7. Recommendations 76
7.1 Company Recommendations 76
7.2 Future development & research 77

8. References 79
Annex A - Interview Questions 84
Annex B - Verification Process 85
Annex C - Requirements Hierarchy 86
Annex D - Space Classification 87
Annex E - Selected Requirements 88
Annex F - SPIN Constraint Templates 90
Annex G - BAM OTL 103
Annex H - SPIN Inference Rules 108
Annex I - SPIN Constraint template queries 113
Annex] - Tool Flowchart 117
Annex K - Script Tool 118
Backend script 118
Front end script 120
Annex L - Application windows 133
Annex M - Flowchart Template selection 136

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Summary

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

1. Introduction

The complexity of projects in the Architecture, Engineering and Construction (AEC) sector has increased over
the years due to changes in responsibilities and more complex requirements from the client (Lenferink,
Tillema, & Arts, 2013). A more integrated way of working is there for emerging in the industry to deal with
this complexity. This must lead to a reduction in failure costs and higher quality designs (Abanda, Zhou, Tah,
& Cheung, 2013). To achieve this higher quality, the performance towards requirements of a design must be
monitored closely. To assure that a design is complying towards standards and requirements, the importance
of information management within a building project is growing.

The use of Building Information Models (BIM) has made it possible to deal with this information
management. The AEC sector has acknowledged the various benefits of BIM to create designs of higher
quality with less errors (Chuck; Eastman, Teicholz, Sacks, & Liston, 2011). To structurally manage
information of requirements, the AEC sector is implementing Systems Engineering (SE) in their design
processes (Pels, Beek, & Otter, 2013). The information in requirements and in building models interact
greatly in the verification process. Here the design is checked on the compliance with requirements. This
process is a time consuming and error prone process which can be complex. Therefor the research of
automated rule checking of 3D models has come forward to reduce these errors and achieve higher quality.
The process of rule checking within the AEC sector is researched upon greatly. This research investigates the
possibility of using rule checking techniques for automated verification of client specific requirements.

1.1 Motivation

The importance of managing the compliance of requirements has grown with the introduction of integrated
contracts. These contracts have resulted in a shift of responsibility in a design process (Lenferink et al., 2013).
This shift has resulted in a higher responsibility of the contractor during the whole construction project. This
results in the need for increased visibility in the performance of a design. This performance is realized by
firstly the design and after that the realization. Having a design that complies 100% with the requirements
before a building is constructed, decreases the failure costs and improves the quality for a client and the end
user. An opportunity here lies in to manage this performance with the use of building information models.

The management of the client specific requirements remains difficult as the client doesn’t completely know
what he wants in the start of a project. To define a working model before it is realized therefor is difficult as
clients define their need iteratively by evaluating and updating their requirements for the design (Kim, Kim,
Cha, & Fischer, 2015). A contractor therefor should be adaptable to this iterative character and manage the
requirements closely. The management of requirements now remains a manual process which requires
investigating the information about requirements and the design. This information is available within
computer databases. The usability of this information depends on the data structure, the way the data is
stored and how the users can interact with the data. Researching this area to see how the information should
be documented for the usage in verification in the design process is there for necessary. The usage of this
information for automated verification will improve efficiency and quality of the design process.

For checking data in BIM models, automated rule checkers are used. The current automated checkers of
model data focus mainly on compliancy with building codes and well formedness of a building model. These
checks have a static character and don’t have an element of timing in the checks. The investigation of
automated verification addresses this element of time in a design process. This can increase the value of a
checker.

The current automated checkers also focus mainly on specific domains and elements and not on the total
design process (Krijnen & van Berlo, 2016). The method for creating a rule checker that focusses on a general
approach of capturing rules is there for investigated upon in this research. Lastly the method of creating rule
checkers relies on expert knowledge on translating a requirement into a computer processable code (Zhang,
Beetz, & Weise, 2015). This makes the openness of working with and creating the rule checkers difficult as
high levels of expertise on programming, using data structures and the construction domain is needed. The
person who will check a model will always be relying on the interpretation of the programmer and won't be

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

able to create the checks himself. Therefor a great opportunity lies in creating an automated rule checker
that allows non-experts to create the rules themselves.

The usage of semantic web standard for this implementation makes this possible and also gives the
possibility to create a knowledge system. An automated rule checker based upon semantic web standards
makes reusability possible. This reusability creates the opportunity to create a knowledge system which can
be expanded.

1.2 Problem definition

To ensure the functionality and quality of a building, the compliancy towards client specific requirements is
of major importance. Non compliancy towards these requirements still results in extensive additional costs
and extended duration of a project. The quality of a design is there for important to manage properly to
reduce design errors. This required quality of a design is checked in the verification process. Managing this
quality of a design remains problematic due to the complexity of the verification process, as this is a manual
and error prone process.

The main problem in these errors originates from the complexity of managing the information in
requirements and in the building model. This comes from the fact that there is a vast amount of
requirements and standards which can apply to a building project. The applicability of these requirements
varies among the different projects and stakeholders. Furthermore these requirements also are also varying
greatly in how they are stated in the requirements databases. This results in complexity in managing the
compliancy towards requirements in the design process.

Here lies an opportunity to improve the design process by using rule checking techniques to overcome this
complexity. These techniques can be beneficial for the design process by defining this information once and
translating this into reusable rules. When the knowledge for these checks is laid down in a smart and open
system, the amount of errors can be reduced as the knowledge is captured. The usage of rule checking for
client specific requirements relies on the applicability to the current design process, possibility of using a
rule checker by the layman and aligning the information in requirements and objects. Therefor the design
process must be elaborated on and the preconditions for automation must be defined clearly. Also the
interpretation of the rules which are created must be defined clearly to realize automated verification.

1.3 Research scope

To prove the usability of rule checking for the purpose of automated verification of client specific
requirements, defining the scope of this research is needed. This research will start evaluating the problem in
a broad way to eventually derive a prototype which evaluates the concept which is defined along the steps in
the research. To ensure that verification of client specific requirements can be automated, the design process
must be evaluated to ensure that all factors and steps in the verification process are taken into account. The
information structures and interactions will there for also needed to be evaluated. In this way pre conditions
of automation of the existing design process can be defined. For creating a prototype for automated
verification of client specific requirements, certain objects and requirements must be defined and chosen.
This must be done to make this research specific and achievable.

Construction Project: HS 3

Design Process : HS 3
BIM & SE

Verification Process : HS 4

Prototype
Requirements
Checker : HS 5

Figure 1: Research Scope

10

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

This research focuses on the requirements of internal walls. This object is chosen for evaluation as there is a
vast amount of varying requirements which are applicable to walls and walls are occurring often in a
building. The relation with spaces of these walls is essential to investigate the total working of a system. This
gives a good opportunity to evaluate the possibilities of using rule checking for client specific requirements.
This prototype is evaluated with a use case to define the usability and benefits and drawbacks of using rule
checking techniques for client specific requirements.

1.4 Research Questions

From the problem definition and the scope the research questions can be drawn up. The main research
question is:

How can verification of client specific requirements be automated and improve the
design process?

This main research question is divided in seven sub questions. These sub questions elaborate on the two
parts of the research. These parts are the design process and automated rule checking. The design process is
evaluated with a view towards Systems Engineering, verification of requirements and the information
exchange which is happening in the process. Automated rule checking is reviewed to evaluate the
possibilities to create an automated rule checker for client specific requirements. These two subjects lead to
the following sub questions;

Design Process

1 what steps can be found in the design process and how do they align with the Systems
engineering process?

2 What type of requirements can be found in building projects and have the biggest impact in the
case of non-conformity?

3 What is the common practice in verification in the design process?

4 what does automation of verification implicate for the design process?

Automated Rule Checking

5 Howcana requirements checker be created for automated verification?
6 Howcana requirements checker be made beneficial for the design process?

7 What are the conditions to make this requirements checker reusable?

1.5 Research Design

This research consists of four parts which come forward from the research questions. The first four research
questions are researched upon in two ways, firstly with the use of existing literature and secondly with an
evaluation of the current practice with interviewing experts. Therefor firstly a theoretical research will be
done. A literature review will be done on the two main themes; the design process and automated rule
checking. In the literature review of the design process aside from a basic overview, a focus will be given on
the use of Systems Engineering and the verification process and on requirements. After the theoretical
research, a qualitative research upon the current practice will be done. Interviews will be held to evaluate
the design process and assess where errors are occurring from to evaluate how the verification process can
be automated. The conclusions of the interviews and the evaluation of the literature will be translated into
the scope for the requirements checker.

To evaluate the possibilities for a requirements checker, a selection in requirements will need to be made to
define the scope of this research. This will need to be done according to the various types of requirements.
These types are identified with an analysis of requirements databases in existing projects. The applicability
of this checker will focus on internal walls and adjacent spaces to evaluate the concept of rule checking for
client specific requirements. The relation between walls and spaces has received little attention in research.

11

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

As requirements are most often space related this relation must be investigated properly to define a suitable
model checker. In this way a clear evaluation can be made amongst the various requirement types instead of
choosing one requirement type.

These steps which are described have been stated in the research model which can be found in Figure 2 on
the next page.

1.6 Expected results

The expected results of this research come in threefold. Firstly a literature review upon the design process
and automated rule checking will be given. Here a clear evaluation of the current processes will be given to
outline the scope of the to be created tool and what the applicability issues and opportunities will be. This
literature review can be found in chapter 3.

In the second part, interviews will be held to evaluate where problems with verification are occurring from
in the design process. The evaluation of these interviews will be put in an interview report outside of this
thesis report. The outcome will be summarized in chapter 4.

After the literature and the current practice are evaluated, research question one to four will be answered
(section 4.4). Hereafter, the outline for automated rule checking for client specific requirements is given. In
the fifth chapter this outline and scope will be used for the creation of the requirements checker. The
creation of this checker will be done with the use of the semantic web standard to create a system which
contains the knowledge which is required for the checks and is open and reusable. This reusability is realized
by creating requirement templates and the usage of natural language concepts translated in an object type
library. This system relies upon the definition of the elements which exist in a model and upon the
knowledge which is built up in the requirement checks. This will eventually result in a prototype of an
automated requirement checker for client specific requirements which is based upon the semantic web
standard and open standards. In this prototype amongst a variety of requirement types certain examples for
wall and space requirements are used to test the concept. This results in the evaluation of using automated
rule checking for client specific requirements. This can then be evaluated if automated verification is
beneficial for the design process. This development can be found in chapter 5.

12

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Design Process in
construction
; Systems engineering
Li > -
iterature study > Literature
Verifcation of client
specific requirements
A 4 Automated Rule Literature review
Checking Design process:
Literature review - - Systems Engineering
77 - Requirements
— - Verificati
L erification process
Rule checking
Semi-structured
A\ 4 interview setup
Interviews about
current practice
Conducting interviews
A 4 Transcribing &
proccessing interviews Revie.w of the current practice
Interview Data - S(eH proce.ss a
> - Systems Engineering
- Verification process
- Automation of verification
Draw conclusions from
interviews
Interview analysis
Define preconditions
l automation verification
Conclusions - Allignment of Information
interviews > - Prer verification process
- Conditions automated verification
]
S A
Set scope for
Requirements checker
4 .
Design system
Requirement architecture for checker
Checker
Development Develop requirements
Checker
Validation
Requirements Checker
4 - Requirement evaluation
Requirements - Class & Property Definition
o - - Inferencing
7 - Queries
— - Requirement Templates
- Checker application
Y
Reporting
Research Report - - Thesis Report
77 - Requirements Checker

Figure 2: Research Model

13

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

2. Glossary

List of figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Research Scope

Research Model

Project Life Cycle of a construction project with project phases
Iterative Character during the design Phases

MacLeamy Curve
Interaction Requirements and Design solutions

Systems Engineering Process
Systems Engineering process extended

Interaction in design process
Hierarchy of client needs

Essence of the verification Process

Overview of model checking concepts

Process of rule checking

Role interviewees

Allocation of Object and Requirements

Deviation interpretation of requirements

Improving requirements analysis

Example of triple graph with URI

Architecture for Model Checking on the Semantic Web

Structure of using constraint templates for requirements checking
Interaction between information in requirements and objects

Requirements Type Classification

Example of iteration to create an equation with similar elements

Overview of Characteristics within project 3
Space Hierarchy without subclasses

BAM Ontology in Topbraid Composer
Magic Property Example as displayed in Topbraid Composer

Overview Requirements Checker application
Overview of windows of the requirements checker

Visualization of checking report
Project 4 model

List of tables

Table 1: Type of requirements
Table 2: Rule Checking Categories
Table 3: Examples rule classes
Table 4: Overview of possible difficulties in rule checking development
Table 5: Structure of a SPARQL Query
Table 6: Description analyzed projects
Table 7: Data Analysis Questions
Table 8: Data analysis come
Table 9: Constraint templates

Table 10:
Table 11:

Selected requirements for prototype

Property definition

14

10
13
16
17
17
18
21
22
23
24
26
27
29
36
38
39
40
46
49
51
52
53
54
55
58
62
63
65
67
68
69

24
28
29
33
47
53
54
56
59
60
62

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

List of Listings

Listing 1:
Listing 2:
Listing 3:
Listing 4:
Listing 5:
Listing 6:
Listing 7:
Listing 8:
Listing 9:

Rule Classes
Example Query
Example Inference
Constraint Template Space-object relation: value
Constraint template example
Inference rule for bam:FunctionalSpace
inference Rule for bam: InternalWall
Workflow for checking process
Filled in Constraint template for acoustic comfort of an internal wall

Listing 10: Filled in Constraint Template for Power Socket Contianment in a office space

Listing 11: Code for accessing constraint templates
Listing 12: Partial output of checking
Listing 13: Outcome of check for acoustic Comfort

List of abbreviations

3D
AEC
API
BCF
BIM
CAD
FBS
GUID
IAI
IFC
ISO
LOD
MVD
NEN
OBS
OTL
OWL
RBS
RDF
RDFS
SBS
SE
SMART
SPARQL
SPIN
TTL
URI

: three dimensional

: Architecture, Engineering Construction

: Application Programming Interface

: BIM Collaboration Format

: Building Information Model(ling)

: Computer Aided Design

: Functional Breakdown Structure

: Global Unique IDentifier

: International Alliance for Interoperability

: Industry Foundation Class

: International Organization for Standardization
: Level of development/detail

: Model View Definition0

: Normalisatie en Normen

: Object Breakdown Structure

: Object Type Library

: Web Ontology Language

: Requirement Breakdown Structure

: Resource Description Framework

: Resource Description Framework Schema
: System Breakdown Structure

: Systems Engineering

: Specific, Measurable, Attainable, Realizable and Time bounded
: SPARQL Protocol And RDF Query Language
: SPARQL Inference Notation

: Turtle

: Unique Resource Identifier

15

28
47
49
60
60
61
61
64
66
66
66
67
69

file:///C:/Users/l.moonen/Dropbox/Afstuderen/Deel%204%20-%20Writing%20of%20the%20scientific%20report/Samengevoegd/Master%20Thesis%20-%20Luuk%20Moonen%20-%202016%20-%20A4%20-%209.docx%23_Toc465864134
file:///C:/Users/l.moonen/Dropbox/Afstuderen/Deel%204%20-%20Writing%20of%20the%20scientific%20report/Samengevoegd/Master%20Thesis%20-%20Luuk%20Moonen%20-%202016%20-%20A4%20-%209.docx%23_Toc465864135

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

3. Literature review

3.1 Motivation

In the literature review an overview is given on two specific topics. Firstly the research on the design process
in the Architecture Engineering and Construction (AEC) sector and secondly on automated rule checking.
This is needed to evaluate the possibility of using automated verification within the AEC sector for client
specific requirements. The design process is evaluated to clearly define the process and environment where
client specific requirements are used in. This can be defined as the phases where verification takes place and
how data and information is used in building projects. Rule checking is evaluated to investigate the method
and techniques which are used. This evaluation shows the possibilities for designing a rule checker which
can be used for verification of client specific requirements within the construction industry.

3.2 Design Process

To define the information development needed for verification, the development of a design during a project
is evaluated. In a construction process in the AEC industry, the design process is defined in different phases
of a project life cycle. There are various definitions of standard for design phases (BIMForum, 2015). This
research focusses on the Dutch construction industry. In the Dutch construction industry the definition of
phases is defined by the Dutch standardization institute in the Dutch standards (NEN) and the definition in
“The New Rules” which are created by NLIngenieurs and BNA. The DNR-STB & NEN2574 define ten phases of
a construction project (BNA, NLIngenieurs, & ONRI, 2009; Nederlands Normalisatie-instituut, 1993). The
DNR-STB and NEN 2574 are defined for the use of traditional contracts where after a design is realized, a
tender takes place. The timing of pricing and tenders vary greatly amongst the different contract forms
(Chao-Duivis, Koning, & Ubink, 2013). To give a clear overview about the design process, this pricing phase is
not evaluated in the overview. The overview of design phases have been combined and visualized in Figure
3.

Initiative and Project Schematic Preliminary Detailed Technical Execution Pre- Execution Operation &
Feasibility definition design design design design ready design Execution Management

Initiatief en project Initiatief en project | Structuur ontwerp Voorontwerp | Definitief ontwerp | Technisch ontwerp | Uitvoeringsgereed Werk-

definitie definitie (s0) (Vo) (Do) (TO) | ontwerp (UO) voorbereiding UG Bz

Figure 3: Project Life Cycle of a construction project with project phases based upon BNA et al., 2009;
Eadie, Browne, Odeyinka, Mckeown, & Mcniff, 2013; Nederlands Normalisatie-instituut, 1993

The development of information in these phases can be seen as two different sources of information. Firstly
there is information of requirements which is provided by the clients. Secondly there is the information
which is created in the design which gives an answer to the requirements. The design is created according to
the client’s requirement and the environment the project is situated in. In this process, the interaction
between the different sources of information can be found. During the development of a design, the earlier
stages have a more conceptual and iterative character. The design phase is characterized by a top down
approach where decisions are made about the key elements of a design in the earlier phases. This leads
eventually to a more linear process where decisions are developed in a technical way in subsequent phases.
This development of a design and the iterative character can be seen in Figure 4.

16

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

>
>

J

Iterative Character

Amount of variants

Start Design

Schematic
design

Iterative Character

Preliminary
design

()

Iterative Character

Detailed
design

Technical
design

Execution
ready design

Execution
design

Figure 4: Iterative Character during the design Phases (own drawing)

In the earlier phases the biggest decisions are made to define what the core of a design will look like. Here
the amount of variants is high, as a baseline for the design hasn’t been defined yet. The amount of variants
should decrease as well as the impact of decisions during the progress of a project. This is due the fact that
the cost of changes will increase when changes are made in a later phase (Lu, Fung, Peng, Liang, & Rowlinson,
2014). This effect has been described in the MacLeamy Curve and can be seen in Figure 5.

The reason why the costs will rise for changes comes from the fact that the elaboration of a design will be of
a higher level. The amount of rework and reconsideration brings much extra process costs in subsequent
phases of the project. The amount of variants should there for be declining when progressing in the design
process. The differentiation can there for be made between the design and the engineering process. In the
design process, variants are assessed to choose the most suitable design solution. In the engineering process
the design is clearer and meaning needs to be given to the rough elements on a higher level of detail. This
implicates a change in character from more conceptual to high level of detail during the subsequent phases.

Figure 5: MacLeamy Curve (Lu, Fung, Liang, & Rowlinson, 2015)

17

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

This variation of level in detail and level of development go hand in hand with the elaboration during the
design phases. Level of detail is the definition of how much detail is put into an element. The level of
development is the degree of information and consideration which is put into a geometrical element in a 3D
model (BIMForum, 2015). This is an important difference as the level of development has a factor of
reliability in itself due to the consideration which is put into an element. The amount of variants should be
reduced as the level of development will get higher as the definition of an element will be clearer. Therefor
the higher level of development and the conceptual character will go hand in hand. The level of development
varies among the various elements as there are dependencies and variance in importance of development
(BIMForum, 2015; Solihin & Eastman, 2015).

3.2.1 Information exchange in the Design process
As there is an interaction between information in requirements and design solutions continuously during the
various phases in a project, the interaction of data and information is crucial for the quality of a construction
project (Chen & Luo, 2014). The documentation of the interaction between requirements and design
solutions is gaining importance as the necessity for proving performance is growing with the introduction of
integrated contracts (Kim et al., 2015; Pels et al., 2013). The interaction between requirements and design
solutions is shown in Figure 6.

In this interaction it is important to make the right comparison as otherwise the information which is
created will not be useful. The management of information and specifically the exchange of information in a
construction project are important factors that can influence the quality of a construction project (Eastman,
Teicholz, Sacks, & Liston, 2011).

.. = =\erification= =— __

| 4

Design
Solution

Requirement

Level of

Verification.
development —

~N

Iterated
Design
Solution

Derived
Requirement

\ 4

Time

Figure 6: Interaction Requirements and Design solutions based upon (BAMinfra, 2008)

With the use of Building Information Modelling (BIM) the possibilities of managing the information in a
construction project have grown. BIM is defined by Eastman as “a modelling technology and associated set of
processes to produce, communicate and analyze Building Models”. These models are represented in a three
dimensional way and contain objects which include graphical and computable data. This makes a BIM useful
for further usage during the total lifecycle of a building.

In a BIM, information can be stored for a variety of purposes during a total process. The way the data is
stored and the interoperability of such a model define how suitable a BIM will be. Managing the
interoperability of information has been addressed as one of the major challenges with the use of BIM
(Dimyadi & Amor, 2013; Eastman et al., 2011; Young Jr., Jones, & Bernstein, 2007). This is due to the various
types of data used in the industry, unstandardized processes, varying classifications and great variety in
stakeholders (National Institute of Building Sciences, 2011).

18

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

For the improvement of interoperability in the AEC industry, the Industry Foundation Classes (IFC) has been
introduced by the BuildingSmart Alliance. The IFC standard is an international standard that provides the
possibility of describing buildings throughout their lifecycle with neutral file exchange (BuildingSmart,
2013). This gives the opportunity to improve the collaboration between different domains and reducing the
amount of errors coming from information exchange.

IFC is an object oriented data standard. The IFC standard is specified by the data schema. The architecture of
the data schema is built up in four conceptual layers; the domain layer, the interoperability layer, the core
layer and the resource layer (Liebich et al., 2013). The lowest layer is the resource layer where resource
definitions are set; this layer doesn’t have unique identifiers as they are defined at a higher level layer. In the
core layer the entities which built up the building are defined. For example a wall or a door (IfcWall, IfcDoor)
are defined here. In the interoperability layer more specialized objects and relationships can be defined. For
example a relationship between a wall and a space can be defined here (IfcRelBoundary). In the Domain
layer the specific concepts towards a domain are defined. Data regarding for example construction
management are defined here. The scope of the example domain can cover data about values like the cost of
an element. With the use of these layers, a total building is described in an open data schema.

The native software which is used by the designing companies in a design process can translate their models
into IFC data to ensure interoperability. This data can then be used for various purposes within a building
project. As the data can be stored in a standardized way, IFC makes it possible to use this data among varying
projects in a same way. This opens up the possibility to use this data for automation of the technical
processes within design phases.

3.2.2 Systems engineering
To evaluate the current design process, the use of systems engineering is looked upon as this is becoming a
more standardized way of working in the construction industry (BNA et al., 2009). The use of systems
engineering in the construction industry is introduced to manage the complexity of construction projects.
Various definitions can be found in the literature about systems engineering. The international council on
Systems engineering (INCOSE) gives the following definition which is adopted widely;

“Systems engineering is an interdisciplinary approach and means to enable the realization of successful
systems. It focuses on defining customer needs and required functionality early in the development cycle,
documenting requirements, and then proceeding with design synthesis and system validation while
considering the complete problem: operations, cost and schedule, performance, training and support, test,
manufacturing and disposal. Systems engineering integrates all the disciplines and specialty groups into a
team effort forming a structured development process that proceeds from concept to production to
operation. Systems engineering considers both the business and the technical needs of all customers with
the goal of providing a quality product that meets the users needs” (INCOSE, 2015).

A few keywords can be identified in these definitions which are crucial for proper implementation of
systems engineering: System thinking, Interdisciplinary, Completeness and Quality. These keywords are
essential for using systems engineering as they explain how the goals of SE are achieved.

To understand the use of systems engineering within the AEC sector, the characteristics of systems
engineering must be elaborated on. Identifying these steps will give an overview to see how the information
in requirements interacts with a design.

A system is a whole consisting of interacting parts that work together for a stated purpose(INCOSE, 2007;
ISO/IEC/IEEE 15288, 2015). A system is created by people to provide for a certain need within a defined
environment (INCOSE, 2015). The parts of a system can be seen as objects, people, services or other entities.
When using systems engineering in construction, most often the parts of a system are objects. The use of
systems thinking is used for a better understanding of the total project or process and is the basis of systems

19

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

engineering. The total system consists of layers of subsystems. These sub systems are decomposed out of the
total system and are used for dealing with complexity in a hierarchical matter (BAMinfra, 2008).

The goal of the to be created product with the use of systems engineering is to fulfil a purpose. This purpose
can be seen as a functionality of a system. A system is an answer to a certain group of functions. Therefor the
need to think in functionality is important to create a proper system. Thinking in functions therefor also
demands to think from large to small scale which aligns with the top down method of systems engineering
(Ministry of Infrastructure and the Environment, 2005).

As complex systems have different aspects, experts on different knowledge areas are needed to create an
integrated result which take every aspect into account (Emes, Smith, & Marjanovic-Halburd, 2012). When
not all the aspects have been taken into account properly, a system will not work properly as the integration
of different aspects of a system has influence on each other. As the construction sector works often
segmented in different disciplines apart from each other, the total cohesion in a system might be lacking. The
interdisciplinary relations are needed to evaluate to result in a better working system (Rijkswaterstaat,
Bouwend Nederland, ProRail, & NLinginieurs, 2009).

During the system development the need of the client is monitored continuously. The need of the client is
the main directive to create a proper design. The needs are translated in requirements to verify the design.
For creating a design which works best for the client, during the whole iterative process verification of the
design is taking place (ProRail, 2015). In this way the need of a client stays in the focus of design.

To achieve a higher quality design it is needed to work transparent. This transparency makes it easier to
retrieve the reasoning behind decisions which are made during the process. When these decisions aren’t
made transparent, interpretation can play a role to work out subsequent parts of a design. This is
unadvisable as this can result in wrong assumptions which can result in design errors. An open and
transparent process eventually results in less time loss and in higher quality (Werkgroep Leidraad Systems
Engineering, 2007).

For the top down working method of systems engineering, decomposition is needed to create an overview of
a total system and to get more insight in the complex data (BAMinfra, 2008; ProRail, 2015). By using
decomposition, the eventual tree structure of a system can be created and more insight on a higher level part
can be given by subtracting lower level parts (Werkgroep Leidraad Systems Engineering, 2007).

Interfaces in a project can be found where different systems or parts of the environment come together and
influence each other through their connection (BAMinfra, 2008). In these interfaces the complexity of a
project can become clear as the boundaries of different systems interact. This interaction can be found as
physical forces, streams and information (ProRail, 2015). When these interactions are not investigated and
monitored clearly, the interaction can affect the mutual influence on the total system. Building mistakes are
often occurring due to this effect, this is why monitoring interfaces properly is a crucial part of Systems
Engineering (Visser, 2011).

The focus on requirements during the whole lifecycle is essential for the implementation of systems
engineering. From clear requirements a solution is derived which suits all the needs of the client. The
exploration of these requirements is there for an essential part of the systems engineering process
(Werkgroep Leidraad Systems Engineering, 2007). A further exploration on the role of requirements in
Systems engineering is done in section 3.2.3.

20

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

The systems engineering handbook defines verification and validation as the following two questions; “Are
we building the right thing (validation)?” & “Are we building it right? (verification)” (INCOSE, 2007).
Verification and validation are essential parts of the systems engineering process which happen multiple
times during the process to control the created elements of the system. Verification is needed to ensure the
quality of the created product and validation is needed to ensure if the right product is created. When
verification and validation is not done disciplined, goals in terms of time, cost and technical specification can
be in jeopardy (Marchant, 2010). The verification process is discussed in depth in section 3.2.4.

Systems engineering approaches the development of a system with an approach of the total life cycle, from
initiation until retirement. By evaluating the total life cycle of the product, a better understanding of the
project can be achieved (ISO/IEC/IEEE 15288, 2015). In this way the needs stakeholders needs are understood
better and the process stages are defined more clearly (INCOSE, 2007).

The process of systems engineering is discussed greatly upon in the literature. The representation of the
systems engineering process in Systems Engineering Fundamentals has been adopted greatly in the research
upon Systems engineering. The core creation of the system has been illustrated in this representation and
can be found in Figure 7. The main elements in this representation can be found in the interaction between
requirements, functions and design elements. The relation between these three elements determine the
functionality of the eventual system (US Department of Defense Systems Management College, 2001).

Figure 7: Systems Engineering Process (US Department of Defense Systems Management College, 2001)

To further define the process of systems engineering, the V-Model has been used greatly within the Systems
Engineering literature. The V-model is used to illustrate the top down process in the design loop. Here the
decomposition of the initial system is realized to give more insight in the total system (Scheithauer, Esep, &
Forsberg, 2013). The V-model doesn’t always show the total life cycle of a project with the use of systems
engineering. Therefor a proper overview has been given by combining representations of the V-model with
the total design. This total process can be seen in Figure 8 on the next page.

21

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

oo
) Design
analysis

System
Design

Verification & validation

Requirements
. . N Operation & Retirement &
Testing design Realisation p(
Maintenance Replacement
Verification & validation
D

Requirements
analysis

Requirements

Realized
System

Specification pammg | «————————Testing design

Client

o Verification & validation
Validation

Requirements

Sub System
Specification
GRequirements

Realized Sub
System

Sty SYStem «——————Testing design
Design

Client Verification & validation

Validation /_ Requirements

Decomposition
Component

Specification yummms
Requirements

Integration

Realized
Component

Component

e <«—Testing design

Client

Validation Verification & validation

Requirements
element

Specification Element Realized

Design Element

Requirements

Client
Validation

Figure 8: Systems Engineering process extended, based on (BAMinfra, 2008; INCOSE, 2015; Werkgroep
Leidraad Systems Engineering, 2007)

In this process description the phases of the creation of a system can be seen throughout the whole lifecycle.
These will now be elaborated upon.

Stakeholder analysis

In the stakeholder analysis the key players in a project are identified. This is needed to identify their
influence on the system and what their key necessities are in a system. To realize a proper requirements
analysis the understanding of the stakeholders needs is key to identify what their goals are with a system
(Glinz & Wieringa, 2007). This makes it possible to understand the functionality which stakeholders require
for a proper working system. Weak related requirements to stakeholders are a main reason to project failure
(Hull, Jackson, & Dick, 2006).

Requirements analysis

The requirements analysis is defined as one of the most essential parts of the systems engineering process as
the understanding of the requirements defines the design constraints (BAMinfra, 2008; Douglass, 2013;
ProRail, 2015). Most often the requirements stated by the client are described ambiguously and multi
interpretable (Marchant, 2010). This is due to the fact that requirements are often stated in natural text. This
requires extensive analysis to understand the meaning and the goal of a requirement. In this process the
understanding of the requirements results in a better understanding of the whole problem which is assessed.
A proper validation with the client is needed to ensure that the interpretation is done right and to reduce
discussion about the interpretation in further stages (Rijkswaterstaat, 2015).

Design phases

In the design phases within a systems engineering approached project the system is realized. The system is
realized with a top down approach. This means that throughout the design phase the system will be
decomposed in to smaller elements to define the total system. In the interaction between requirements and
design elements of the system it is essential to realize a system that is performing according to the required
needs of a client (Schaap et al., 2008). This interaction is shown in Figure 7 and Figure 8. At every level of
decomposition, an interaction between the requirements and the design is shown. Verification if the design
complies with the requirements needs to be done at every level of decomposition to define if the design has
the performance required by the needs of a client. If a verification isn’'t done at all levels, a continuation on a
mistake can cause increase the impact of an error (Rijkswaterstaat, 2015). For this reason baselines are

22

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

defined after all phases within a project. This baseline needs to be verified according to the requirements to
ensure the quality in a project and prevent continuing on mistakes.

The definition of a system and eventual building elements is an important interaction where information is
related to each other. To ensure the right performance, the definition of the right comparison is essential for
a proper working system. This interaction between requirements and the eventual performance is shown in
Figure 9.

Fullfilled by Building

Function
Element

Requirement [el Performance
Satisfied by

Figure 9: Interaction in design process, based upon Schaap et al., 2008

Every subsequent step in the design phase of the systems engineering process ensures the balanced
development of the system and increases in level of detail (US Department of Defense Systems Management
College, 2001). This balanced development and increased level of detail during the phases of the design can
be seen in the V-model.

The decomposition of a system responds with this detailed development and increased detail.
Decomposition in the construction sector is done in various ways depending of the type, the functionalities
and the users of a building. For example an office has various functionalities (working, eating, holding
meetings) but also has various users (employees, visitors, supporting personnel etc.). A system can therefore
be broken down in various ways. Aside from a system breakdown structure, in the Systems Engineering
Process also other breakdown structures are made. The following breakdown structures are used to
decompose a project; Requirements breakdown structure, System breakdown structure, Work breakdown
structure, Organizational breakdown structure and Functional breakdown structure (BAMinfra, 2008). These
breakdown structures are related to each other on various levels and describe the total project. For example
the steps which should be undertaken in the design process are described in the work breakdown structure.
In these steps a link towards the system element are described which should be elaborated on. These objects
are linked to a function, certain requirements and to responsible persons.

The design process happens iteratively as explained. When a system is described, variants are made to
evaluate which design is the best solution for the requirements. This is preferably done with a trade-off
matrix to evaluate all the aspects of a variant (BAMinfra, 2008). After a decision is made, the reasoning
behind a choice should be documented and then requirements should evaluated for a higher level of detail to
derive the implications of iteration. This ensures that applicable requirements are taken into account in
evaluating variants. The eventual steps which are taken in the design process are evolving from conceptual
decisions to more detail during the subsequent phases. For example in the system design a hvac concept will
be evaluated and a definition will be made about the functionality. In the subsystem design, this system will
be iterated into a concept of distribution. In the component design this distribution concept will be drawn in
a more specific way and in an element design the products will be chosen. Every step in this process should
be verified according to the requirements to close the feedback loop as can be seen in Figure 7.

23

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Realization

After the design is defined, verified and validated by the customer, the construction can start. This implicates
the realization of a system. This realization is done on an element level and will result in a bottom up
realization of the total system. This realization needs to be tested through verification (Construction test,
inspections and measurements) to ensure that a building functions according to the requirements (BAMinfra,
2008). Throughout the realization the connectivity of the various elements between the various breakdown
structures ensure that the realization is done according to the realization plan and is verified according to all
applicable requirements. The work breakdown structure is the most important breakdown structure in this
phase as in this structure the execution of the realization is described.

Operation and maintenance

Systems engineering can be useful in the operation and maintenance stage of a system. As the realization of
the system is documented on, a description of the functionalities and the elements is available. This should
make the execution of operation and maintenance more easy (BAMinfra, 2008).

3.2.3 Requirements

The goal of defining a requirement is to translate the need of the stakeholders to define what the new system
must be able to do (Hull et al., 2006). The definition of a requirement by the ISO standard of Systems
engineering defines that a requirement is a statement that defines a need with associated constraints and
conditions (ISO/IEC/IEEE 15288, 2015). A requirement originates from a certain goal, which can be translated
into needs (Walraven & de Vries, 2009). These needs can then be translated into a requirement with a
specific product performance. This hierarchy translates the origins of a requirement which always should be
taken into account when considering requirements and the performance. This hierarchy is shown in Figure
10.

Value Client Product
Dimension Need Performance

High Product Emotional Audiologic
Comfort
value value comfort

Figure 10: Hierarchy of client needs, based upon (Walraven & de Vries, 2009)

The conditions for a requirement to be used properly have been researched upon greatly. Sparrius defines
that a requirement should be unambiguous, measurable traceable, verifiable and concise (Sparrius, 2014).
Various types of requirements have been identified in the research on requirements engineering. Schneider
& Berenbach identified three types of requirements; Physical, functional and non-functional requirements
(Schneider & Berenbach, 2013). These types of requirements are illustrated in Table 1.

Table 1: Type of requirements based upon (Schneider & Berenbach, 2013)

Physical requirements Describes for example sizes, Windows must have a Rc of at least 3,0
property
Functional requirement Describes a desired function A window must have the possibility to
be opened
Non-Functional Qualitative requirement A room needs to be comfortable
requirement

The ways requirements are portrayed in this table show the differences in interpretation. For example the
physical requirement has a clear required value for a property which can be verified. The functional
requirements must have certain ability. The last type of requirement is more difficult to see if it complies
according to the requirement.

24

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

To verify these kinds of requirements in a model, the requirements need to be suitable for measuring the
compliance of the model. This compliancy is defined by the performance of the design in comparison to the
required performance. When requirements are not measurable and therefore not verifiable problems can
emerge as interpretation can play a bigger role. To make these requirements verifiable, the requirements
need to be SMART. SMART stands for: Specific, Measurable, Attainable, Realizable and Time bounded. This
means that requirements need to be understandable and prevent ambiguity.

When a requirement is not quantifiable it is easily influenced by interpretation which can cause errors
(Glinz, 2005). Therefor requirements in the construction sector can also be seen as numerical, relational and
qualitative. Numerical requirements are easily reproduced and cause little problems as the numbers can be
made clear. Furthermore this numerical kind of requirement can be translated into a mathematical equation
which can be checked. This provides a possibility to automate this process. The second kind of requirement
is relational and is a Boolean checking of the requirement (Schneider & Berenbach, 2013). This means that if
the relation is there it is correct and if not, it is false. The last kind of requirement about quality can be
disputable which makes it difficult to measure and therefore not quantifiable or possible to check without a
lot of interpretation. In these kinds of requirements problems can occur. A risk in working with requirements
can therefore be found in the interpretation of requirements. Communication with the client and verification
of the performance is therefore an essential part of the whole project (Kiviniemi, 2005).

As the meaning of requirements can make a major impact on the design, a good understanding of these
requirements is needed. Therefore it is an important part of the design process is the analysis of the
requirements (BAMinfra, 2008). The validation of this interpretation with the client defines if the need of a
client is satisfied.

Management of requirements can often have little attention in a project while iterating the design. As
requirements evolve due to iteration and decomposition, the design solution in the end result can shift away
from the original goal (Kiviniemi, 2005). Kiviniemi has stated four reasons for the problems related to the
management of requirements. These are the missing connection between requirements and designs, changes
in personal during a project, not directly involved end-users and direct and indirect requirements. Kim et al.,
2015 have defined two additional reasons why requirements management in construction can be difficult.
This is firstly that the reasoning and the interpretation behind a requirement isn’'t documented properly and
secondly that complexity in requirements arises from the many types of requirements, spaces and functions
which are interrelated with each other (Kim et al., 2015). Malsane et al. have defined the following three
characteristics which cause complexity; subjectivity, inconsistency in terminology and complexity in
structuring and interrelationships (Malsane et al., 2015). This means that requirements are prone to the
experience of the interpreter, often inconsistent in the terminology and are complex to structure and in the
way they relate to other requirements and elements.

These problems relate mostly to the fact that the requirements are open to interpretation. As requirements
are and text are often stated in text the measurability is low. The lack of documentation of the reasoning
increases the complexity and the subjectivity. Another increasing factor is the fact that the direct link with
the design is often missing. Creating a knowledge system that describes the relation between the
requirements and the design should therefore be useful to overcome the difficulties existing from the
missing links between the requirements and the applying elements. Also the understanding and the
reasoning should be captured in this system to maintain the knowledge which is created during a project. A
clear overview in the information stream from goal to product performance needs to be aligned as this
process has many steps of iteration and interpretation. Due to the amount of steps made from need to
product performance, this design process is remains difficult to manage and to keep close to the wishes of a
client and the end-user.

3.2.4 Verification
In ISO/IEC/IEEE 15288 the following definition of verification is stated; “Verification is a confirmation
through the provision of objective evidence that specified requirements have been fulfilled” (ISO/IEC/IEEE
15288, 2015). This translates into the question for the design process; “is the design correct?”. The
verification process can be identified as a feedback loop to complete the design process. The essence of a

25

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

verification process is illustrated in Figure 11. In this representation the basics can be seen of the verification
process. This process is only worth as much as the data which is put in the process. The definition of a
verification process should there for be done properly as otherwise an evaluation will not have any value
(Marchant, 2010). To give a verification value, validation of a requirement should be done. This ensures that
the verification can be done correctly.

P g Performance I
N\
! \

/ Evaluates \ .
Demands Provides
I \

Verification

R IN = Al ———— Design

solution

Figure 11: Essence of the verification Process

The validity of a requirement remains a difficult endeavor. To ensure this validity, Shishko & Aster have
defined procedures to ensure that requirements are unambiguous, traceable, correct and well defined. When
this definition is properly given before a design is made, the design will improve and the verification process
will become easier (Shishko & Aster, 2007). To ensure the completeness of the verification process, Haskins
have defined the steps to undertake to ensure proper verification. This consist of three steps; Preparing,
Performing and manage the result of verification (INCOSE, 2015).

The first step consists of defining the strategy for verification in a project according to the costs and risks. In
this step the definition of what should be verified (requirements, characteristics etc.) is firstly defined and
with what procedures they are verified. After this the constraints are defined towards the execution. Lastly in
the preparation of the verification the availability of information should be taken care of to ensure that the
execution can be done easily. This all should be laid down in the verification plan. In this plan the definition
of the verification, the success criteria, the used verification method, the needed data and the enablers is laid
down (INCOSE, 2015). The second step is to execute the verification according to the plan and analyze the
results. These results should be communicated upon to evaluate action which should be taken to deal with
non-complying elements.

When looking into the origin of mistakes within the verification process, the following reasons can be found
according to Marchant, 2010; Ambiguous, incorrect or incomplete requirements, incorrect allocation of
requirements and missing elements. These reasons an all cause mistakes if the verification process isn’t
properly evaluated and validated. These reasons can result in a positive outcome of verification, but are
actually failing due to the incompleteness or incorrectness. This appearance can be misleading and can lead
to extensive rework and costs if discovered later on in the project.

The underestimation of this process can therefore be risky. This is also exactly the case within the AEC
industry. The traditional way of working within the AEC industry relies heavily on the craftsmanship of
constructors to deliver a building that is suitable for usage. Due to the growing complexity and the usage of
integrated contracts, verification of requirements has become an important process (Bouwend Nederland,
2014). Underestimation of the importance of verification can result in costly mistakes. A big opportunity lies
here to improve the design process to ensure that designs are complying with the requirements and improve
the quality.

26

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

3.3 Rule Checking

As construction designs need to comply with various building codes, standards and other requirements, the
evaluation of the performance of a design towards requirements is an important part of the design process.
This process of checking compliance is growing in complexity as the amount of criteria and the amount of
requirements from clients is growing (Nawari & Alsaffar, 2015). Checking the compliance of performance is
mostly a hands on job which relies on the knowledge of the people executing this check and the processes to
manage completeness (Eastman, Lee, Jeong, & Lee, 2009). This heavily relies on the knowledge and the
interpretation of the executor. As interpretation of the requirements and codes can be an error prone
process, the use of an automated process in checking can be very useful (Nawari & Alsaffar, 2015; Zhang,
Teizer, Lee, Eastman, & Venugopal, 2013). When the interpretation of these requirements is laid down in a
rule, the need for repeated interpretation by specialists is not needed anymore, this can reduce the chance
on errors and reduce the time it takes to evaluate designs on every design rule (Solihin & Eastman, 2015).
Capturing this knowledge into a rule enables the possibility to create a knowledge system to test building
designs (Hjelseth & Nisbet, 2010). The value of improving the quality of checking a model and reducing the
time it takes to inspect a model has been acknowledged by the AEC sector. The definition of a rule checker is
described by Eastman as “assessing designs on the basis of the configuration of the objects, their relations or
attributes” (Eastman et al., 2009). The outcome of this assessment is the evaluation if the object is configured
properly according to the requirements set by building codes or clients. The implementation of a rule
checker for client specific requirements can lead to improvement. The possible achievements can be found in
the improved performance, reduced building mistakes, improved efficiency and reduced costs (Dimyadi &
Amor, 2013).

Rule checking for building codes already exist from the 1980’s and has been researched upon greatly
(Dimyadi & Amor, 2013). Over 300 researches have been reviewed by Dimyadi et al. The researches have
mostly focused on rule checkers on standards and regulations as these are easier to handle due to their more
static character. The main focus has been on the prescriptive parts of building codes, leaving the
performance based code receiving less attention. This is explained due to the more difficult character of
these rules as a combination is needed between human knowledge, interpretation and translation into code.

3.3.1 Types of rule checkers
The purpose of a rule checker is to assess designs by checking models to their configuration towards the
requested performance (Eastman et al., 2009; Hjelseth & Nisbet, 2010). The answer to this check is always a
yes or no (or unknown) on the given rules (Pauwels et al., 2011). These rules will have constraints were they
are tested on. Hjelseth & Nisbet have defined that, there four different intentions for model checks. These are
validating systems, guiding systems, adaptive systems and content based checking (Hjelseth & Nisbet, 2010).

Give support fo

Is define by scope of fls identified in

Result of
model check

4

Intention of
model check

Type of
Product

4

N
Is realized through

N
Is realized through

Validating Pass/fail
Guiding Option and advice Is related to the used
. Relates to the chosen
regulation, code or .
requirement criteria in the rule set
Adaptive A modified model q
Content Based A filtered norm

Figure 12: Overview of model checking concepts, based upon Hjelseth & Nisbet, 2010

27

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

The guiding and adaptive systems look into the possibility of using model checks for guiding to or generating
a design solution. The validating systems and content based checks are more of an examining character.
Content based checks are easily to create and check if certain content is apparent. Validating systems checks
examine the validity of a design. The concept of model checks is concluded by Hjelseth & Nisbet in an
overview where the intentions are stated according to the ontology behind it. This overview is given in
Figure 12. In this figure, in green the logic in the ontology is shown, and underneath the explanation is given
per model checking concept.

There are two basic types of validation model checks. Firstly there is there is the Geometry based checking
and secondly there is compliancy checking (Hjelseth & Nisbet, 2010). Model checking is based upon
topological relationships and Boolean algebra to define if the geometry of a design is complying with the
given rules. For example the required floor space can be calculated with model checking. Also clash detection
is a good example of model checking. Compliancy checking has the purpose to check if the design is
according to the building codes and/ or requirements which apply in a building project. Solihin & Eastman
have defined that the technique of rule checking can be used for seven categories. These are stated in Table 2.

Table 2: Rule Checking Categories (Solihin & Eastman, 2015)

[Category |

Syntactic build-up model checking Is the model according to the modelling agreements?

Building code regulation checking Is the model complying with the building code?

Client specific requirements checking Is the model complying with the requirements of a client?

Constructability and contractor | Is the model constructible in the way it is designed?

requirements checking

Construction safety checking Are safety regulations guaranteed during construction in the
model?

Warrantee approval checking Has the model issues regarding warrantee requirements?

BIM data completeness checking Is the data according the requirements for facility management?

This research will focus on the third category; client specific requirements. These are the requirements
which are realized by the client to achieve certain qualities they need for a suitable environment according
to the needs and functions of the building. This category for rule checking can be executed according the
various intentions described by Hjelseth & Nisbet as the built-up of the requirements can vary in definition
from validation checks to content based checks. The definition of the rules is defined by the structure of the
requirements which are going to be evaluated in the model. Solihin & Eastman have defined a classification
for the various types of rules (Solihin & Eastman, 2015). This classification has been set up according to the
complexity of processing the rules. Eventually the data (IFC) which is going to be checked can be reduced to
the attributes of the elements of a model. With this in mind four rules classes have been defined, these are
stated in Listing 1.

Listing 1: Rule Classes
- C(lass 1: Rules that require a single or small number of explicit data
- Class 2: Rules that require simple derived attribute values
- Class 3: Rules that require extended data structure
- C(lass 4: Rules that require a “proof of solution”

These rules deal with explicit attribute data within a building model (Solihin & Eastman, 2015). The data
which is checked in this rule class is accessible directly in the model and doesn’t require extensive
preparation. The access to the data can be done with basic queries to evaluate availability of data or relations.

These rules deal with checks that are based upon single values or small data sets (Solihin & Eastman, 2015).
New data does not have to be generated but multiple actions and arithmetic or trigonometric calculations
could be needed to execute these rules. Implicit relationships within the requirements should be identified
in this class of rules.

28

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Class 3 Rules

The rules in this class require the calculation of extended data (Solihin & Eastman, 2015). This means that
data must be generated to execute the check. The complexity in this rule class is that the generation of this
data can be done in various ways. The execution of these rules often relies on a geometry engine that can
evaluate the model on its geometry and relations with the use of algorithms and calculations.

Class 4 Rules

Normal rules evaluate if there is compliancy in the model according to requirements. These rules will give a
Pass, fail or error. Class 4 describes the rules which require a proof of solution (Solihin & Eastman, 2015). This
requires describing how a model passes the rules instead of just complying with the prescribed rules. This
class focusses to capture the knowledge of a solution which is required. This gives the possibility to improve
the solution. The complexity of these rules does not have to rise in comparison with the other classes but has
a different focus. In the Table 3 some examples have been given of the different classes.

Table 3: Examples rule classes

Class 1 An internal wall should be 100mm thick minimum

Class 2 When a space has occupancy class 3 and is adjacent to a hallway, the wall in between
should have a noise resistance level of 45dB.

Class 3 An office space should be 30 meters away maximum from an emergency exit or exit stairs

Class 4 Determine a zone where the placement of smoke detectors should be in on a flat sealing of
corridors, when a smoke detector should be at least 300 mm away from a wall and the
distance between smoke detectors is not more than 10 meters (Solihin & Eastman, 2015)

3.3.2 Rule checking process
The process of automated rule checking is defined by Eastman et al. into four steps; rule interpretation,
building model preparation, rule execution and reporting checking results and is described in Figure 13
(Eastman et al., 2009);

Building Model

Extracts and derives model view
data for checking

Model view generation,
supporting:
(a) deriving implicit

Rule Interpretation
Translates a written rule-
base into computer
implementable one

Method for translating
rules from text format:
(a) by programmer

(b) employing predicate
logic

Ontology of names and
properties for rule
definition

Rules coded in
(a) computer code;
(b) parametric tables

properties using enhanced
objects

(b) derive new models

(c) performance-based
model views & analysis

Visibility of layout rule

parameters

Applies rules to building model

Model view syntactic pre-
checking

Management of view
submissions:

(a) completeness of rule
checking;

(b) model version

consistency

Figure 13: Process of rule checking (Eastman et al., 2009)

29

R ing Checkin
Results
Reporting results back to
submitter (or checking
agency)

Rule instance graphical
reporting

Reference to source rule

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Rule checking depends on two major parts to deliver validated results; The model which is going to be
checked and the interpretation of the rules (Solihin & Eastman, 2015). As rules never apply to all the
elements in a model the definition of which elements should be checked is important. The completeness of
the availability of information is also essential for the execution of a rule. Here for the interpretation of a rule
is important as this defines which elements the rule applies to. This usability of a rule can depend on three
various ways of information availability (Eastman et al., 2009);

1. explicit information provision by a designer
2. Computer generated data
3. Information generated by complex simulation and/ or analysis

The definition of this availability of data for a rule is an important concern to evaluate what the strategy is
for the creation of the rule checker, which data is needed and how the rule should be executed. The varying
types of data influence the four steps of rule checking. These will now be elaborated on.

The interpretation of a rule is defined as the most crucial step in the rule checking process as here the
definition of the check is determined(C. Eastman et al., 2009; Hjelseth & Nisbet, 2010; Pauwels et al., 2011).
Various ways are discussed upon the literature to define a rule in natural language into computer
processable code. This translation greatly relies on the type of rule and the intention of the rule check.
Eastman et al. has identified two different ways of implementing interpretation of a rule (Eastman et al.,
2009). The first implementation relies on the interpretation of the programmer translating the rule into
code. The second implementation relies on the logic in a rule in natural language which then is mapped into
processable language. This leads to two ways of translating rules into conditions which can be processed;
computer language encoded rules and parametric tables (Eastman et al., 2009).

The translation of requirements into rules comes with certain issues. Solihin & Eastman have defined two
major issues which should be considered; Arity and combinatorial issues (Solihin & Eastman, 2015). Arity
issues are occurring from the fact that requirements are hardly answered by only one answer. The ability of a
model to answer towards a rule in various ways should always be considered properly. Combinatorial issues
arise from the fact that multiple conditions need to apply on elements. The combination of multiple
applicable rules needs to be evaluated properly if the combination of rules is complying.

A building model has become object orientated with the introduction of BIM (Eastman et al., 2009). This
means that the definition laid down in an object defines what the object is, whereas with 2D CAD drawing
the visual correctness defined what an object was. This has increased the importance of correct modeling as
for example a wall is only a wall when it is modelled with the use of wall objects. This correctness of
modelling is needed as building models are becoming large and complex data sets with the use of BIM.

When evaluating buildings on rules, the evaluation of a total model will not be useful as a rule only applies
to certain aspects of a building. The usage of the total dataset of a building model in a rule checking will
make the check ineffective. The usage of Model View Definitions has therefor been initialized by
BuildingSmart. A Model View Definition (MVD) is a subset of the data schema of a building model for
exchanging data (Chipman, Liebich, & Weise, 2016). IFC is built up in a way that the information in a model
can be used according to various level of development (BuildingSmart, 2016). A MVD defines which data is
needed for an exchange. In this way the required data is made available for rule checking. The definition of
what data is required relies on the requirements which are going to be checked. The definition of the
properties which need to be evaluated must be defined properly before a MVD can be created as otherwise
the rule checking will be incomplete (Eastman et al., 2009). The definition of the data which is needed
depends on what kind of class of rule is going to be executed. Explicit data needs less effort to prepare a
building model in comparison to a performance based rule which might require a simulation. A proper
validation of the building model preparation is always needed to ensure reliability of the rule checking
before it is utilized.

30

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

In the rule execution phase the rule checker will be executed. Before a rule can be executed the whole
automated checking environment needs to be validated. This means that the interpretation of the rule will
be evaluated to ensure that the interpretation is complete and correct (Eastman et al., 2009). Also the
syntactic built up of checker must be evaluated to ensure that the checking will work as required. Aside from
the interpretation also the model view needs to be validated. If this validation step is not done properly
incompleteness can cause false presumed compliance. Aside from validation also the management of model
versions consistency needs to be assessed. When iterations of the design hasn’t been taken into account in
the to be checked model a false presumed compliancy can be perceived.

In the last phase of rule checking the results are evaluated (Eastman et al., 2009). A rule will have a fail, pass
or error as result. Publishing the result should be easily understandable and can be made visible with the use
of a viewer. Addressing the fails and errors is an important step to ensure complying designs. Also the
documentation of objects which have passed is important to prove the performance of a design towards a
client or regulatory organization. The link with the original requirement should always be made traceable to
ensure the documentation and the reasoning is made clear and understandable. This makes the
documentation which can be generated understandable for the reviewing party like a client or government.

3.3.3 Rule checking platforms

In the AEC sector various code compliance software platforms are used. Various researches have indicated
the following important platforms which make use of rule checking; Solibri Model Checker, Jotne
EDModelChecker, FORNAX and SMARTcodes (Dimyadi & Amor, 2013; Eastman et al., 2009; Hjelseth & Nisbet,
2010; Kasim, Li, Rezgui, & Beach, 2013; Krijnen & van Berlo, 2016; Nawari & Alsaffar, 2015; P. Pauwels et al.,
2011). These platforms have been evaluated greatly upon literature and are applicable for the AEC industry.
They all use Industry Foundation Classes (IFC) data files but vary in their way they are built up. Eastman et al.
have discussed the applicability of these four platforms regarding the process of rule checking.

3.3.4 Difficulties in automated rule checking
Due to the vast amount of research which is done upon rule checking some clear difficulties can be found in
creation and execution of a rule checker. These difficulties can be related to the steps in the rule checking
process.

In the creation of rule checking a lot of difficulties can be found in the rule interpretation. The main problem
in rule interpretation can be found in the structure of a requirement. In section 3.2.3 the complexity in
requirements has been defined. The main issues here can be found in the variety of requirements, the way
they are built up and how they are related to other requirements and elements. The definition of a
requirement requires proper interpretation as otherwise the wrong assumptions are made. This
interpretation can vary among different actors due to their background and experience (Solihin & Eastman,
2015).

According to Solihin & Eastman, the complexity of translating rules can be found in the technical built up of
a rule. The language structure, the embedded domain knowledge and the logic structure in a rule are three
main factors that cause the complexity (Solihin & Eastman, 2015). This complexity can be translated to the
consistency and the knowledge which is required to translate the requirement into a rule.

To translate a requirement into a rule, multiple approaches can be used. An important factor for creating a
rule is the reusability and applicability of a rule. The flexibility of the language which is chosen can limit the
possibilities of usage (Pauwels et al., 2011). This comes from the fact that computer coded language and
parametric language are limited in their applicability to their own environment. The usage of logic theory
based rule language can overcome this issue. This enables the possibility of using the rule checking
environment on multiple environments. The usage of semantic web technologies have been suggested for
this purpose by Pauwels et al. and Zhang & Beetz.

31

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Another difficulty in the creation of a rule checker is information loss (Solihin & Eastman, 2015). The
knowledge which is needed for interpretation must be maintained as this gives the value to a rule checker.
The communication in the rule creation process is there for critical but remains a challenge in this process.
Also after the rule is created the knowledge which is captured should be always retraceable to ensure that
maintaining the usability of a rule can be done easily.

To ensure that a rule can be checked a building model must be made usable. With this process, difficulties
come forward which need to be addressed before a rule checker can be executed.

The first issue which needs to be dealt with in the preparation of a building model for rule checking is the
Interoperability of the data of a building. The interoperability of data amongst the construction sector has
been identified as one of the crucial issues (Beetz, Coebergh van den Braak, Botter, Zlatanova, & de Laat,
2015; Dimyadi & Amor, 2013; Young Jr. et al., 2007). The data needed for a rule checker needs to be
accessible easily. This requires interoperability as the data which is required for the check can be located in
various locations and platforms. If the interoperability isn’t taken care for, the needed data for the model
check can be incomplete, causing an incomplete checking.

The second issue can be found in the use of IFC. As described by Pauwels et al. two issues have been defined
which need to be dealt with. Firstly there is the difficulty in partitioning the information in IFC to make it
possible to deal with the magnitude of the IFC schema (Pauwels et al., 2011). The creation of model view
definition remains difficult and is still researched upon greatly to define proper partitions. Secondly there is
the issue of modelling properly with IFC. This comes from the fact that for modeling information there are
multiple ways of describing the information within IFC. These two issues are mostly related to the
description of IFC with the use of EXPRESS language which is difficult to enhance.

The third issue in preparing the building model for rule checking can be summarized in to consistency issues.
The way a building model is built up relies on the way it is modelled. Efforts to standardize this modelling
improve the consistency of models among the various projects. Despite the fact that standardized ways of
modelling are occurring, the consistency in a model depends a lot on the quality of the modelling.

The validity of a building model is also an important aspect which should be addressed in the preparation for
a rule checker. The validation of building models addresses the quality of the IFC model on their syntactic
built-up and the quality of an export or import for interoperability (Zhang, Beetz, & Weise, 2015). The
difficulty in defining a validated IFC instance lies in the fact that a model can be built up in various ways due
to the openness of the IFC schema. For example a constructive quality if a wall is loadbearing can be
described with a variety of ways in IFC. To evaluate IFC models on their validity, model checking for IFC
validation is being reviewed upon by various researchers.

A fifth issue regards the usability of an IFC model. As stated before the right information should be available.
This process defines the usability of an IFC model. To make sure that the right information is reviewed,
model view definitions are used. Creating validated and reusable model views remains a difficult endeavor
(Zhang, Beetz, & Vries, 2013). Reusable model views are needed to make the model checker usable in the
various environments and domains. The difficulty here comes from two reasons. Firstly there can be various
ways to represent the information. This can result in stating the data in a different way but meaning the
same thing. Secondly this comes from the fact that to create useful model views, technical background of IFC
is needed. This comes from the fact that implicit information in an IFC model isn’t attainable without
interpretation of IFC experts.

Within the execution and reporting phase of the rule checking process there are less difficulties. The most
important difficulty in the execution is the maintenance of a rule checker. As building codes can changes as
well as requirements there must be a possibility to update a rule. To not disrupt the logic in a rule the built
up of a rule must be done in a way the rule is updatable (Pauwels et al., 2011). The costs to keep a rule

32

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

checker updated can be high as the process of validation might be needed to be done again to ensure the
usability (Dimyadi, Pauwels, Spearpoint, Clifton, & Amor, 2015; Zhong et al., 2012).

Aside from updating the checker along the usage amongst various projects, also the timing of when a
checker is used can be difficult. This depends on the availability of data. To ensure consistent results the data
which need to be checked need to be available. This data availability depends on the modeler. If a design is in
an early phase, the data which is needed to check might not be available yet. The Level Of Development
(LOD) is a major factor that affects the building model (Solihin & Eastman, 2015). The development of
elements in a building model varies among the different phases. This needs to be taken into account when
executing the check as when a doing a check which requires the development of the information to be at a
LOD 300, checking data which isn’t at this LOD yet will not be useful. Making agreements towards the level
of development is there for essential to take into account during the various phases. This ensures that when
verification of requirements will be done, the right level of development is achieved as otherwise a check
will not be useful.

Table 4: Overview of possible difficulties in rule checking development

Rule Preparation

Structure of Complexity due to the variety of requirements, the way they are built up and
requirements how they are related to other requirements and elements

Technical built up of Complexity in technical built up due to the language structure, the embedded
rules domain knowledge and the logic structure in a rule

Flexibility of language for | The flexibility of the language which is chosen can limit the possibilities of
built up rule usage due to the limitation of the applicable environments

Knowledge loss Translating the rule requires interpretation, during the phases of rule

development this gained knowledge can get lost

Building Model Preparation

Interoperability of data Easy accessible data requires interoperability which can cause difficulties

Issues with IFC Difficulties with partitioning IFC & multiple modelling options in IFC due to
various ways of describing information

Consistency issues Consistency problems due to lacking standards

Model validation Difficulty in validation lies in the multiple options in describing data

Usability MVD Creating valid MVD'’s requires technical IFC background

Execution and reporting

Updateability of checker | Updateable rules are needed. Updating rules is complex and costly

Timing of checking The timing of a check relies on availability of data, the level of development
required is there for important to be defined before a checker is used

33

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

4. Qualitative research

4.1 Motivation

The goal of this research is to investigate the design process and the possibilities of automation of the
verification process. In order to do this, a clear understanding is needed on the design process and the
verification process. Aside from literature an overview of the current practice in the design process is needed
to evaluate where possibilities in automation lie.

To understand which steps are taken in the design and verification process interviews are held to give an
accurate representation of the current situation. This way the problems which are now occurring in the
design process can be found and prerequisites for automation can be described. For the design of the
interviews, sub questions have been used to address the needed information.

4.2 Interview setup
The first four research questions are part of the qualitative research. These questions are researched upon
with the use of a literature review and Interviews. The interviews are used to address the current situation
and problems within a utility building contractor in the design process. As can be seen in the research
description, this research focuses on different elements of the design process. The research focusses on the
usage of BIM and SE and where they are coming together in the design process. The following research
questions are addressed;

1 What steps can be found in the design process and how do they align with the Systems
engineering process?

2 What type of requirements can be found in building projects and have the biggest impact
in the case of non-conformity?

3 What is the common practice in verification in the design process?

4 What does automation of verification implicate for the design process?

The goal for the interviews per research question will now be discussed.

1. What type of requirements can be found in building projects and have the biggest
impact in the case of non-conformity?

In this question there are two parts which need to be looked upon, namely the design process and Systems
Engineering within the construction sector. The mistakes which are most often occurring during the design
process are discussed upon in the interviews in depth to see what kinds of issues are occurring. Also the
needed improvements are discussed to see if the need to improve is equal among the different roles amongst
the interviewees.

When looked into the design process, the implementation of Systems Engineering is also an important part
of the interviews. The implications of implementing Systems Engineering are reviewed to see where
complications rise from. This is needed to look upon as BIM and SE come together in verification in the
implementation. These complications are needed to evaluate to draw up preconditions for automation.

Goals:

- Identify the problems which are now occurring in the design process

- Define where these problems arise from

- Investigate the problems which arise with the implementation of Systems Engineering in the design
process of a construction project

- Evaluate how BIM and Systems Engineering are interlaced in the design process

34

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

2. What type of requirements can be found in building projects and have the biggest
impact in the case of non-conformity?

Goals from this research question for the interviews are to discover what kind of requirements can be
categorized and how a requirement is built up. Also the problems with verification of requirements are
described here to investigate how the process of working with requirements could be improved.

Goals:

- Discover the different kinds of requirements
- Investigate how requirements are built up and what problems can arise with usage
- Define which type of requirements give the most problems

3. What is the common practice in verification in the design process?

To implement automation of verification, the total process of verification needs to be evaluated. The essence
of a good verification will there for be discussed in the interview to identify the key factors of a good
verification process within the design process. The interlacing with the design process is investigated in the
questions regarding this part. The verifications which are most difficult and are the timeliest will also need
to be investigated. After this the origin of mistakes made in verification is also going to be questioned upon.

Goals:

- Evaluate total verification process to identify key elements
- Evaluate interlacing of verification in the design process
- Define what kind of errors arise and where they originate from in the verification process

4. What does automation of verification implicate for the design process?

When the verification process is described, the implications for the design process need to be defined to set a
scope for the prototype for the requirements checker in the next part of the research. In this part of the
interviews, these preconditions are discussed together with the benefits of automating the verification
process. Also the implications for the design process are discussed to evaluate if the automation is possible.

Goals:

- Define the benefits of automation of verification for the design process
- Describe the precondition for automation of verification
- Investigate the improvements needed in the design process to facilitate automation

Setup per subject

In the description of the goal of the interviews, the four research questions are evaluated on what the goals
are behind the research question. These goals can be translated back eventually to four subthemes. These
subthemes are the design process, Systems Engineering, verification and automation of verification. With the
use of the goals of the sub-questions the interview questions have been created. The interview questions can
be seen in Annex A. The goal per subject will now be discussed.

The purpose of this part is to get insight in the current practice to see where the biggest problems come
forward from. In this way a clear insight can be given in what way mistakes occur. This is needed to see if
these problems are related to the verification process and to see where the opportunities lie for creating a
tool.

35

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Systems Engineering

To see where systems engineering and BIM come together, a clear overview of the current practice is needed.
This gives also a good insight to see how SE is already interlaced in the design process and where the
implementation is limited. As working with systems engineering gives the possibility of structuring
information properly the current limitations should be evaluated as verification is where SE and BIM come
together.

Verification

To ensure improved quality in designing, the current practice in verification should be clear. This is reviewed
upon in the interview questions by looking into the preparation of a verification, where mistakes are made in
and what the causes of these mistakes are.

Automation of verification

To evaluate if the goal if this research is possible, questions regarding the pre conditions of automated
verification are asked. In this way the benefits of automation can be confirmed, the pre conditions can be
identified and a clear overview can be given about what requirements are suitable for automation.

4.3 Interview outcome

In total twelve interviews have been held among different backgrounds. A variety of people with different
functions have been interviewed. The goal of this research is to see how the design process can be improved
by looking into the process of verification and the information flows accompanying this process. The
different stakeholders in this process have been interviewed. In Figure 14, the composition of roles is shown.
The departments of Systems Engineering & BIM are the main knowledge carriers in this process. Together
with design and technical developers the total scope has been addressed. Aside from the utility building
sector where this research focusses on, also an interview has been done with a systems engineer from the
Infrastructure branch to look into their approach.

Role Interviewees

Project Develo
1

ject Leader BIM; m BIM Advisor

B SE Advisor

B Technical Developer

M Process Manager
Project Leader BIM

Project Developer

Figure 14: Role interviewees

The interviews were held in a semi structured way. This means that a guideline of questions were is followed
but there are possibilities to deviate from this questions to get more in-depth information and examples. The
interviews have been recorded and transcribed as the variety of the response needs to be analyzed to be

36

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

made useful for concluding on the initial research questions. The responses of the interviewees have been
analyzed and per interview question. A conclusion has been made per answer of a respondent. These
conclusions have been coded and per question the comparison between the different respondents have been
made. These conclusions per question have been evaluated in the interview report. These conclusions per
question are combined into a total conclusion per subject. These subjects are the design process, Verification
and automation of verification.

4.3.1 Design Process

The main problem in the design process can be found in the information streams. As in integrated contracts,
proving performance is of major importance, the information which provides this proof is essential to be
valid and consistent. There are a few information streams which can be identified. The first stream is the
customer requirements information. This stream is where the translation is made from customer
requirements to design prerequisites. The information where the solution is created is where the answer is
given to the customer requirements. The understanding of the requirements is crucial to achieve the product
the customer wants and how it should work. When a proper understanding is achieved, the parts where
requirements are applying to, need to be made clear. This is a way of structuring information and where a
link is created between requirements and parts of a design. The definition on which parts of the design
requirements apply, defines where the answer is given and the two different information processes come
together.

When the requirements are clear, a good allocation is needed to link the need to a part of the design. The
problem which can be found here is that before allocation can be done, a system design should be made. This
is a difficult process, but should be done with precision as this allocation links the requirements and the
objects. When the allocation is not done correctly, problems can arise from missing allocations to parts of the
design. This implicates that before a design is made actually a system already is set up from the
requirements, in this system the relations between elements is already made from the information which is
generated in the requirements specification. Without this clear definition of the system, mistakes can be
easily made during the design process and a structure for proving the performance is difficult to make.

The information streamlining is crucial as the different streams are depending on each other. To talk about
the same thing in the customer requirements, the design and in the verification of the design, is essential to
facilitate proving performance and to give insight in what the quality of the design is. If the information in
requirements and information in a 3d model is not aligned, talking about the same things will be difficult.
The variation in projects and clients influences the information structure of requirements greatly.
Standardization is difficult in these requirements which results in a vast variation in structure. This is the
main reason why allocation is difficult.

The information stream of the 3D model is improving more and more as the agreements which have been
made in the construction sector result in clearer data structure with consistent information. This is done by
making agreements on naming and modelling for BIM.

There are a few conditions before the total process can be proven to be working correctly. The first condition
is that the interpretation of requirements is done correctly. The allocation is the next condition to provide a
process that works properly and to provide a system that talks about the same things. To prevent comparing
apples to oranges, is the most important thing to prevent problems during the verification process, a good
interpretation and allocation are the first conditions to prevent this. Aside from allocating objects to
requirements, also other information needs to be allocated to objects and requirements. The main reason
why this allocation must be done properly is to give a connection meaning as a wrong allocation will create a
comparison which isn’t valid. The process of allocation which is portrayed in Figure 15 will now be discussed
per subject.

37

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

- — — — — —

Requirement

Level of detail

Design Phase

Allocation

-

Responsibility Verification

Discipline J—
R

—_—— — — — —_—.— —

Figure 15: Allocation of Object and Requirements (own Drawing)

Allocation of objects and requirements

The allocation of objects which are going to be created and requirements should always be done before a
design is created. The definition of an object can be seen in two ways, the objects which are developed in
creating a system from a requirement and the objects which are created in a design. These two different
objects should always be mapped to each other on an object level and allocated to a requirement. The
complexity in this part can be found in the fact that multiple objects can be allocated to one requirement but
also vice versa that multiple requirements can be allocated to one object. This plurality in allocation can
cause incompleteness in correct allocation due to a possible difficulty in the clarity of the total system.

Acting discipline

The right disciplines should always be involved in making decisions on objects. This is the basis of integrated
design and the basis of linking requirements and objects. The definition of which disciplines are active in
requirements and objects should be done integrally as a first step. This gives a clear overview which
disciplines are involved in working with different requirements. This results in a clear structure where can
be seen which people are needed to be involved in designing objects. The responsibility is in this way also
connected to make it visible which people are the acting in creating the design.

Level of risk

Aside from defining who are responsible for creating the object coming from the requirements, the level of
risk of requirements and to be created objects have a major impact on an integrated design process. Risk is
defined as the possibility of the occurrence of a negative scenario. The risks in requirements can be found in
the probability of not complying with requirements and the probability of extra costs in the design process.
The analysis of risks is there for essential in the design process. When the impact of risks is assessed, this
should be linked to the affected requirements and objects. The implications of iterations should always be
investigated with a look into the allocation of object and requirements. Sometimes it can be useful to iterate
a design into a much higher level of detail to simulate the effects of the decisions. Therefor the link between
risk and level of detail exists.

38

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

According to a design phase the level of detail of an object should be determined. This influences per phase
what the minimal level of detail in an object there should be. When an object has a higher risk level, the level
of detail can be needed to be higher to ensure that iterating prevents unpleasant surprises. An overall equal
level of detail is needed per design phase to do meaningful comparisons in verification. When the level of
detail of different objects is not equal among different disciplines, the design process can be disturbed. This
is due to fact that the implications on requirements of different elements aren’t comparable and measurable.

The person which is responsible for creating an object should be linked to an object as this creates better
insight in designing an object. It also ensures that every element is allocated in responsibility. This
responsibility is for creating the object but also for doing the verification. The relation between responsibility
and disciplines should be considered to ensure that the right disciplines are involved in creating an element.

A requirement should always be evaluated in which design phase a solution should be created. This depends
on the level of detail which is asked in the requirement. It is sometimes needed to deduct a parent
requirement when a requirement already needs to be discussed in an earlier phase on. This can be done to
manage a risk level of requirement.

Before a design is created the proper verification for a requirement should be defined. As the objects are
already allocated to requirements, the verification is the element which verifies if the proposed object is
complying with the definition of the requirement. The way the verification should be done, should be
defined before a design is created. When this is thought of beforehand a clear method can be defined which
should be measurable. The person responsible for this verification is always also the person which creates
the object.

A client doesn’t always perfectly know how the building should look like and how it should work. This
insight is created during the design process. As the requirements are often written in natural language, the
interpretation of a designer can vary greatly from what a customer wants. The validation from a client of the
interpretation of a designer towards the interpretation is important to achieve what a client wants. In Figure
16, the deviation in interpretation between designer and customer can be seen. The reason why this
deviation is occurring is the openness and the ambiguity in the statement of the requirements. This deviation
in interpretation needs to be minimized to prevent design mistakes. A dialogue with a customer can
strengthen this understanding and help with validating the interpretation of the designer.

d = AN e AN
/ /
. y S N p AN

\. What’ the client wants

What the \ Improved requirements / =

client wants analysis & client validation A

[What the | 7
|| Designer | |

| interpreters \ What the Designer

interpreters

N //’ \
Client Requirements specification / Client Requirements specification
AN Design solution space Y 4 AN Design solution space

//

//
\\\ / \\\ //

Figure 16: Deviation interpretation of requirements

39

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

The reason why an extended requirements analysis isn't done can be found in two reasons. Firstly the
construction sector is used to start designing straight away and amend its design due to the iterative
character of the design process. Due to this effect, not enough time is taken to fully understand the need of
the client. The second reason lies in the fact that the investment costs of extending the requirements analysis
are won back after a tender is won. This brings forward a dilemma as not every tender is won, which makes
it impossible to win back every investment in extended requirements analysis. This dilemma can be
overcome by making the understanding of a project a core element to win a tender. To use this to as a
strategy to win will need more investigation on how to exploit this opportunity.

Another aspect of interpretation of requirements lies in the plurality of applicability of requirements. A lot of
requirements are being filled in by multiple elements. This can be seen in two ways. Firstly a requirement
can be filled in by a combination of different objects. For example a fire compartment is built up out of
different walls which together make the sum if a compartment is complying towards the requirements from
a standard. Secondly an object can have multiple requirements being applicable. This combination of
requirements or objects being applicable makes it complex to create a complying design solution.

The impact of requirements was assessed in the interviews. Interpretation and the plurality in applicability
of requirements are the essential factors which affect the complexity of a requirement. This can also be
found in which requirements are identified as the most complex requirements. The requirements which
need a simulation to prove their performance are designated as the most complex requirements. In the
interviews, comfort related requirements are confirmed as the most influential requirements which often
cause mistakes.

In conclusion of the interpretation of the requirements an overview has been given of what benefits an
improved requirements analysis can have in Figure 17.

Less miss- Less questions Less discusions
interpretation and disturbance with the client

Less errors

Improved
overview in
complete
ness

Improved
understanding of
the Project

Improving
Less changes &5 req uirements
A analysis

Improved
overview in
missing
requirements

Improved
allocation of
requirements

Improved Improved
overview & understanding in 3 e =
insight in risks requirements

Improved trust in
project

Figure 17: Improving requirements analysis

4.3.2 Verification
The quality of the verification process depends on the process which takes place before a requirement is
done. Also the verification is only worth as much as the definition of the steps behind the verification. This
means that before a verification can be done properly, some preconditions are present. These pre conditions

40

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

are also present for the design process. For the total verification process pre conditions have been defined
with the use of the interview response;

- The interpretation of the requirement must be validated by the client

- The allocation to the proper elements must have been done in a way that all the elements which a
requirement is applying to are allocated. In this way all requirements are applying to all the
elements in the design

- The process of defining if a verification complies or not must be done in such a way that an
unambiguous answer can be given.

- The definition of the level of detail of a design allocated in the time according to the level of risk
must be done properly. This prevents discovering mistakes too late as higher risk requirements
need to be monitored closely.

- The level of detail of different disciplines needs to be defined clearly to validate the verification as
the different levels of detail from different disciplines can inflict problems due to occurring changes.
These changes can occur as a deeper level of detail can inflict changes on different disciplines.

The key elements of verification are related closely to the definitions laid down in the design process. The
key element of verification is to construct the right comparison. This means that to do a proper verification,
the comparison of a requirement and object must be correct and defined clearly. The actual process therefor
consists of three steps:

1. Preparation: The definition of the elements used in the verification must be clear. This is done
mostly in the design phase where the allocation is defined as discussed in 4.3.1.1.

2. Defining the verification procedure: The process of selecting the right procedure and defining the
rules of a verification.

3. Verification during the design process: After the verification procedure is defined and the elements
are designed, the verification can be executed and documented

This total process is captured in annex B.

During the interviews multiple definitions have been given about the classification of requirements. The first
definition which has been addressed often is the level of ambiguity or interpretation in requirements. Here a
clear difference between the following three types of requirements is defined;

1. Value (numerical) requirements
2. Relational requirements
3. Textual requirements

In these three types the level of ambiguity can rise easily when the definitions are not laid down clearly.
Textual requirements often are difficult to measure and are highly interpretable.

Aside from the classification in measurability also classifications in the interviews are brought forward
related to the various disciplines in construction. For example technical requirements are different in
comparison to architectural requirements. These requirements are related mostly to different qualities of a
building, for example technical requirements are often related to comfort requirements and architectural
requirements are more related to aesthetic quality. Aside from the requirements which can be classified in
certain domains, also the requirements related to norms and standards can be found. Norms and standards
are often related to safety, security and usability. A variation in sources and domains where requirements
are related to is defined by variating needs of a client. This can be seen in for example that aesthetics are
more architectural requirements, technical requirements are more related to comfort and norms and
standards are applying more towards safety and usability.

41

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

4.3.3 Automation of Verification

As rule checking is already used for validation of models, the usability of rule checking for automated
verification is also questioned upon in the interviews. The interviewees responded on these questions that
the way a model checker works should be possible to use for checking a large part of the requirements. Only
non-quantifiable, more qualitative requirements like look & feel requirements will remain impossible to
automate. An important conclusion although is that a model checker will only be useful if the process of
verification is validated and the information is correctly. If this isn’t the case a rule checker still can be built
but the meaning of the check will not be valid. The most important pre condition for using rule checking is
there for that the Information is consistent on both sides (requirement & model) and that the requirement is
translatable to a non-ambiguous rule.

The preconditions for automation of verification have interviewed upon. Before the verification can be
automated the following conditions must be addressed in the preparation phase of verification;

- Requirements are measurable/ translated in an equation

- Interpretation of requirement is validated with the client

- Allocation of requirements and objects is done properly

- The level of detail needed in the associated design phase is defined for the verification
- For every verification the right information must be defined

This means that the total process which happens before verification is done is clear and consistent. The
definitions of a requirement and the verification should be clear to ensure that the proper data is used for the
verification. To prevent doing rework every project, this process needs to be standardized to implement in
every project. Before verification should be done, a data quality should be done to check if verification can
actually be done. The completeness of data is needed to ensure that the verification is complete.

In the execution phase of verification the following conditions must be addressed,;

- The definition of a complying solution must be given in an unambiguous equation where a clear not
complying or complying is given

- Definition of requirement must be reusable for different projects

- The information and the value of what a requirement demands must be available in the BIM model

The procedure of verification should have a clear equation with needed values made clear. These values
should be available and allocated to the right objects.

The eventual way of constructing the automation is also defined in the interviews. This can be defined as
followed:

Data quality check

Querying the data

Equation if a requirement is met
Create documentation for the outcome

N =

This data quality is needed to ensure that the preparation conditions are checked and to be sure if the right
information is available for the verification. If this isn’t the case, the information is modelled wrongly or not
available. After this the right information is needed to be brought forward as not the whole model should be
queried. This ensures that the right information is questioned upon and reduces the needed computing
power for the checker. This requires that model information needs to be consistent throughout different
projects as otherwise the query will not be complete.

42

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

4.4 Conclusions on research questions

The conclusions which are made for research questions 1 to 4 are given with the use of the literature and the
interviews. These will now be given.

1. What steps can be found in the design process and how do they align with the
Systems engineering process?

The steps of the design phase and the systems engineering process have been identified. The level of detail
and level of development of a design increases along the steps in a design. From a conceptual way of defining
the need of a client in a building, the conceptual design is improved amongst the phases of a project to a
more performance based design. These steps of increased level of detail happen simultaneously with the
decrease of variants. The conceptual decisions made integrally develop the definition of a design. These exact
steps are also proposed in a systems engineering approached process of a design. The decisions made in a
systems engineering approached process follow these steps of iteration in a same way.

To improve the design process the development of a design should be monitored closely and the integral
decisions should be laid down properly as a baseline. The level of detail and development amongst these
steps should be equally amongst the different disciplines to assure integrality in the decisions for variants.
For making design decisions having the correct information is essential.

The main problems in the design process have been identified in the interviews. Firstly the understanding of
integrated contracts is not at a level where it should be, this is due mostly to the transition which is
happening in responsibility. This transition originates from the introduction of integral contracts which
require developing a design with a complete building team much earlier on. Not only an architect is there for
acting in an early phase, but a complete team with all disciplines is defining the building. In this field also a
change is coming in the technical area of a building as this discipline is required to work more conceptually
and parametric in comparison to traditional ways of developing a design.

Aside from the main way of working together also the information streamlining in a design process causes
issues. The lack in standard ways of delivering information makes it difficult to assure that the right
information is available. This is primarily the case in requirements data. A standardized process is not
apparent in defining the requirements. This causes a lot of human interpretation to work with the
requirements which can cause errors easily due to misinterpretation.

An eventual improvement of implementation of systems engineering can be found in a more standardized
way of working and on the other hand improvement in experience in working with Systems Engineering.
Key in this improvement is the understanding of a complete project team of integrated contracts and the
goals. An important is found in understanding the set of requirements and the need of the client in an early
phase. This is crucial as the decisions made in the early stages of the project are the most vital decisions as
the impact of changes later on in a project have major impact in costs and time.

2. Which requirements can be found most often in projects and have the biggest impact
in the case of non-conformity?

Requirements are researched upon how they are built up to identify what types of requirements exist.
Requirements can be defined in the structural built up of a requirement and in the classification towards
needs.

Firstly the structural built up of a requirement can be defined as quantifiable, relational and qualitative. This
defines the built up of a requirement and where the requirement is applying to. This can be a value, a
relation or a qualitative description. This closely relates to the measurability and the level of ambiguity of a
requirement. These levels define the complexity in working with a requirement. This structural built up of a
requirement defines the first hierarchy in the structure in defining requirements

Secondly requirements relate to a certain need and/or discipline. For example comfort requirements relate
closely to technical installations. A relation between a need and a requirement is an important part to create

43

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

structure in a requirement. This translation and iteration of a need into a certain requirement brings forward
the second hierarchy of defining a requirement.

The iteration process from a need towards a requirement is essential for the clarity in the requirements. This
process starts with a requirements analysis to understand the meaning of a requirement, on which elements
it applies to, which stakeholders are involved and what level of detail in which phase is required. The
requirements analysis doesn’t receive enough focus yet. An important cause why this requirements analysis
isn't executed extensively lies in the changes in responsibility but also in the way tenders are executed in the
construction sector. The interpretation of the requirements coming from the analysis requires client
validation. This validation with the client is essential to ensure that the right thing is designed. This is not a
common process yet in the construction sector.

Non conformity regarding requirements relate to structures in built up of requirement. The way a
requirement is built up can have a big impact on the design process. Misinterpretation of a requirement is
often occurring in the design process due to the way a requirement is built up structurally.

The requirements which have the biggest impact are in the end the requirements which have the highest
priority towards the needs of the client. This closely relates to the risk of a requirement. Aside from this also
the timing of identifying non conformity is essential to measure the impact. A requirement which isn’t
complying investigated in an early phase has a smaller impact as a requirement which isn’t complying in a
more developed phase. Progressing in iteration on a mistake increases this impact. Creating a solution that
complies after every phase is there for essential to manage the risks.

The process to manage requirements will rely on the reusability of the defined structures. This will enable to
standardize the way of working and can improve the usability of requirements to measure the performance
of a design.

3. What is the common practice in verification in the design process?

Verification in the design process, currently takes place after a phase in the project is finished. This is a
hands-on process where the quality of the execution relies on the interpretation of the person who executes
the verification.

A process of verification has been defined in the interviews. Here three elements have been identified. This is
the definition and allocation of the requirements, the preparation of the verification and the execution of the
verification. The equation which is used in the execution of the verification defines how useful the
verification will be. This verification process relies on the completeness and the quality of the requirements.
The performance in a requirement defines in the end the usability of a verification.

4. What does automation of verification implicate for the design process?

Eventually automating the verification of client specific requirements relies mostly on the preparation and
the definition of requirements. When the system which is going to be checked is inconsistent or incomplete
automation will remain useless. The process improvements in the field of requirements management is
there for essential for implementing automated verification in the design process. The most important parts
of these process improvements are defining a measurable equation where a clear and measurable
performance is defined, the completeness defined by the correct allocation and lastly the equality in level of
development amongst the different disciplines.

Aside from the process of defining the system of requirements and allocated objects the data which is going
to be checked needs to be consistent and correct. Therefor the data quality of the design solution in a BIM
must be complete and correct. When the checker is correctly built up but the data which is going to be
checked is inconsistent, the results will not be valid.

44

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

5. Model

5.1 Introduction

Changes in responsibilities are occurring more and more in the AEC industry. Due to integrated contracts,
contractors need to prove their performance more structurally. Together with the need of preventing
building mistakes, implementing methods to monitor and manage quality in complex building projects has
become an urgent matter. The use of systems engineering and building information modelling (BIM) are
important developments to improve the building sector. Verification of a model according to the
requirements is an important part where systems engineering and BIM can come together to see if the
required quality is achieved. The verification process is mostly a hands-on job where interpretation of the
requirements can be of high influence. This manual process is time consuming and error prone and must
improve to achieve the required higher quality in the construction sector.

The translation of requirements and evaluating if they comply can be seen as rule checking. The process of
rule checking within the AEC sector is researched upon greatly. These researches focus mainly on building
code compliancy and the validity of an Industry Foundation Classes (IFC) file. Using rule checking for client
specific requirements has received less attention. The possibility of using rule checking in the verification
process can result in an unambiguous automated verification process which is less error prone. This
automation can eventually lead to the possibility of using requirements as variables for automated design
solutions.

5.1.1 Research Problem

The main problem investigated in this research can be found in the data management in the current
verification process in the design phases. The verification process is still a manual check of data which is
error prone as the quality of the interpretation of requirements defines the quality of verification. Capturing
the knowledge required for verification in a knowledge system isn’t happening in the AEC industry yet. This
results in the fact that in every unique project, a verification method must be defined for every requirement.
This costs major amounts of time in preparation and in execution of verification. Capturing the required
knowledge for verification in a model checker therefor gives a big opportunity to reduce errors and saving
time. Model checkers already exist in various forms. Developing a checker requires extended expertise in
requirements engineering, modelling data and programming. This makes the usage, maintenance and
development of a model checker only worth investing for repetitive and frequent checks. The main problem
with model checkers therefor lies in the fact that they are not open for reuse and that they are not usable for
non-programming experts. To make a checker usable for automated verification a model checker must be;

- Flexible in use

- Easy to expand

- Understandable for the laymen

- Time saving in comparison to the current verification process

To investigate the problem of opening up the complex data of a BIM model to the laymen will therefore be
important to define a rule checker that can be used by a non-programming expert. This requires aside from
developing a rule checker with an interface in the domain language also proper alignment with the current
design and verification process.

5.1.2 Importance
Investigating the data management in verification in the design process is of great importance as this
ensures the quality of a building. This process can ensure that mistakes are discovered early on and prevent
costly mistakes in execution. As object and requirements come together here, the interrelation of this data is
researched upon. This can improve the usability of the data in a building model in the design process.

Aside from the data management, the automation possibilities are of great importance to research upon as
this can improve the design process. With the use of automation, repetitive administrative work can be
minimized and the focus can be brought upon the essential work in a building project. The investigation on

45

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

automation of verification is a useful part where quality improvement & assurance, data management and
automation of administrative work come together.

5.1.3 Previous Work
Various model checking applications have been developed. These checkers are often closed down to use for
the laymen. Aside from that also these checkers aren’t open to develop as they are provided by software
suppliers as a black box.

As creating a rule requires high expertise on interpretation and on programming, the various researches
have confirmed that the definition of a rule and the processing with the use of programming should be
separated from each other (Eastman et al.,, 2009; Zhang & Beetz, 2015). To enable this structure, using
semantic web technologies have been suggested by various researches to develop a model checking
environment (Beetz, 2009; Pauwels et al., 2011; Zhang & Beetz, 2015). This enables the possibility of using
more than just the IFC data as the semantic web makes it possible to create linked data sets. Aside from
additional open data, using the semantic web in a rule checker, also the possibility comes forward to query
IFC data. To ensure understandability of using the semantic web standard for model checking a brief
introduction will now be given.

The semantic web is a proposition where the vast amount of data stored in various data sets is made
available as a web of data on the world wide web (W3C, 2011). The current web is a web of documents. The
information in this web is stored in the documents. The knowledge is therefore encapsulated in the
document and not in the web.

Connecting the data in these documents remains a human interpretation (Allemang & Hendler, 2011). A lot
of data is currently not available to be connected to each other as the data is stored in the various
applications. In documents links can be made between certain elements in the real world but on a data level
this connection is not there. By opening up and connecting this data as web of linked data, a smart web of
data can be created. This web of data can be used to investigate relations between the various elements
which are described. For example a connection in data about a geographical location, information about
what is allowed to be built at that location and data about the population income can give an interesting and
easy to create analysis on what kind of development is possible. This basic link in data is an example for
numerous linked data connections which can help developing real world solutions.

To describe this data, all the elements are described as resources which can be accessed through the web.
Describing these resources in the semantic web is done with the use of the Resource Description Framework
(RDF). Describing data with the use of resources in RDF enables the connection between various datasets. In
RDF, data is described as a triple statement where the various unique resources are used. These resources are
defined as Unique Resource Identifiers (URI) which can be called upon with an unique http address (Curry et
al.,, 2013). With these URI's, a triple statement can be made about relational data. For example the statement
“Amsterdam is the capital of the Netherlands” can be broken down with the use of URI's. This can lead to the
following triple stated in Figure 18.

Amsterdam — c— The Netherlands

Is Capital Of
Predicate

URI: http://standaarden.overheid.nl/ URI: http://www.example.com/ URI: http://www.countries.org/
owms/terms#Amsterdam exampleontology#lsCapitalOf countries#tNetherlands

Figure 18: Example of triple graph with URI

46

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

The basic building block for RDF can be seen here. This building block consist of a subject, predicate and an
object (Allemang & Hendler, 2011). The subject is where the statement is about. The predicate is the
identifier which defines the property and the object is the value which is related to the subject via the
predicate. In this way all kinds of relations between URI's can be made. The development of these links
creates a vast network of data.

To extend the usability of RDF, the RDF Schema (RDFS) is developed. RDFS is an extension of RDF with a
vocabulary to define classes, hierarchy and properties (Bruijn et al., 2008). In this way a hierarchy is created
in the relations of the triples. A schema can then be built up and used for the triples. For example with the
use of RDES the relation to a subclass can be created to give more meaning to the unique resources.

To further extend the expressiveness of RDFS, the Web Ontology Language (OWL) has been developed
(Bruijn et al., 2008). With the use of OWL more detailed relations and constrains between classes, entities
and properties can be described (Allemang & Hendler, 2011).

The data set for the semantic web must be accessible to be useful. Data in the semantic web is retrieved with
http. Querying is done with the use of the query language SPARQL (Allemang & Hendler, 2011). SPARQL
stands for SPARQL Protocol and RDF Query Language. With the use of SPARQL, the various relations in the
triples can be accessed. Aside from simple querying also inferencing can be done with the use of SPARQL.
This makes it possible to enable links between the various graphs and databases (Feigenbaum, 2009). The
structure of a SPARQL query is shown in Table 5.

Table 5: Structure of a SPARQL Query (Feigenbaum, 2009)

Prefix declarations Abbreviating URI'’s # prefix declarations
PREFIX foo:
<http://example.com/resources/>

Dataset definition Definition to be queried # dataset definition

RDF Graph FROM

Result clause What information needs # result clause

to be returned SELECT

Query pattern What and how to query # query pattern
WHERE {

Query Modifiers Rearrangement for the # query modifiers

query result ORDER BY ...

With the use of a SPARQL query various results can be retrieved from a dataset. The result clause query
patterns and modifiers facilitate the variety of results. For example from a dataset the various instances can
be retrieved with the use of SPARQL. An example query with SPARQL can be seen in Listing 2.

Listing 2: Example Query

1# SELECT ?City ?country

2# WHERE {

3# ?city example:isCapitalOf ?Country .
a# ?city a geoinfo:capital .

S# ?Country a geoinfo:Country .

6# LIMIT { 10 .

7# 3.

84 }

47

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

By this query, city and country variables are retrieved. The relationship which is required, is that all cities
must be selected which are a capital of a country. This query will therefor result in a list of capitals and
corresponding countries. To retrieve this result, the variables ?city and ?country are defined in this query.
A ?city is defined as a geoinfo:capital and a ?country is defined by geoinfo:country. The prefix
defines where the data can be found. With the use of these prefixes, the query becomes more readable and
easier to build up. Additions to the query are made with modifiers. In the example a limit is added. In this
way, the result becomes more suitable for the associated goal. Also filters can be added to the pattern to
retrieve specific results.

Aside from retrieving data, also rules and constraints can be tested on a dataset. This can be done with three
basic rules of the SPARQL Inference Notation (SPIN)' (Knublauch, 2011). There are three class description
properties in SPIN. The spin:constraint which defines a condition for a class, a spin:rule which is used to
specify inference rules for SPARQL and the spin:constructor which can be used to initialize new instances
with default values. In this way a rule can be created for a data set. This opens up the possibility of defining if
the data in a RDF graph is according to the requirements. Exactly this possibility makes the use of the
semantic web for rule checking useful. The usage of SPIN will therefore be important for evaluating the
implications of automated verification.

5.1.4 Primary hypothesis & objective

From the problem in streamlining information in the verification process, a prototype for automated
verification is developed which is available to the laymen. The hypothesis of this research states that
automated verification will improve the design process by reducing the time taken for verification and
reduces the amount of errors which can be made. The objective of developing the tool is to investigate which
information and elements are crucial of influence to ensure automated verification. This development is
created to overcome the problems with existing rule checkers. This delivers a prototype which is based upon
the semantic web standard. This gives the possibility to add various forms of information and use this
information for various purposes. For the design process an evaluation will be coming forward on what steps
in the process need to be undertaken to ensure that the data will be useful.

5.2 Method

The method used in this thesis for the creation of the automated rule checker is firstly the process for rule
checking described by Eastman et al., 2009 and the method for building the model checker by Zhang & Beetz,
2015. Eastman has described a standardized process on how to define an automated rule checker. This
process consists of four steps; Rule Interpretation, Building Model preparation, Rule Execution and Reporting
checking results (Eastman et al., 2009). The purpose of the rule checking defines how the checker is built up.
The various types of rule checkers all follow this creation process in a way to develop and assess the checker.
These steps are followed in the development for the model checker for automated verification.

The model checker in this thesis has the purpose to automatically check client specific requirements. As
described in the introduction and in the pre conditions of automated verification, the model checker must be
able to be used by non-programmers and must be extendable. This is done by using the proposed method of
Zhang & Beetz. They have proposed an architecture for a model checker which uses semantic web standards
for checking the validity of a IFC model according to the Statsbygg BIM standard. The architecture for the
model checker is stated in Figure 19 . The semantic web standard enables the possibility to create a web of
linked data (Curry et al., 2013). The semantic web relies upon relational open data (Radulovic et al., 2015).
The relation between various data creates meaning and opens up the possibility of receiving answers on the
requirements. These answers come forward from querying the relations between the data. For the usage of
the semantic web standards, the non-relational data needs to be converted into relational RDF (Resource
Description Framework) data.

! http://spinrdf.org/spin.html
48

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Figure 19: Architecture for Model Checking on the Semantic Web (Zhang & Beetz, 2015)

A requirements checker which can be used by a non-expert is expected to be valuable as every construction
expert will be able to use it. To make a requirement checker available to a non-programmer, a check must be
available in the construction domain language. This is done by creating an inference layer between the
complex IFC data and the domain language. The IFC data is interpreted by the IfcOWL Ontology in Layer 1 of
the model. The layer between the ontology and the domain language (layer 3) will function as a library from
the IFC standard to the domain language classes and properties (layer 2). Here relations are made between
natural language concepts and the related parts of the IFC schema by creating inference rules. Through the
relations in this layer, the IFC schema is made usable for non-experts. For example a connection between the
natural language concept “Internal wall” and the IfcOWL ontology can be made with the usage of the
relations in the translated IFC schema. This is done by creating a link between a Wall in the IFC schema and
its property “IsExternal”. This is stated in Listing 3.

Listing 3: Example Inference

“?Internal wall’’ =IfcWall or IfcWallStandardCase
Pset_WallCommon IsExternal = FALSE

In this way a check can be built up with normal language with the right referencing towards IFC without
needing the extensive knowledge about IFC. This translation is reusable for various purposes as only the
relation is laid down in this layer between the concept internal wall and the parts in the IfcOWL Ontology.
This concept can then be used in the various requirements which are applicable on internal walls. The
inferences are further explained in section 5.3.2.3.

Requirements are always built up as a constraint with a relation in its statement (Bhatt, Hois, & Kutz, 2012).
This makes the usage of the semantic web standard for this kind of checking suitable. The various types of
requirements are translated in to constraint templates with the use of SPARQL Inference Notation (SPIN) and
stated in layer 4 (Zhang & Beetz, 2015). The relations which are required in a requirement can be queried
with these constraint templates. An element where a relation is not existing or which isn’'t according to the
required values is returned as these are the elements which aren’t complying. Similar relationships can be
found in the various requirements. This enables the possibility of reusing the constraint templates for
various requirement checks. For example a constraint for existence of an object in a space can vary greatly as
there are numerous objects which can be contained in a space. As long as a relation exists the relation can be
checked.

The architecture which is now proposed, defines that there is a system with an undefined amount of
requirements which can be checked with the varying classes and properties. To enable this open architecture
for the model checker to be used in the verification process, the working of an interface is researched upon
to be sure that the process of verification as executed in the design process is followed. This is elaborated

49

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

upon in section 5.3.3.1. An important part of this development is to make sure that the client requirements
which define the constraint instances in layer 5 are used in the interface development as this improves the
usability in the total verification process. This will contribute to using the right constraint templates for a
certain requirement and accompanying need. This will eventually give the possibility to evaluate the
implications of automated verification.

5.2.1 Tasks for developing the requirements checker

In the rule interpretation process, the definition of a requirement is translated to a computer processable
rule. The various types of requirements have been identified in the literature study (section 3.2.3) and the
interviews (section 4.3.2.2). Aside from this, an analysis is done on five existing projects to define a list of
standard requirements. This list is developed according to the needs of a client in a hierarchal way as
proposed by Walraven & de Vries, 2009 . This gives a clear structure from value, to need, to requirement, to
performance. In this way also the interaction in verification according to a systems engineering approach can
be followed as stated in 3.2.2.

These requirement types are evaluated on the applicability for automation. This definition of the
requirements will lead to the development of a set of requirement types where the right constraint
templates can be defined for. The definition of these requirement types will need to be made SMART to
create a set of standardized rules which are measurable according to the performance. A clear definition of
the elements and needs is therefore essential. From this set of requirements a selection is made for the
prototype.

Aside from defining the requirements, also the elements and properties which are present in these
requirements need to be defined. These elements need to be represented as natural language which is reused
amongst the various projects. As the prototype will focus on walls and spaces, a definition of these two
elements need to be given. For the space definition an investigation on classification of spaces is done to
define a summarized classification which applies to the Dutch building Code which can be used openly. The
properties and elements which are investigated upon in the prototype need to be evaluated if they are
defined in IFC and if how they are defined. This is needed to evaluate which requirements can be translated
and which can’t without external referencing.

To prepare the building model for automated rule checking, the IFC building model is converted into a RDF
data set with the use of the IFC-to-RDF convertor of Pauwels & Terkaj. This enables the possibility to query
the IFC data. A further explanation is given in section 5.3.2.2.

As the IFC standard has been chosen to be used for the data input, the right elements in the rule checks need
to be matched to the IFC standard. To develop the connection between the natural language concepts and the
IFC standard, a connection is made between the IfcOWL ontology and the natural language concepts by using
inference rules with SPIN. This will enable that the elements in an IFC file can be used with natural language
concepts in the BAM object type library.

When a connection is made from the concepts in the IFC schema, the quality of the building model
determines how useful a checker is. A data quality check is therefore essential before a requirements check is
executed. Ensuring that the to be evaluated elements are modelled correctly must therefore be done before a
check is executed. This is therefore an important part of the execution of a rule checker. This is further
explained in the flowchart of the interface. In the prototype, an IFC file is used which is checked on the
quality and corrected accordingly. Evaluating the crucial effect of building model quality will also be
evaluated along the development of the checker.

In the execution of rule checking the right data needs to be brought forward and evaluated. Here the
connection between the requirements and the data in the IFC model is made. By defining a set of
requirement types according to the needs, the various constraint templates can be developed where the
objects and properties can be used as variables in the templates. By matching the right template to the right
requirement, the model checker can be developed. This structure can be seen in Figure 20 and is further
explained in the next section.

50

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Templates
Existence

Property
Value

Requirement Template

el rating X

Have acoustic
| | |
3 (Sl (Property) |

,,,

BAM OTL

Class Property
Objects HasAcousticRating

Spaces ContainsObject

Figure 20: Structure of using constraint templates for requirements checking

After the templates are built up, the right elements and equations need to be created. This is defined by the
client requirement. Determining the right equation is essential for a valid verification of a client
requirement. Here for the knowledge of a domain expert is needed. The usage of the correct template, object
and properties is determined here. This interaction is defined by the process in the verification. The interface
which enables this interaction defines how useful a checker will be. Here for the alignment with the current
verification is important. This will result in the eventual development of a prototype. This prototype will be
developed with the use of Java. The development of a report on performance will be required to complete
the total process of a rule check as well as a verification. This is investigated in section 5.3.4.

Aside from the total development of the checker, also the integration with the current process management
tool Relatics is evaluated briefly. Here the requirements of the client are stored with a connection to the
system breakdown structure and the functions. In this way the place of the checker related to the total
design process in can be evaluated.

5.3 Results

The definition of the performance of a design is measured with the rule checking environment which is
defined in this section. This is done per process step of developing a rule checker as stated in section 3.3. This
process follows verification as executed in the design process. Here for a definition of performance of an
object is measured according to a requirement of a space. The interaction between a requirement and the
performance of an object will become clearer during the development of the prototype. This interaction
leads to the answer of the research question of what the implications of automated verification are.

51

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

5.3.1 Rule interpretation

To define a list of applicable requirements, the structure of requirements is looked upon. The built up of a
requirement defines what kind of requirement structure types exist. From these types, varying rule
templates can be defined for the requirement checker. Important is the difference between a requirement
type and a requirement classification. A requirement type is the way a requirement is built up semantically
and a classification is connected to what kind of class a requirement is used for. For example different
requirement types vary in statement definition. A requirement about a value is different than a requirement
about a relation. These various types define different statements. An example for the classification is related
to the need which is described. A requirement about comfort is one type of need and a requirement about
spatiality is another type of need. This breakdown structure of a requirement in types and in needs defines
what a template eventually is going to be selected for verification. As shown in figure 20, this structure is
completed by defining the right elements. Summarizing, building up the rules for the requirements checker
will consist of defining the requirement classifications and types, the elements (classes) and the properties
which are going to be used in the varying requirement templates.

5.3.1.1 Requirements types

As defined in 3.2.3, a variety of requirements exists. As the requirements checker will need to be complete,
an investigation on the various requirements in existing projects is needed. To define a proper list of the
various requirements, the structure of developing a requirement must be followed. As defined in 3.2.3 a
requirement is created to define a need of a client. A requirement is therefore a translation of a need which
on itself is a translation from a certain value. This interaction is important to be defined clearly but is often
forgotten during the design process. From a certain need, for example the need of a comfortable building a
translation to a requirement will be made. At first, these requirements are only applying to spaces. As a space
is not a tangible object, this space requirement needs to be answered for by the elements which define a
space. A space is defined by the objects which create its borders. The interaction between a space and objects
and together with that the iteration from a space requirement towards an object requirement is essential for
defining a performance. This total structure of interactions between space requirements, spaces, object
requirements and objects is stated in Figure 21.

Space Requirement Object Requirement

Defining
performance

— —p

Requirements Information

Allocation Verification

uoneuwuoju|
Buusyy
Alligning

Information

Model information

Wall Object 1

C
tai
‘ ntains

Figure 21: Interaction between information in requirements and objects

To create a complete list of applicable requirements, five existing projects have been investigated upon the
various client requirements. The process of these projects is managed with the use of the project

52

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

management tool Relatics’. In these environments the requirements of the clients have been translated into
a manageable interface. In Table 6 a description is given about the projects which are used for the definition
of the requirement types.

Table 6: Description analyzed projects

Type of building Government Government Office Education Government
Building building Building Building Building
Client type Government Government Developer Educational Government
institute
Size 13.000m2 6.700m?2 32.000m2 40.000m2 80.000m2
Total Number of 4.000 1533 3.580 1.812 13.830
requirements

In these data sets various requirements are coming forward. The goal of a requirement is always to define a
certain need. As discussed in the literature review, a requirement starts from a certain function and value
which is needed to be present in the building, these define certain needs like for example a comfortable
building. This basic structure which is defined in section 2.2.3 is the basis for defining the hierarchy of
requirements towards performance. An example of the result of this analysis on the various requirements
can be seen in Figure 22. The total result of this structure has been stated in Annex C.

Aside from defining the various requirements, the datasets can also be used for analysis on the applicability
towards automated verification. The datasets of requirements contain a vast amount of information which
can define this applicability. A BIM can only be used for giving an answer to a requirement if the elements
described in the requirement are also present in the BIM data. To be useful, the requirements must be
iterated to a level which is definable in a BIM. A function of a building or a certain need can’t be directly
described in a BIM. Needs and function are eventually described by the performance of the element in the
data. Therefor the data for a need must be iterated towards a performance of an object as otherwise
interpretation will be required to verify a related requirement instead of a performance. Here for a definition
of the elements, properties and values in the requirements must align with the similar variables in BIM.

Value
dimensions

Requirement

Performance

Cost efficient

Process

Process value

) 4

High product value

Use value

Modelling Quality

) 4

Emotional value

> Comfort

Well formedness model
Clash free model

Naming & identification —

Location requirements
Availability of properties

Correctness of Objecttype
Intersections
ObjectID
Geo Location
Objectproperty

hermal Comfort (heating)
Thermal Comfort (cooling)
Internal Comfort (air)

\ 4

aesthetics

\ 4

ical Comfort —

Visual comfort (light)
Visual comfort (reflectivity)
Internal Comfort (moisture)

Temperature SoundLevels
Airflow Soundpressurelevels|
Heatgain Light emmission
Capacity Reflection Factor
Humidity Illuminance
VentilationRate

\ 4

Figure 22: Requirements Type Classification

* http://www.relatics.com/

53

Aesthethic Quality
Finishing requirements
Material requirements

Colour requirements —>

Transparency
Spatiality
Visibility

Quality levels
Finishing Level
Material
Colour (RGB)
Transparancy Rating
Area
Line of sight

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Need: Acoustic Comfort
Space Requirement: Spaces must have noise isolation to prevent noise nuisance
Object Requirement: All internal walls must have an acoustic rating of at least 42 dB

Code Relation Requirement Characteristic Equation Waarde Unit

EIS- Internal 4.10.1 Acoustic > 40 dB
00914 Walls Comfort Value
Information in Requirement database Information in BIM Model

Figure 23: Example of iteration to create an equation with similar elements

For example a need must be translated into a requirement where clear elements are described with a
performance. The BIM model must contain the same elements with properties which describe this
performance. An example of this equation of similar objects can be seen in Figure 23. Here a requirement
about acoustic comfort is iterated to a level of detail that it can be described in a BIM model. In this way the
information in both sources is similar. This definition of when a comparison can be made gives a possibility
to measure how much of the requirements in a requirements database can be verified using a BIM.

Furthermore aside from the usability of a BIM for checking a requirement also an overview in the various
types of requirements can be given with this data set. This will give a further insight on the built up of these
data sets and the opportunities to improve the usability for automated verification and alignment with the
design process. The data analysis questions in Table 7 are set up to define the usability of the current
requirement datasets.

Table 7: Data Analysis Questions

Is Object related? Check “Relation to” variable if it is about an object in comparison with total
amount of requirements

Is Space related? Check “Applicable to space” variable in comparison with total amount of
requirements

Is defined SMART? Check “SMART” variable with total amount of requirements

Is usable in BIM? Define if characteristic of database is BIM checkable, then compare variable
total amount

Has a measurable value? Define what measurable is and analyze the requirements value

The datasets in Relatics have been exported to excel. The datasets vary in their built up. In time the clients
get more experience in working with a systems engineering approached project and therefor a variation in
structuring the requirements occurs. To compare the data sets, the evaluation of the variables needs to be as
identical as possible. The variables which need to be defined for the analysis are the definitions of object
requirements, space related requirements, how SMART requirements are, how usable the requirements are
in a BIM and what the values are in requirements.

The definitions for space and object variables are defined equally amongst the five projects as the definition
of where the requirement is applicable to is defined in all the databases. The unique values are here filtered

54

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

and then defined if they are applicable to a space, an object or if they are related to a different element. The
definition of a measurable value can be related to an existence of a relation or the existence of a numerical
value which can be checked. The value variable is checked if these equations exist and then counted to
define how many of the requirements are measurable. Lastly there are the definitions of how SMART the
requirements are and if a requirement can be checked using a BIM. Retrieving the information of the variable
SMART can be done in three projects easily as this variable is added to every requirement during the
requirements analysis of the project. The applicability of this value depends on the interpretation of the
person who defined if a requirement is smart or not. This needs to be looked upon to define if this variable
definition is already useful.

The last variable which is the most interesting to investigate is the usability of a BIM for checking a
requirement. A BIM is usable for checking if the data which defines the performance of the requirement is
stored in the model. Therefor this data must be measurable to get a comparison which can give an outcome
true or false. This should be possible without extended interpretation. Defining if the variable is measurable
is done with the use of the characteristics which are added in four of the five projects. These characteristics
are the actual performance indicators of an object. For example in project 3 a list has been defined with these
performance indicators. An example is stated in Figure 24.

Kenmerk Overview

Naam kenmerk Eenheid BIM =
Aantal stuk{s) Ja
Betonkwaliteit Ja
Blijvende belasting kM/m2 Ja
Breedte mm Ja
Diepte mm Ja
Dikte mm Ja
Geluidisolatie dB Ja
Geluidniveau dB(A) Ja
Hoogte mm Ja
Lichtsterkte E(B) luzx Ja
Materiaal Ja
Rc-waarde m2.KwW Ja
U-waarde W/m2.K Ja

Vieeropperviak m2 Ja

Figure 24: Overview of Characteristics within project 3

With the use of these performance indicators, it can easily be determined if the performance can be defined
with the native modeling tool. This is the definition which is used to define what can be used for checking
with a BIM. In this way the amount of requirements which can be used in a BIM is measured. The definition if
a characteristic can be checked with a BIM is done with the comparison to the availability in the IFC schema.
The ambiguity of the characteristics therefor determines the possibility of using a BIM for checking client
specific requirements. If these characteristics are too ambiguous or not measurable, it will remain difficult to
use the data for requirements checking.

Aside from these characteristics also the relations between spaces and objects can be checked within a BIM.
These relations can be found within the requirements dataset if they are defined. The sum of these two types
of requirements is the amount of requirements which can be checked with the use of a BIM. The outcome of
the five questions is stated in Table 8.

The percentages are retrieved by counting the amount of requirements compared to the total amount of
requirements. For the value, object and space requirements little to no interpretation plays part as the
elements where the requirement is applying to, are defined in the database. The definition of SMART and
BIM usability are subject to interpretation. The SMART variable is only defined in three projects. The quality
of this definition is difficult to define as this is an interpretation of the requirement by a single person. The
representation of this value remains therefor not reliable for representation.

55

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Table 8: Data analysis come

Project Year 2016 2015 2015 2014 2014 2014,8
Total amount of Regs. 3982 1533 3530 4742 12984 5354,2
Square meters 13.000 6.700 32.000 40.000 80.000 34.340
Requirements per m2 0,306 0,229 0,110 0,119 0,162 0,19

Value Requirements 9,8% 10,4% 11,6% 12,5% 6,2% 10,1%
Object Requirements 22,0% 19,9% 41,8% 37.8% 14,5% 27,2%
Space Requirements 55,7% 31,4% 23,6% 64,1% 58,3% 46,6%
Smart Requirements 17,7% 73,8% X 8,8% X 33,4%
Regs. usable in BIM 17,3% 13,7% 7.2% 15,1% 7,9% 12,2%

For the usability in BIM a different approach has been used. This requires an evaluation of the values of the
requirements. The values can be a text, a numerical value or a relation. The numerical and relational value
can be brought forward easily as these are added as single values of the requirement. The availability of the
data in a BIM is defined by evaluating the value statement in comparison to the availability of the data in the
IFC Schema. This was possible to do in Project 1 to 4 with the use of the characteristics of the value
statements.

In project 5 the characteristics weren't defined as the method of adding a characteristic to a value wasn’t
used yet here. Here a definition of all the values is evaluated by checking the unique available values on their
applicability. This applicability is defined by the available information in BIM. To define a list of requirements
where BIM is possible to use for, Filters on the data set have been used. Firstly all the elements where the
requirement is applicable to which isn’t available in BIM are filtered out. For example objects like a desk are
filtered out. A filter is also used for filtering out norms, activity related requirements and process related
requirements. This delivers a list of 1126 values. For these values an evaluation per unique value has been
made if they are applicable to be checked with use of a BIM.

Out of this data analysis conclusions are drawn up from the results. The percentage of value requirements is
on average only 10%. This means that 10% of the requirements are only quantifiable. This can be one reason
why the amount of requirements which are usable in BIM is low, as this variable is on average only 12,2%.
This means that only 12,2% of the total set of requirements can be used to be verified with the use of a
requirements checker. An increase in the amount of usable requirements can be seen clearly here along the
course of the years the projects started. So the usability of using BIM for verifying requirements is increasing.
This also can be interpreted in a way that the information streamlining between requirements database and
BIM data is improving. A clear improvement is the usage of characteristics as these make it necessary to
define a clear value.

Aside from requirements which are defined as values also the definition of where requirements are applying
to gives some insight in the composition of a requirements database. The average of requirements which
apply on objects is 27,2%. The variation in this question can be related to the moment when the
requirements database is initiated. For example the requirements database for project 3 has been initiated in
a more developed phase in comparison to project 1 where the database was initiated in a very early phase.
The definition of objects in this phase is less developed as the design is still very conceptual. The iteration of
requirements towards object related requirements is essential for the usage of BIM for verification as the
models which are developed are mostly object related. Using a BIM for verifying more conceptual
requirements in early phases can be more difficult. This is due to the fact that it is difficult to use a BIM for
describing the usage of a space or a certain quality.

A clear conclusion can be made on the question regarding the Smartness of requirements. As defined in
section 3.2.3 SMART stands for Specific, Measurable, Attainable, Realizable and Time bounded. This variable
is only as worth as much as the quality of the interpretation of the person who defines if a requirement is
smart or not. A conclusion can therefore not be drawn on the percentage of requirements which have the
variable SMART.

56

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

In total the requirements databases still have a lot of requirements which aren’t usable for verification with
BIM. This is also due to the fact that a lot of the requirements are related to the usage of certain user and
monitoring systems. For example requirements related to the operation of various systems like error reports,
fire alarm monitoring or sensors are still difficult to manage with a BIM as these elements are often not
described in the model. These requirements are essential for the operation of a building but aren’t described
in IFC.

Aside from system operation requirements there are also still a lot of requirements which are written down
vaguely and multi-interpretable. In these cases contractors should improve the ability of managing these
requirements by iterating the requirements into SMART and non-ambiguous statements and clients on the
other should improve the way they deliver these requirement databases. Client validation in this process
remains the key to ensure that the right product is delivered.

In the architecture for the requirements checker in Figure 19 (section 5.2), the requirements ontology is
displayed in layer 2. This ontology is needed to give meaning to all the requirements types as shown in
structure of the requirements checker in figure 20. The BAM object type library will function as the
requirements ontology. In this ontology the knowledge about the entities in a building is described. In this
way a reusable concept for every building element is developed. For example for a door an OWL concept
bam:door is created. These kinds of concepts can be used to relate to various sources of information. In this
way the data which is needed to built up a requirement is available in a object type library. This is done with
the use of the semantic web modelling tool Topbraid Composer’. For every different type of element of a
building, a concept is created. For the elements classes are developed. The definition of objects and spaces is
done with the use of varying classes. the properties which define the performance of the objects are also
defined. These are explained in the next sub-sections.

To define the space class, a look into the current practice of modeling with spaces is needed. In the current
process of modelling within BAM, a space is defined as stated by the client. This definition of how a space is
classified is stated in the properties of a space object in the attribute as a name. By following this procedure
of naming the consistency amongst varying projects is not high. A clear definition of a space amongst the
variety of spaces is much more favorable as connections between space requirements and object
requirements can then be reused. Here for a classification of spaces is needed.

In the AEC sector, various classifications have been made. Some internationally used examples are Uniclass’
and Omniclass’. These classifications are also defined upon spaces and have many common denominators. In
the Netherlands spaces are also defined by certain institutes. For example STABU® has defined the STABU
Bouwbreed. This definition enables creating documents with reference to a standard structure in spaces.
Using this structure would be favorable but the structure of Bouwbreed is unfortunately not as complete as
in comparison to Uniclass and Omniclass. These two classifications have a much more in depth definition of
the various spaces. Using these classifications would also be favorable but these classifications aren’t
applicable to the Dutch building code.

For using classifications in the Netherlands, the Dutch Building Code is important to keep in mind. The
building code applies varying rules towards different type of spaces. A movement space and a user space
bring forward different applicable rules. This is important to keep in mind when defining a classification of
spaces. The usage of the existing classes is therefore difficult. For this reason a hierarchy has been proposed
based on the building code and with the depth of the Omniclass and Uniclass. The basic structure is shown in
Figure 25. In this figure the subclasses are left out. The complete proposed schema of the space hierarchy has
been stated in annex D.

® http://[www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
* https://toolkit.thenbs.com/articles/classification/

® http://www.omniclass.org/tables.asp

® http://www.stabu.org/producten/stabu-bouwbreed/

57

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

This structure should is built up as an ontology. By using an ontology the information can be mapped to the
other classifications. To build up this ontology, Topbraid Composer is used. These elements are defined with
the applicable hierarchy as stated in Figure 22. In this way more meaning is given to the objects with the use
of subclasses. The usage of these elements in the modelling depends on how the reference is created towards
the ontology. In this thesis the current practice in modeling of BAM is followed. In the current practice an
element is defined only as a name and is not linked to the ontology directly. An interesting improvement for
BAM will be to use the classifications instead of naming. This will not be used in this thesis as this isn’t
applicable to the use cases provided by BAM.

m=

Possible mapping Possible mapping

=
=
s

1.3.1.1 Vertical
Movement
Space

1.3.2.1 Basic
Technical Space

1.3.3.1Toilet
Space

13.4.1
Industrial Space

1.3.5.1 Living
Space

1.3.6.1 Elevator
Shaft Space

% 132X 133X 13.4X 3158 1.3.6.X

Figure 25: Space Hierarchy without subclasses

5.3.1.2.2 Object Classes
Aside from spaces also the objects need to be defined in the BAM Object Type Library (BAM OTL). Various
classifications exist for the definition of objects. Aside from classifications also the modelling applications
define the various types of objects. Using a consistent classification of elements is essential for creating
useable data. Without consistency, using the data for other applications will be useless as the information
will be incorrect or not manageable.

In the Netherlands the element classification NL-SfB” has been defined by the Dutch association of architects
(BNA). This classification is built up as a coding system where the varying elements are defined with the use
of a number code (BNA, 2005). For example an internal non-constructive wall is defined as “(22.1) Internal
walls; Non-constructive”. The definition of this classification is only worth as much if the classification is
complete. The NL-SfB classification is a classification defined in documents. This makes the usage not open
for data. In the current practice within BAM, classification of elements during modelling happens with the
use attributes. The reusability of this way of modelling is not high as a manual action of attaching the
classification towards an element is needed. The usage of an object type library based on the semantic web
standard makes it possible to create reusable links between modelled elements and the classification. The
total list of created objects in the BAM OTL is stated in annex G.

5.3.1.2.3 Properties
The various types of properties can be used to describe the quality of the objects or spaces. This interaction is
described in Figure 20. To make the properties usable, the right properties need to be obtained. The IFC
schema has defined basic property sets for all elements. For example for door elements the property set
“Wall common” exists (pSet_WallCommon). In this property set ten properties have been defined. With the
use of these properties various characteristics of a wall can be described. The IFC schema Property Sets don’t
describe all the required properties of a building. There are still properties which are described by a client in

” http://www.stabu.org/diensten/nlsfb/

58

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

the requirements which aren’t possible to be defined in BIM models when using IFC. To see if these
requirements of other properties are met happens with the selection of the products. The definition of which
properties are going to be used depends on the input of the requirements. In this thesis a selection will be
made to represent a variety of requirement types and constraints. This selection will define the to be used
properties and is elaborated upon in 5.3.2.3.

From the definition of the various types of requirements (sections 3.2.3, 4.3.2.2) and the analysis of
requirement databases (section 5.3.1.1), the constraint templates have been defined. These templates are
defined according to the basic structure of a requirement which is stated in Figure 20 (section 5.2). The
completeness of this list of constraint templates defines how usable the total requirement checker is. When
not all requirements are described with the use of these templates, the checker will be less valuable. The
total list of constraint templates is stated in Table 9.

These constraint templates will need to be created in a way that enables the right objects, spaces and
properties to be filled in the variables of the template. These elements are described already in the section
5.3.1.2. The creation of the templates is done with the use of SPIN. The use of a constraint violation in SPIN
gives the possibility to build a statement that defines a violation of a rule. This rule is applied to the data set
and brings forward the non-complying elements of a requirement. These constraint templates will make use

of the BAM Object Type library to fill in the variables.

Table 9: Constraint templates

Type existence

An element type X must exist in a model

The building must have an elevator

Property Existence

A property Y an object must exist

All doors in the building must be self-closing

Cardinality There should only be 1 element existing | An user space should only be part of 1 fire
in a certain location compartment
Value A property Y of an object X must have a | All walls must have an acoustic rating of at

value Z

least 65db

Space type existence

A space type X must exist in a model

The building must have a disabled toilet

Space type amount

The building must have at least X space
type Y

The building must have 2 disabled toilets

Space type value

All spaces of space type X must have the
value Y

All user spaces must have a net area of at least
6m2

Space - Space Relation

A space type X must be adjacent to a
space type Y

An office space must be adjacent to a
movement space

Space - object
Containment

A space type X must contain an object Y

Every user space must contain a power socket

Space - object
Containment amount

A space type X must contain Z objects Y

Every user space must contain at least 2
power sockets

Space - object relation;
property

An object Y contained in space type X
must have the property Z

Every desk in an office space must be
adjustable in height

Space - Object relation:

Value

An object X with property Z in Space
type Y must have value A

A desk light in an office space must have a
illuminance rating of at least x

Spaces - wall relation;
value

A wall X with property A between
spaces Y & Z must have value A

A wall between a user and a movement space
must have an acoustic rating of at least 42dB

Spaces - object
relation; value

An object X in a wall with property A
between spaces Y & Z must have value
A

A door in a wall between a user space and a
movement space must have a Fire rating 3.

An example for a template is shown seen in Listing 4 and Listing 5. In this example the constraint template
“Space - object relation; value” is used. This template needs to bring forward an object in a space. This object
must have a property which has a certain value. This value is subjected to a certain operator which defines if
the requirement is complying or not. The basic template can be seen in Listing 4 and a filled in example in
Listing 5. With the use of Space classes, object classes and properties all the templates are made reusable.
The usage of these templates is defined by the application and needs to be connected to the process of
verifying the requirements. The total overview of all the SPIN construct statements for the constraint types
can be seen in Annex F.

59

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Listing 4: Constraint Template Space-object
relation: value

Listing 5: Constraint template example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

} }
WHERE { WHERE {

?s a bam:ObjectClass . ?s a bam:Wall .

?s pset:isBoundaryOf ?o ?s pset:IsBoundaryOf ?o .

?0 a bam:SpaceClass . ?0 a bam:0fficeSpace .

FILTER NOT EXISTS { FILTER NOT EXISTS {
?s ?hasproperty ?w . bam:Wall pset:acousticRating ?o0 .
FILTER operator(?w, ?a) FILTER >(?0, 65) .

}. .
} }
From the requirements data analysis and the definition of the constraint templates, a selection of
requirements is now made for developing the prototype. These requirements are selected to represent the
variety of requirements which is found in the requirements data analysis. Also taken into account with the
selection is the answer of the interview question which requirements are most suitable or most interesting
for automation (chapter 4). A selection of 10 requirements is made for further development of the
requirements checker. These requirements are stated in a way that the performance or the relations are
measurable. These requirements are stated in Table 10. The requirements which are selected are restricted to
spaces and walls as this is the scope of this research. The elements which need to be defined in the BAM
object type library are also stated in this overview. An extended overview of the selected requirements with
the applicable querying can be found in annex E.

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

Table 10: Selected requirements for prototype

1 | Comfort Value checking of a wall between two different spaces Spaces - wall -
Acoustic A wall between a User and a movement space must have | object relation;
comfort a maximum acoustic rating of 65 dB value

2 | Modelling quality Data quality checking of objects; Classification coding Value
Well formed A wall must have the correct NL-SfB code (22.11)

3 | Safety Material checking: Combustibility Property
Fire safety A fire separation wall must be made of a material Non- | existence

Combustible

4 | Spatiality Gross area checking of space types Space type value
Area The gross area of an office type X must be at least 24m2

5 | Aesthetics Checking of size of objects in a wall in a certain space Space - object
Size A window in an external wall in an office space must | relation; value

have a size of 1000mm

6 | Functionality Wall Height Checking Value
Headroom Internal walls must be at least 2500mm high

7 | Availability Object occurrence in a space checking Spaces - object
Object Every unique user space must contain a smoke detector | Containment
Occurrence

8 | Availability Amount of objects in a space checking Spaces - object
Object quantity Every unique user space must contain at least 3 power | Containment

sockets amount

9 | Safety Value checking of an object in a certain Space type Space - object
Fire Safety The walls in an office space must have the property Fire | relation;

resistance class property
10 | Costs Cost requirements checking Value
Unit costs Internal walls metal stud must not exceed the cost
of €X,- per m2

60

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

5.3.2 Building model preparation
The definition of how the requirements are defined and how they are going to be checked is defined in the
rule preparation phase of rule checker development (section 5.3.1). In the building model preparation phase,
the right elements are going to be made available. For this step, the proposed layers of section 5.2 are given
meaning by defining the elements which are used in the checker. These elements are defined by the selected
requirements stated in Table 10. Aside from this also the IFC model used for validation is made available to
be checked upon by converting it into the semantic web standard RDF.

For using the IFC schema in a semantic web environment, a translation of IFC in to an ontology is needed to
reference the right elements in the IFC schema. This translation of the IFC schema has been proposed by the
various researches. Beetz has proposed a conversion of the IFC schema into an OWL representation (Beetz,
2009a). This research has been used for further development of an IfcOWL schema. This has resulted in the
development of the IfcOWL schema which has been adopted by the BuildingSmart Alliance®. The IfcOWL
ontology of the BuildingSmart Alliance is used to create the inference rules between the BAM OTL and the
IfcOWL ontology.

To make an IFC available for querying, the conversion of IFC to RDF must be executed. This enables the
relations between the various elements in the IFC schema to be queried upon. This is done with the use of
the IfcOWL ontology. Pauwels et al. have developed a convertor’ from IFC to RDF which uses the IfcOWL
ontology. This conversion will create an instantiation of every IFC element in an IFC file to an IfcOWL
instance. The elements with the according relations are described as a set of triples in an Object - Predicate -
Subject form. A converted IFC file will then be able to be used for querying with SPARQL.

The link between the described objects in the library of natural language elements for the user get meaning
by creating inference rules. Inference rules define the relation between the objects in the BAM OTL and the
IfcOWL ontology. This will enable that an IFC file is readable for a user. By using the IfcOWL ontology, the
relationship between the objects in the library and the ontology will remain reusable. A converted file is
possible to be queried upon in the concepts which are defined in natural language with these inferences.

These inference rules are developed with the following steps. A concept in natural language is defined by the
AEC domain experts for the OTL. For example the concept external wall can be described with logic
reasoning as a wall object with the property External. To define this with the IfcOWL ontology, the right
elements in the IFC schema need to be found to describe the object and the property. In IFC there are two
definitions of a wall, an IfcWall and an IfcWallStandardCase. These two concepts in IFC need to be connected
to the natural language concept internal wall. Aside from the objects also the property must be defined that
it is internal. This is done by the IFC Property set of walls; IfcWall_PsetCommon €’isExternal’’. If this
property is defined as true, the external wall is defined.

Listing 6: Inference rule for bam: FunctionalSpace Listing 7: inference Rule for bam:InternalhWall
CONSTRUCT {
?s a bam:FunctionalSpace . } CONSTRUCT {
WHERE { ?s a bam:InternalWall . }
?s a ifcowl:IfcSpace . WHERE {
?s ifcowl: longName_ ?s a/rdfs:subClassOf* ifcowl:IfcWall .
IfcSpatialStructureElement ?y. ?s pset:isExternal true .
?y a ifcowl:IfclLabel . }
?y express:hasString
“SportsSpace” .
}

® http://www.buildingsmart-tech.org/future/linked-data/ifcowl
° https://github.com/mmlab/IFC-to-RDF-converter

61

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

By creating an inference rule with SPARQL, a reusable statement is defined to connect the OTL and the
IfcOWL ontology. This statement is defined by creating a Spin:Rule in Topbraid. An example for a space class
is shown in Listing 6. An example for a wall class is shown in Listing 7. In this way all the natural language
concepts are given meaning in the OTL. This enables the checker to be executed without knowledge in data
schemas. The total overview of inference rules is given in Annex H. The total of these inference rules is made
available in the BAM ontology. This ontology is built up for all the classes which are needed for the
requirements checker. This ontology should be used eventually for all elements which can be occurring in a
building model. The completeness of this ontology defines how useful it can be for checking as missing
elements will cause problems in using the checker. For the purpose of investigating the implications of
automation in this research, a scope has been given to look upon. Therefor only the wall, door and window
object classes have been defined as well as the spaces. An overview of the ontology can be seen in Figure 26.

fs Classes 22 Wl @™ Y = O | [s) bamNL ottt 52 =
4 @ rdfsResource (12288) -

=1 iR
4 € owkThing (2331 Class Form o (=]
bam:Ceiling Name: [owl:Thing
bam:Column S
bam:Door
E rdfs.comment ~
bam:Floor =
I The class of OWL individuals. -
4 ® bam:Space
bam:FunctionalSpace rdfsisDefinedBy <
bam:MovementSpace @ owl: -
bam:SanitarySpace rdfsiabel =
bam:TechnicalSpace M [Thing =
bam:UndefinedSpace .
~ Class Axioms
4 O bamiUserSpace
bam:CommercialSpace rdfssubClassOf =
bam:DetentionSpace © fs:Resource =
bam:EducationSpace spin:constraint <
bam:EnwrovantaHyCuntrol\edSpacE EwTmTET ®
bam:GatheringSpace
bam:HealthCareSpace spinzrule
bam:HorecaSpace *| CONSTRUCT{ =
bam:Judicialspace ! #s a bam:CommunicationSpace .
bam:LeasureSpace WHERE {
bamiLivingSpace ?s a ifcowlIfcSpace .
bam:OfficeSpace s query-rewriting:hasProperty 7y .
bam:ReligionSpace Ty ifcowliname_cProperty Tn .
n exprhasstring "'name” .
bam:SportsSy
bam:t amispertsspace Ty ifcowl:nominalValue_lfcPropertySingleValue fval .
amiotairs val exprhasString "CommunicationSpace” .
4 ® bam:Wall)
bam:ExternalWall » CONSTRUCT { =

bam:iInternalWall
bam:Window }

?s a bam:ConferenceSpace .
Figure 26: BAM Ontology in Topbraid Composer

Aside from the objects which are defined in the ontology, also the properties which are going to be checked
need to be defined. These need to be made available for the requirements which are going to be queried. The
requirements which are selected (Table 10) define which properties are created for the prototype. A
complete overview of all possible properties of all elements in the ontology will be needed to create a
complete prototype. The definition of the used properties is stated in Table 11. Here also a description is
given about how they are defined in the data.

Table 11: Property definition

Space Containment

An element is contained in a space

IFC:IfcRelContainedInSpatialStructure

Acoustic Rating

An element has an acoustic rating

IFC: Pset_AcousticRating

Classification Code

An element has a Classification code

IfcClassification

Combustibility An element must have the property IFC: Pset_Combustable
combustible set to true or false

Gross area A space has a gross area of X IFC: Pset_Space GrossAreaPlanned

Placement in an An element is placed in an element IFC: IfcRelVoidsElement &

element IfcRelFillsElement

Size An element has a certain size IFC: Pset_Size

Height An element has a certain height IFC: Pset_Height

Product containment

An element exists in a space

IFC:IfcRelContainedInSpatialStructure

Fire rating

An element has a fire rating

IFC: Pset_FireRating

Material

An element has a certain material

IFC: Pset_Material

Costs

An element has a certain cost

External Referencing

62

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

These properties need to be made available to be used in the checker. For accessing these properties a query
upon IfcOWL is made. This is done with the use of magic properties. A magic property is a property function
in SPIN that binds the variables on the left or the right side of the predicate (Knublauch, 2011). This enables
the possibility of simplifying the queries which need to be built up. An example of one of these magic
properties is stated in Figure 27. The complete overview of the magic properties used is stated in annex H.

Magic Property Form = (S ~
query-rewriting:hasSpaceBoundary
Annotations
rdfs:comment =
E Relationship between a space and its boundary elements, which can be physical (e.g. wall, door) or virtual {virtual element). i

Definition
rdfs:subClassOf <
s

spin:MagicProperties =
spin:constraints (Arguments, left side) ~
b S Argument sp:argl : rdfs:Resource =
spincbody
¥ SELECT 7a2 ~

WHERE {
?al a ifcowlfcRelSpaceBoundary .
?al ifcowlrelatedBuildingElement_IfcRelSpaceBoundary fa2 .
*al ifcowlrelatingSpace_IfcRelSpaceBoundary Zargl .

i

Figure 27: Magic Property Example as displayed in Topbraid Composer

The way the data is modelled in the native software defines the data quality. Proper quality of BIM data is
essential for using it for other purposes. Automated verification uses this BIM data and relies on the
correctness and quality of the data. A data check is therefore needed to ensure that a check will bring the
correct result. If the data is incorrect, the check will be useless. The investigation in data quality has been
researched upon greatly. Also within AEC sector correct modelling has been identified as one of the crucial
parts of proper implementation of BIM. For this research, the assumption is made that the quality of a model
is appropriate. This assumption is one of the most important implications of using BIM data for automated
verification. When the alignment of information in a requirement, in objects is done perfectly and the system
of checking works flawless, the result of a check will still be useless if the data is modelled incorrectly.

5.3.3 Rule execution
All the elements for executing the requirements checker are now defined. The next task is to build up the
rule execution. In this execution all the elements which are defined are brought together as a functioning
system. For the usage of the total system the basic structure in Figure 20 is used. This gives the following
process;

Select the file which needs to be converted and checked

Select the constraint template according to the to be checked requirement
Select the right elements out of the bam OTL for filling in the template
Defining possible needed values according to the requirement

Execute the filled in template

Report the non-complying results

S e

These steps define the total execution of the requirements checker. These steps are translated in a flowchart
which is stated in Annex J. The way these steps are executed is by developing an interface which makes it
possible to use all the elements which are created. This interface has the following aspects which need to be
dealt with;

- Openness in usage of the interface and correctness of usage
- Alignment with the verification process
- Interlinkage with the requirements database

The openness in usage of the interface determines how free a user is in selecting templates and filling in the
variables. For the academic world, the openness of the checker should be high to show the possibilities of the

63

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

checker. On the other hand there is the use of the checker by the end user in a construction project. The end-
user will require a certain amount of freedom in use but also needs to be guided in the using the templates
correctly. The definition of the verification process therefor defines how an end user will use the interface
and what level of openness the end user requires.

The alignment with the verification process determines in what way a selection is made for a certain
template. The starting point in verification is the requirements. The person, who executes the verification,
looks into what the requirement actually is stating. From a requirement a certain question is asked to see if
the design complies. Therefor the interface should also start with defining the question of what requirement
is going to be checked. This will mean that not a template is selected but a requirement type is selected. The
meaning of the requirement will determine what template is used. The requirement describes what kind of
question is asked upon in the data. For example the need for comfort is explained by the various aspect
requirements. A requirement about the acoustics of a room is determined by the value of the acoustic rating
of the elements between various space types. In this statement already a property, a value and a space type
is brought forward by the requirement. This determines which template is brought forward. To complete
this intuitive selection path, the accompanying properties is connected to the selected need. In this way a
selection path is created to eventually select the correct template. In this way the two defined structures of a
requirement are used to define the to be used template with the correct elements.

With the questions about the built up of a requirement, the selected need and the accompanying properties
the correct template is selected. This way of automated selection of a template prevents selecting the wrong
template. Together with the selection of which objects and spaces, also the filling in of the templates is taken
care of. To make sure that the right path is selected, a flowchart is proposed in Annex M to define what the
selection path should be to access the right template. This flowchart is followed in a conceptual way in the
interface. To prove the working of this idea an interface is created which follows this concept. This interface
will only contain a few elements to illustrate the functioning of the system. A mock-up interface will
therefore be created.

Lastly the interlinkage with the requirements database needs to be taken care for before creating the
requirements checker. As the requirements are the starting point of the check, a link between the
requirements database (in this case the Relatics environment) and the checker would be favorable. This
would mean that when a requirement is going to be verified in the design to see if it is complying, the
starting point would be the requirement in the database. In this way an already filled in version of a template
could be connected to the requirements database.

The proposition which is made here, defines the working behind the checking process. This is a proposed
implementation of the total system in the current workflow. This isn’t required for the prototype. Therefor
this part is only discussed conceptually. The steps in Listing 8 should be taken if the requirements database is
the starting point.

Listing 8: Workflow for checking process

Define requirement type in requirements database
Define elements of requirement in database

Link elements and requirement type to input for Checker
Execute check

Write or link report back to requirements database

LN =

In the interface two requirements are used to prove the concept of the requirements checker. These
requirements are brought forward by following the steps as proposed for the interface. The functionality of
the interface must prove that requirements can be checked with the use of automated checking. Here for
only the filled in queries are used as building up the modularized total system is already discussed upon in
previous sections.

64

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

For developing the interface the following steps must be done;

—_—

Defining the steps in the execution
Making the backend checking process available with the SPIN API
Input of BAM OTL, IfcOWL & Constraint templates
Making the inference rules available for the constraint checking
Making the constraint violation rules available (selected requirements only)
Test backend
Creating the outlook of the interface
Give the front end meaning by creating a link with the back end
Creating the report generation

N

® N v AW

The interface will use the parts which are developed in section 5.3.1 and 5.3.2 in the backend. The
functioning of these parts in the total interface is illustrated in Figure 28.

Input Output
IFC Front end interface Violation
—(.ttl file) P> Requirements_Checker_Interface.java Report »
Section Section 5.3.3 Section
5322 53.4

ToBeCheckedFile.ttl Connection between front end and back end Constraining Elements

Backend Interface using SPIN API
Backend_SPIN.java

Section 5.3.3
A A A
Input Input Input
IFC schema ontology Objects and Properties Requirement Templates

(RDF, RDFS, OWL) (RDF, RDFS, OWL) (SPIN)

IfcOWL Ontology > BAM Ontology SPIN Con:lstramt
IfcOWL.ttl BAM_OTL.ttl temp
Section 5.3.2.1 Inference Rules Section 5.3.1.2 Input (BAM_OTL.tt])
SPIN Section 5.3.1.3
Section 5.3.2.3
Properties

Queryrewriting.ttl
Section 5.3.1.2.3 &
5323

Properties
IFC_Psets.ttl
Section 5.3.1.2.3 &
53.23

Figure 28: Overview Requirements Checker application

The development of this checker is done with the use of the SPIN java application programming interface
(API)". The interface depends on the availability of the IfcOWL ontology, the needed objects, spaces and
properties, the inference rules and the requirement templates. These are already defined in section 5.3.1 and
5.3.2 and are made available with the use of the SPIN API.

After these elements are made available in the interface, the input for the check is taken care of. The input
for the check is an IFC file which is converted to RDF. This conversion could be integrated in a more
developed interface. In this prototype interface a conversion is done beforehand. This is done with the IFC-
to-RDF convertor of Pauwels et al. To use the converted file a button is developed in the interface to select
the path of the file to load the file in to memory.

As the interface will remain a mockup to prove the concept, already filled in templates are used to make the
rules executionable. The rules which are used in the interface are stated in Listing 9 and Listing 10. These are
elaborated upon in annex L.

' http://topbraid.org/spin/api/
65

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Listing 9: Filled in Constraint template for acoustic comfort of an internal wall

Comfort Value checking of a wall between two different spaces
Acoustic A wall between a User and a movement space must have a minimum
comfort acoustic rating of 65 dB

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:internalWall .
?s qrw:isBoundaryOf ?o0 .
?s qrw:isBoundaryOf ?02 .
?0 a bam:0fficeSpace .
?02 a bam:HorizontalMovementSpace .
FILTER NOT EXISTS {
?s pset:acousticRating ?03 .
FILTER (?03 < 65) .
}.
}
Listing 10: Filled in Constraint Template for Power Socket Contianment in a office space
Availability Object containment in a space checking
Object Every unique user space must contain a power socket

Occurrence
CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:0fficeSpace .

FILTER NOT EXISTS {
?s qrw:hasContainedProduct ?o .
?0 a Bam:PowerSocket .
.

}

These rules are made available in the script of the tool by addressing their identification which is created in
the BAM ontology as Constraint_acoustic_3 & constraint_ powersocket_1. This is attained in the script and is
stated in Listing 11.

Listing 11: Code for accessing constraint templates

List<Resource> constraints=new ArraylList<Resource>();

Resource constraintl=backend.spin.getResource(

"http://www.bam.com/bamNL_otl#constraint_acoustic_3");

Resource constraint2=backend.spin.getResource(

"http://www.bam.com/bamNL_otl#constraint_powersocket_1");

constraints.add(constraintl);

constraints.add(constraint2);

hashmap .put("Comfort",constraints);

hashmap.put("availability",constraints);
SPINModuleRegistry.get().init();
SPINModuleRegistry.get().registerAll(backend.spin , null);

The connection between the interface and these rules is created by the steps which are followed in selecting
the right template. As the selected requirements are linked to a need and a requirement type, they must be
connected to these selection buttons. This link of bringing up the right template should be modularized in a
more developed interface. In this thesis, this is done by connecting the selection of the need to the pre-
defined and filled in constraint templates. In this way for example when the button comfort is selected, the
filled in constraint template for checking a wall on the acoustic rating is brought forward.

66

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

These elements which are now made executionable define the working of the system. Aside from these
needed elements also the interface must be working. Here for java WindowBuilder" is used to create the
interface which is available for the end user. An overview of the windows can be seen in Figure 29.

Figure 29: Overview of windows of the requirements checker

The windows of the complete interface are stated in annex L. The total script can be found in in Annex K.

5.3.4 Rule Reporting
When the rules are made available, the execution of the checks can be done. This will bring the elements
forward in the model which violate the constraint templates. These need to be retraceable for improving the
model after the check. Here for the results of the constraint violations will need an identifier which is
useable for the modeler. Here for a representation must be made in a viewer or an identifier must be added
to make the element retraceable after a report is generated.

The generation of a report of violating elements is the output of the checker. In the prototype the
constraining elements are stated in a turtle file. An example of the outcome can be seen in Listing 12.

Listing 12: Partial output of checking

[a spin:ConstraintViolation ;

spin:violationLevel spin:Warning ;

spin:violationRoot
<http://linkedbuildingdata.net/ifc/resources20161017_142426/IfcWallStandardCase_54898>
]

[a spin:ConstraintViolation ;

spin:violationLevel spin:Warning ;

spin:violationRoot
<http://linkedbuildingdata.net/ifc/resources20161017_142426/IfcWallStandardCase_54946>

]

[a spin:ConstraintViolation ;

spin:violationLevel spin:Warning ;

spin:violationRoot
<http://linkedbuildingdata.net/ifc/resources20161017_142426/IfcWallStandardCase_23032>
]

" https://eclipse.org/windowbuilder/

67

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

In this outcome the URI's are given to elements which aren’t complying. From this URI, the element can be
found. This makes the process of design improvement possible. The reference to all information of an
element can be found via these URI’s. For example a GUID can be found to trace the element back in a viewer.

This outcome is just listed as the elements which aren’t complying. To give further meaning to this outcome,
comparing this outcome to the total amount of objects gives an indication on how well a design is built up. In
this way a percentage of elements which complies can be given. In the use case validation this is shown in a
real example.

Another way to report violating objects is to enable the usage of a viewer. This can be enabled by exporting
the report as a BIM Collaboration Format (BCF) file. IFC viewers can visualize these reports into an overview
of the elements which are constraining in a 3D representation. Enabling this viewer would require extensive
additional interface programming to link the data of the URI's to geometrical objects. A representation is
therefor made with the use of Solibri model viewer to show which elements are not complying. This is
shown in Figure 30. The selected elements in green are the non-complying elements.

Figure 30: Visualization of checking report

68

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

5.4 Use case validation

To evaluate the usage of the requirements checker for client specific requirements, the checker is used for
evaluating a building model of an existing project. This is project 4 of the data analysis. From this model, a
part of the building is exported as an IFC file. A visual representation of this partial model can be seen in
Figure 31.

Figure 31: Project 4 model

The data of this model has been improved to ensure its usability for the requirements checker. This data
quality improvement focusses on the classification of spaces. The uniform space classification which has
been stated in section 5.3.1.2.1 has been used to make the spaces identifiable for the checker. Also the
performance of the to be checked elements has been looked upon to ensure that a check can be executed.

The model is converted to RDF and used in the checker. This gives the result stated in Listing 13. Here it can
be seen that 4 internal walls aren’t complying with the requirement regarding acoustic comfort as stated in
Listing 9. The total amount of internal walls between a meeting space and a horizontal movement space in
this model is 12.

Listing 13: Outcome of check for acoustic Comfort

[a spin:ConstraintViolation ;
spin:violationLevel spin:Warning ;
spin:violationRoot
<http://linkedbuildingdata.net/ifc/resources20161017_142426/IfcWallStandardCase_54898>
<http://linkedbuildingdata.net/ifc/resources20161017_142426/IfcWallStandardCase_54946>
<http://linkedbuildingdata.net/ifc/resources20161017_142426/IfcWallStandardCase_23032>
<http://linkedbuildingdata.net/ifc/resources20161017_142426/IfcWallStandardCase_51465>

In this way it shown that the model checker works upon a real existing project when minor adjustments are
executed. The representation of a viewer shown in Figure 30 shows the outcome of listing 13 translated into
a visual representation.

69

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

5.5 Discussion

In this thesis a prototype has been developed for a requirements checker based upon the semantic web
standard. A standardized set of modularized constraint templates has been developed to describe the variety
of requirements which can be found in a project. These constraint templates are based upon the literature
review in chapter 3 and a data analysis on the requirements data of five projects of the Construction
Company BAM in section 5.3.1.1. In this way a modularized set of constraint templates is created which can
be filled in by the elements and their properties of a building. These elements are defined by the Object Type
Library which has been proposed for BAM. In this way a library is created which can be reused as it is built
up as an ontology which can be easily accessed through the web.

The prototype has delivered an easy to use and open way of accessing and assessing the data in a model
towards requirements of the client. The usability of the checker reduces the need for understanding the
complete data structure of the IFC schema. This makes the usage of IFC easier and less error prone.

The execution of the checker with the use case has shown that non complying elements can be brought
forward if the IFC data is valid. For certain predefined requirements, the usage of this checker will already be
usable as the data is described in the building model as well as in the requirements database in a similar
way. These requirements have been identified in the data analysis of the requirements databases (section
5.3.1.1). The usage of this checker can reduce the amount of errors towards requirements and also can
reduce the time it takes to check these kinds of requirements.

The usage of inference rules has made it possible to define elements in the complex IFC schema with the
usage of natural language. This increases the understandability of building model data and for execution of
these checks the need for employees with skills in data structure and the construction domain is reduced.
The knowledge about accessing the right data in IFC data is needed once in the creation of the inference
rules. After the creation of the Inference rules, the rules can be reused. Only for maintenance and
improvement of the checker and the Object Type Library the combination of skills is needed.

The semantic web standard has been identified as a suitable way of describing the required relations
proposed by requirements of the client. Triples are built up in certain semantic structure. When using this
way of building up requirements, the person who defines the requirement in the database is compelled to
define the requirement in a more measurable way. For example the statement “every user space must have
at least 1 power socket” is very clear and translatable into a triple statement in comparison too “User spaces
must have enough electrical appliances”. The usage of the semantic web therefor compels to define clear to
measure triple statements. This reduced ambiguity can decrease misinterpretation and the thereby coming
mistakes in the design process.

Using the semantic web standard for describing building model data, enables linking additional types of data
towards the elements in a design. For example a cost database can easily be linked to the elements in the
Object Type Library (OTL). A link between an element in IFC can then easily be linked to separate RDF data
about element cost. Only a relation between the elements in the cost database and the model must be made.
This opens up possibilities for adding knowledge easily to the OTL.

Aside from the benefits the implementation and development of the requirements checker has brought
forward shortcomings and limitations. These can be categorized in issues in;

- Data quality
- Requirements definition
- Application development and usage

Firstly the most general way the requirements checker can be restricted in, is in the input data. The check
upon IFC data is only useful if the IFC data is valid. This issue also is identified in the theoretical background
(section 3.4). For the exports which have been used in the testing and validation issues have been identified
in this data quality. If certain relations don’t exist in the IFC data, a query will not be valid as the triple isn’t

70

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

created in the conversion. For example if the relations between elements and spaces aren’t existing, a check
will not produce a valid answer.

Aside from existing relations, also the way an IFC is built up can vary. Describing objects and their properties
can be done in various ways as defined in section 3.3.4.2. The validity of an IFC is there for difficult to
measure. In the development of the checker different ways of defining data can be found. For example the
way a certain space is given a space type definition in the data defines how an inference is created. Uniform
and standardized ways of creating IFC’s is needed to ensure the validity of the data. The methods used within
BAM already prescribe standard ways of exporting Revit" data to IFC to overcome these issues but the
execution can easily be done incorrect. The importance of data quality checking and standardization of
defining data comes forward here clearly to ensure the usability of the requirements checker.

Another way the data consistency determines the quality of the requirement checker is in the way spaces are
currently defined in a model. Mostly requirements are firstly built up as requirements for a certain space
(Figure 21). The definition of spaces therefor defines how easily the objects in a certain spaces are accessed
through a query. This definition closely relates to the built up of a majority of the constraint templates as the
relation between a space and an object is defined. In the current projects a large variation in space definition
is found. This variation complicates the way a space is accessed in checking. To access these spaces in every
model in the same way, a standardized way of defining space types is necessary to ensure the functionality
of the requirements checker. This has been proposed in section 5.3.1.2.1 but will require further
development. If this development is done as a nationwide standardization, the effect will be much greater in
comparison to a company level as an interpretation of the company will still be required to define the space

types.

Besides data quality also the definition of requirements are influential on the functioning of the
requirements checker. For making the requirements checker executionable, the requirements which are
used have been improved on their semantics (section 5.3.1.1). The only way requirements can be checked is
if the definition in the statement is iterated into a measurable equation. The elements which must be present
in this equation must be equal in the data in requirements and in the data of the design. Therefore using this
checker requires an improvement in working with requirements before checking will be beneficiary. This
improvement focusses on how a performance is defined for requirement types. In the conclusion (Chapter 6)
this improvement is elaborated upon.

When requirements are defined properly and a performance is available, an issue can arise in the way how
to describe this performance in the data. The IFC schema already makes it possible to describe various types
of elements and various properties, but the completeness of the data can produce problems which are
difficult to overcome. The semantic web standard makes it possible to describe these properties or elements
from a different data source. For example the possibility of accessing information about costs opens up big
opportunities of using the semantic web standard for describing building models.

The checker also has a limitation in the execution in its current form. As the checker loads the files it uses
into the memory of the computer. With small files this doesn’t take large amounts of time, but with bigger
models this may cause problems in use. This could be overcome to use a triple store to reduce the time it
takes to execute the checks.

Lastly the requirement checker has also limitations in the application on itself. As the export of the results is
not made visible in a viewer it is now difficult to see the results of the check. Here for extended development
of the interface with a viewer should be executed. An export of the constraining elements towards BCF (BIM
Collaboration Format) or IFC viewers should be made possible. An execution of SPARQL queries could be
shown in the query viewer of Chi Zhang.

Aside from limitations in the possibilities of the requirements checker there are also limitations in the
research itself. This research has been made manageable by defining a scope. As the scope of this research
leaves out a variety of building elements, the applicability of the requirements checker can be questioned

" http://www.autodesk.nl/products/revit-family/overview

71

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

upon. This is mostly applicable to the system elements of mechanical and electrical installations as these are
different in their built up in comparison with basic construction elements.

Also a limitation can be found in the development of the prototype. As this prototype is built up as a mock-
up of the proposed system, the complete functioning of the modular system with the OTL and the Constraint
templates is not tested. The functionality is therefore not completely tested and compared to the
conventional verification process. Together with this comes the usability of IFC files and the made
assumption of data quality. The quality of data is crucial for the checking of designs. The assumption made to
test this prototype leaves out this element of uncertainty in real projects.

Another limitation which follows from the fact that the checker is a prototype comes forward from the
proposition of modularity. The interface is built up as a mock-up. This has resulted in the fact that the
interface is realized in a non-modular way. Therefore the selection of templates and filling in the templates
isn’t tested. This may bring forward issues in selecting the wrong templates or selecting the wrong elements.
This can lead to invalid results of the queries.

Lastly a validation towards the end users hasn’t been executed in this tool prototype. The validation in this
research has evaluated the usability of the checker for real projects. Here the implications have been found
in the data quality assurance. The applicability to the current verification process will only be questioned
upon with the thesis presentation within the graduation company.

72

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

6. Conclusion

The goal of this research is investigating the implications of automated verification of client specific
requirements using rule checking techniques and the semantic web standard. In the following pages the sub
questions of this research are answered.

The theoretical background (chapter 3) of the design process has identified two crucial information streams
in the subsequent phases of a construction project. Firstly there is the requirements information stream
which follows from the client needs regarding a building. Secondly there is the object related information
which is generated in the design of a building. The relation between a requirement and a design element is
the exact area where verification takes place and the answers are given to translate the need of a client into a
suitable building. Exactly in this area changes are occurring due to the implementation of integrated
contracts. Integrated designs therefor ask for a different approach in managing information. In every step in
the design process the iterations made must be related back to the original buildup of the as required
system. This provides a connection to the original need of the client. The theoretical background has
identified that a systems engineering approach closely aligns with these steps of iteration and the alignment
between requirements and objects.

The qualitative research (chapter 4) has identified the main problems in the alignment of information in the
design in the current processes of a construction company. These can be summarized as followed;

- The iteration steps from a need towards a performance are not followed properly which causes
problems in allocating requirements to the right objects

- Standardization in naming spaces and objects is insufficient which makes it difficult to allocate
requirements to these elements

- A lack in standardization in defining a requirement causes a great variation in definitions of
requirements which causes high levels of interpretation

- Variation in level of detail in requirements make it difficult to make decisions on objects as the
iteration level is unequal amongst applicable requirements

An important reason why these problems occur in the design phases can be traced back to the way a project
is started. To clearly understand what the client requires an extensive requirement analysis is needed. The
qualitative research has brought this forward as one of the main reasons why the information alignment isn’t
happening as it should be done. Together with the lack in standardization of requirements and the
accompanying process, the inconsistency and variation causes a lot of rework in projects. A more
standardized way in working with requirements and defining them is therefore researched upon with the
development of the requirements checker.

Aside from the design process the theoretical background has given an insight in the current difficulties with
rule checking applications and development. These difficulties have created the outlook for the requirements
checker. The main conclusion which can be drawn up is that current automated rule checking efforts focus
mainly on static hard coded execution of rules. This makes it difficult to apply to the flexibility of a
requirements database and these checkers are not open for the laymen. The development of a rule checker
and the creation of new rules are therefore only open for people with an expertise on data structures,
programming and the construction domain. This combination makes the use of a rule checker less attractive
and not open for the use in automated verification.

To create the rule checker, standardization and uniformity in requirements and information alignment has
been researched upon. This has resulted in the evaluation of how requirements are built up. It is defined that
the applicability and the type of a requirement can be standardized greatly when defining a performance.
The steps of iteration from a need towards a performance are of great importance here, these steps are Goal -
Need - (Space & Object) Requirement - Performance. When following these steps of iteration from need to
performance clearly alongside the phases of a design, a more standardized way of defining requirements can
be followed. These steps closely relate to the phases of development in a Systems engineering process and
the increase in level of development alongside the subsequent phases in the design process.

73

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

The eventual iteration to what type of performance a certain requirement asks, defines what type a
requirement is. In the model development a variety of requirement types is defined which correspond with
various constraint templates. These requirement types are defined by the requirements data analysis which
is done upon five existing projects of BAM. In this data analysis also an investigation is done into the
applicability of a requirements checker. The result of this investigation shows that the percentage of
requirements where a BIM can be used for verification is still low. Only an average of 12,2% of the total
amount of requirements can be verified using a BIM. An increase in possible usage is clearly shown along the
initiation years. This increase will make the value of a requirements checker using a BIM higher in the future.

The way a requirements database is built up and developed is closely related to how usable requirements are
for checking with a BIM. The connection between requirements and objects in a BIM is made on a
performance level at this moment. This is due to the fact that only the objects can give an answer to the
requirements as spaces are non-tangible objects. The equality in information in requirements and objects is
there for essential. In the design process defining a performance of an object must be focused upon more
during requirements analysis.

In the development of the requirements checker, semantic web standards have been used to develop an
open and reusable system. The theoretical background and the interviews have resulted in the pre
conditions for this checker. From this starting point an architecture has been developed. This has resulted in
a checker which is modular and able to describe a vast amount of requirements on a performance based
level. This architecture has stated the use of an object type library (OTL). This object type library makes it
possible to describe elements in a natural language which makes the understandability of the data higher. As
this OTL is developed with the semantic web standard, the reusability is increased as the individual elements
can be stored on the web instead of documents. Here for the semantic web standard has been very useful as
the various types of information can be added and linked to the OTL.

This checker is developed as a mockup version which proves the concept which is described in the model
development (Chapter 5). The mockup version has shown that the usage of the proposed architecture makes
it possible to intuitively use the templates. These templates are defined according to the essence of a
requirement. The essence of a requirement is what the performance is defined for (type existence, property,
relation etc.). The result of the checker gives a list of elements which aren’t complying towards
requirements. The benefits of this checker can be found in the conclusive answer which is given about which
elements aren’t complying yet and the reduced time it takes in comparison with the conventional
verification process.

The necessity of defining performance improves the way the requirements analysis is executed. This can be
seen as a drawback as the checker only works if the data is defined to a certain level but it can also be seen as
process improvement. This process improvement of defining performance makes standardization much
easier as the variables in performance of objects remains always remain the same. For example a wall will
always have an acoustic rating, a material type and many other performance indicators. Defining an Object
Type Library where these performances are indicated already makes it easier to iterate the requirements of a
client towards performance indicators. When these performances are always defined in a standardized way,
the design can easily be verified on compliancy with requirements. This will initiate the possibility of not
only using the checker for verification but for generating 100% complying designs.

Focusing on the specific execution of the rule checker, some conclusions can also be made. Firstly the
requirements checker relies on the data quality of the input. Without valid input of properly exported and
converted IFC files, a check will not be of any value. The manual way of verification which is now present
relies on the knowledge of the user, the requirements checker relies on the quality of the data and on the
completeness and up to dateness of the checker. A clear evaluation of the benefits of the checker is due to
this reason difficult to measure as the maintenance and further development must be accounted for.

The requirements checker on itself has been tested is easy in use. This comes from the fact that the
architecture which is proposed makes it possible that selecting the right templates and elements is made
open towards the end user. The templates are used by the end user as an exercise where the blanks are filled

74

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

in with the use of the elements of the OTL. The interface will determine how easy to use the checker is. The
prototype sketches this use but can’t be put to the test extensively as it remains a mockup of the total
system. The developed checker can improve the verification process provided that the initial process is more
standardized and performance based. An eventual reduction in non-complying elements towards
requirements in a BIM can than lead to a reduction in design errors and eventually costs.

In total can be concluded that the process improvements of standardization in defining requirements and
performance is one of the most important improvements which is proposed in this research. This
standardization in process management can improve the interaction between data in requirements and in
the design. This improvement can lead to eventual reduction in failure costs and to a more efficient process.

Now that an overall conclusion is drawn up, the research question of this thesis can be answered. The
research question is;

How can verification of client specific requirements be automated and improve the design
process?

The core of this automation lies mostly in the standardization of requirements and following the steps in
iteration from need to performance. If this process is followed clearly and monitored closely, requirements
and objects will be better allocated to each other and defined more clearly. A need for iterating requirements
to better understandable non ambiguous statements with a certain obligation to define a statement where a
“must” is present will make automation of verification possible.

The usage of the semantic web makes this improvement possible as the data elements are made available as
unique identifiers which can be addressed and accessed by the checking application. This makes it possible
to capture the knowledge about the elements in a building in an easy and retraceable way.

The main improvement of this automation lies in the standardization of defining requirements, the process
of defining the associated performance and the way the elements are allocated and portrayed. This in total
enables the checker to be executed. Here lies a big opportunity for the AEC sector to improve the
understanding of the development of requirements and the accompanying information management which
enables this process.

75

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

7. Recommendations

The recommendations resulting from this research can be divided in company & sector related
recommendations and in an outlook for further research and development

7.1 Company Recommendations

The recommendations for the company can be seen as recommendations for AEC industry in working with
requirements and aligning the information of BIM.

The first recommendation relates to the process management regarding requirements and the interlinkage
between BIM and systems engineering. An improvement in requirements management is needed to clearly
define the system of requirements allocated to objects. As defined in the research, the connection of an
element in a 3D design tool and an element in a system design can only be made firstly on an element level.
This implies that to address requirements also on this level of elements should be worked upon in buildings.
Requirements should be allocated to the system design objects to make sure that the interfaces between the
various requirements become clear. On a higher conceptual level, this should be done on a space level. The
iteration step from space to object is where simulation knowledge is needed mostly. Verification of this
interpretation now happens on the end of a phase, when this interpretation is defined in the iteration step
from space requirement to object requirement, the design will have a complying starting point. This is also
enables to focus more on the early phases of a design and to reduce variants and changes in later phases.

A second recommendation can be given regarding standardization. This comes in two fold. Firstly the
structure of requirements has been researched which have brought forward two ways of defining a
requirement. It is advisable to implement both structures in defining the requirements. Firstly adding the
type of requirement in property, value, availability forces already to define a requirement in a non-
ambiguous way. Secondly addressing the need and connecting it to requirements structures requirements.
This gives a clear insight in which disciplines should be involved and what the interfaces are in the
requirements.

Furthermore the standardization in information needs to improve. The iteration from a need to a space
requirement and then to object requirement is not done consistently in projects. This therefor gives a
variation in applicability of requirements as certain requirements are described as a need and some as object
performance. The alignment in information of a design also needs to comply with these steps. In the process
from a conceptual space type definition and relations is followed by a definition of the elements between the
spaces. To make sure that the iteration step from space requirement to an object requirement is made
properly, the definition of spaces in 3D model needs to be taken care for. As identified in the research a clear
definition of spaces is missing. Here for a proposition is made for space types in a building. Setting up a
standard of classifying spaces which follows the Dutch building standard makes it possible to define the
space types where certain requirements are applying to. This will improve the iteration step from a space
requirement to an object requirement. Also this will enable the usability of a BIM for verification of client
specific requirements as the relation between spaces and objects is an important link to find the right
elements. This classification in spaces should be developed sector-wide to ensure the usefulness and
understandability.

A last recommendation relates to the implementation and improvement of an Object Type Library.
Companies have already defined object type libraries to standardize the way of working. The way these
libraries are built up varies amongst the sector greatly. The usage of a library based upon open standards is
very useful to address this variety in built up as an open standard like the semantic web makes it possible to
address many forms of data with the use of this standard. Via inference rules the connection between
varying standards, all elements in a building can easily described. The addition of all properties and
characteristics of this element make it possible to store a big amount of knowledge. The connection to other
standards makes this library flexible and easy to extend. The usage of an OTL which addresses all the
possible elements in a building can result in a connected database which opens up data exchange easily.
When the library will be the main connection towards the different purposes data in various resources can
be combined. For example the data of a 3D model can be connected via the OTL as amounts with a 3D

76

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

location to planning, costs, facility management or life cycle management. If this library is reused and
extended in an open way, the development of the stored knowledge can result in continuous improvement.
The development of this library should be however developed stepwise with firstly a usage for knowledge
and secondly as project instancing database.

This development together with the total process improvement relate to a total development of a design
process which is discussed in the next section.

7.2 Future development & research

This research towards client specific requirements has revealed firstly process improvements and secondly
the implications of automated verification. The research has shown in summation the following possible
developments;

- Standardization in defining requirements

- Improving the process of iteration of requirements

- Aligning requirements information to model information

- Difficulties in rule checkers and a proposition to overcome these difficulties
- The usage of Object Type libraries in design processes

- Prototype for automated verification of requirements

A future development from this research can be proposed in how to address projects. The transition in
defining a performance before a design is iterated and products are chosen is essential in this development.
The translation of space requirements to object performance is the most essential part where knowledge is
needed. To transition the moment where this definition is made to an earlier moment in the design process
can improve the quality of a design early on and potentially reduce errors. Aside from earlier on improving
the design and ensuring compliancy with the needs of a client also the time for elaboration in subsequent
phases will be reduced as the performance is already defined. This can increase the time available for early
phases where simulation is needed. Generative and parametric design rely on this performance based
definition of a design, this can be initiated more easily if the central focus on performance based designing is
realized. A proposition for this process is as followed,;

Investigation in the clients usage, needs and requirements

Simulation of relations, usage and structure of the building (space related)

Conceptualization of relations and structure of the building

Defining performance out of the conceptualization (space related)

Simulation of every discipline and testing to translate space performance to object performance
Performance based designing & engineering

Performance based product selection (parametric)

NowuhA~ LN =

This development is an important extension which follows up from this research related to process
improvement and integration of BIM and requirements data. The usage of an Object type library can be a
very important part of this development. An OTL could be used as a platform which would work as a
database. In the development of the checker a file is made understandable with the use of the BAM OTL. The
IFC data is instantiated as elements of the OTL. This enables to see how many elements of certain type are
apparent. Adding extra information to this OTL regarding properties or costs could make this OTL very useful
for data management. When all elements of a model are instantiated in the database, the usage of
information can be made easily visible for various purposes. For example for facility management the correct
information could be easily accessed if the elements which are going to be checked are referenced in the
instances in the platform. The semantic web standard makes this development possible. This also enables the
usage of various software possible. Further research in this possibility is very interesting to investigate
process management and improvement of the usage of object type libraries based on the semantic web
standard.

A further investigation relates also to this process Improvement but more to the checking application. The
extension of templates will remain an important part of improving the requirement checker. Here

77

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

opportunities lie in the completeness and to investigate how these templates could be used in real projects
in the construction sector. Aside from further developing a checker with the use of templates also the
essence of the checkers could be researched upon further A checker is now used after a design is developed.
A checker could be made more beneficial in two steps. Firstly as active checking during designing and
secondly as not a checker but as parametric solution generator. The first proposition is mostly interface
related research. The second proposition sketches a new purpose for the usage of rule checkers. The usage of
a knowledge system is required for this purpose to store the parametric values, here for an OTL could be
useful.

On the requirements side of this proposed development also a further investigation can be done in future
research. The implementation of model based system engineering would align with the possibility of
performance based designing. Model based systems engineering also aims to first conceptually define a
model based on performances where understanding the problem is key. The possibilities with model based
systems engineering in the construction sector can be very interesting to do research upon. This can closely
relate to the development of parametric designing.

78

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

8. References

Abanda, F. H., Zhou, W., Tah,]. H. M., & Cheung, F. (2013). Exploring the Relationships Between Linked Open
Data and Building Information Modelling. Sustainable Building Conference, 176-185.

Allemang, D., & Hendler,]. (2011). Semantic Web for the Working Ontologist: Effective Modeling in RDFS and
OWL. (T. Green & R. Day, Eds.) (Second, Vol. 95). Waltham: Elsevier Ltd.
http://doi.org/10.2105/AfPH.2005.070169

BAMinfra. (2008). SE-wijzer: Handleiding Systems Engineering. Retrieved from
http://www.leidraadse.nl/assets/files/images/BN/bestanden/BAM_SE-wijzer.pdf

Beetz, J. (2009a). Building Product Catalogues on the Semantic Web. Proceedings of the 26th International
Conference on Information Technology in Construction CIB W78.

Beetz,]. (2009b). Facilitating distributed collaboration in the AEC / FM sector using Semantic Web
Technologies. Eindhoven. Retrieved from https://pure.tue.nl/ws/files/2966330/200911977.pdf

Beetz,]., Coebergh van den Braak, W., Botter, R., Zlatanova, S., & de Laat, R. (2015). Interoperable data models
for infrastructural artefacts - a novel IFC extension method using RDF vocabularies exemplified with
quay wall structures for harbors. eWork and eBusiness in Architecture, Engineering and Construction,
135-140. http://doi.org/http://dx.doi.org/10.1061/9780784413616.071

Bhatt, M., Hois,]., & Kutz, 0. (2012). Ontological modelling of form and function for architectural design.
Applied Ontology, 7(3), 233-267. http://doi.org/10.3233/A0-2012-0104

BIMForum. (2015). Level of Development Specification. BIM Forum, (April), 195. Retrieved from
www.bimforum.org/lod

BNA. (2005). NL/Sfb-Tabellen Inclusief gereviseerde Elementenmethode '91. Amsterdam. Retrieved from
http://www.stabu.org/wp-content/uploads/2015/07/NL-SfB_BNA_Boek_2005-ISBN-10-90-807626-3-
6.pdf

BNA, NLIngenieurs, & ONRI. (2009). Standaardtaakbeschrijving DNR-STB 2009. Amsterdam. Retrieved from
http://www.bna.nl/fileadmin/user_upload/Helpdesk/bureauzaken/Standaardtaakbeschrijving_2009_de
f.pdf

Bouwend Nederland. (2014). Praktische Leidraad voor geintegreerd samenwerken met de UAVgc in de
woning- en utiliteitsbouw. Zoetermeer. Retrieved from http://www.bouwendnederland.nl

Bruijn,]. de, Fensel, D., Kerrigan, M., Keller, U., Lausen, H., & Scicluna,]. (2008). Modeling Semantic Web
Services (1st editio). Berlin: Springer.

BuildingSmart. (2013). NEN-ISO 16739:2013.

BuildingSmart. (2016). MVD Overview Summary. Retrieved July 26, 2016, from http://www.buildingsmart-
tech.org/specifications/mvd-overview/mvd-overview-summary

Chao-Duivis, M., Koning, A., & Ubink, A. (2013). A Practical Guide to Dutch Building Contracts (3rd Editio).
The Hague.

Chen, L., & Luo, H. (2014). A BIM-based construction quality management model and its applications.
Automation in Construction, 46, 64-73. http://doi.org/10.1016/j.autcon.2014.05.009

Chipman, T., Liebich, T., & Weise, M. (2016). mvdXML, 1.1, 49. Retrieved from http://www.buildingsmart-
tech.org/downloads/mvdxml/mvdxml-1.1/final/mvdxml-1-1-documentation

Curry, E., O’'Donnell, J., Corry, E., Hasan, S., Keane, M., & O'Riain, S. (2013). Linking building data in the cloud:
Integrating cross-domain building data using linked data. Advanced Engineering Informatics, 27(2),
206-219. http://doi.org/10.1016/j.aei.2012.10.003

Dimyadi,]., & Amor, R. (2013). Automated Building Code Compliance Checking - Where is it at ? Proceedings
of CIB WBC 2013, 172-185. http://doi.org/10.13140/2.1.4920.4161

79

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Dimyadi, J., Pauwels, P., Spearpoint, M., Clifton, C., & Amor, R. (2015). Querying a Regulatory Model for
Compliant Building Design Audit. Proc. of the 32nd CIB W78 Conference 2015, 27th-29th October 2015,
Eindhoven, The Netherlands, (October), 139-148. http://doi.org/10.13140/RG.2.1.4022.6003

Douglass, B. P. (2013). Systems engineering best practices : Model-based requirement analysis. New York.
Retrieved from http://www-01.ibm.com/support/docview.wss?uid=swg27023356&aid=1

Eadie, R., Browne, M., Odeyinka, H., Mckeown, C., & Mcniff, S. (2013). Automation in Construction BIM
implementation throughout the UK construction project lifecycle: An analysis. Automation in
Construction, 36, 145-151. http://doi.org/10.1016/j.autcon.2013.09.001

Eastman, C., Lee,]. min, Jeong, Y. suk, & Lee,]. kook. (2009). Automatic rule-based checking of building
designs. Automation in Construction, 18(8), 1011-1033. http://doi.org/10.1016/j.autcon.2009.07.002

Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM Handbook: A Guide to Building Information
Modeling for Owners, Managers, Designers, Engineers and Contractors.

Emes, M. R.,, Smith, A., & Marjanovic-Halburd, L. (2012). Systems for construction: lessons for the
construction industry from experiences in spacecraft systems engineering. Intelligent Buildings
International, 4(2), 67-88. http://doi.org/10.1080/17508975.2012.680428

Feigenbaum, L. (2009). SPARQL By Example. W3C, 1-110. Retrieved from
https://www.w3.0rg/2009/Talks/0615-qbe/

Glinz, M. (2005). Rethinking the Notion of Non-Functional Requirements. Proceedings of the Third World
Congress for Software Quality, (September), 55-64.

Glinz, M., & Wieringa, R. J. (2007). Guest editors’ introduction: Stakeholders in requirements engineering.
IEEE Software, 24(2), 18-20. http://doi.org/10.1109/MS.2007.42

Hjelseth, E., & Nisbet, N. (2010). Overview of concepts for model checking. Proceedings of the CIB W78 2010:
27th International Conference -Cairo, Egypt, 16-18.

Hull, E ., Jackson, K., & Dick,]. (2006). Requirements Engineering. Requirements Engineering (Vol. 13).
http://doi.org/10.1145/336512.336523

INCOSE. (2007). Systems engineering handbook: A Guide for System Life Cycle Processes and Activities. (C.
Haskins, Ed.) (3.1 ed.).

INCOSE. (2015). Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities. (D.
Walden, G. Roedler, K. Forsberg, D. Hamelin, & T. Shortell, Eds.) (4th ed.). Hoboken, NY: John Wiley and
Sons.

ISO/IEC/IEEE 15288. (2015). ISO/IEC/IEEE 15288:2015 Systems and software engineering — System life cycle
processes.

Kasim, T., Li, H., Rezgui, Y., & Beach, T. (2013). AUTOMATED SUSTAINABILITY PROCESS : PROOF OF CONCEPT 1
COMPLIANCE CHECKING The Need for Automated Sustainability Compliance Checking, (October), 30-
31.

Kim, T. W,, Kim, Y., Cha, S. H., & Fischer, M. (2015). Automated updating of space design requirements
connecting user activities and space types. Automation in Construction, 50(C), 102-110.
http://doi.org/10.1016/j.autcon.2014.12.010

Kiviniemi, A. (2005). Requirements management interface to building product models. VIT Publications,
(572). Retrieved from http://cife.stanford.edu/sites/default/files/TR161.pdf

Knublauch, H. (2011). SPIN - Modeling Vocabulary. W3C, (February 2011), 1-13. Retrieved from
http://www.w3.org/Submission/spin-modeling/

Krijnen, T., & van Berlo, L. (2016). Methodologies for requirement checking on building models. Retrieved
from http://bimserver.org/wp-content/uploads/sites/6/2016/06/ddss-2016-krijnen-vanberlo.pdf

80

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Lenferink, S., Tillema, T., & Arts,]. (2013). Towards sustainable infrastructure development through
integrated contracts: Experiences with inclusiveness in Dutch infrastructure projects. International
Journal of Project Management, 31(4), 615-627. http://doi.org/10.1016/j.ijproman.2012.09.014

Liebich, T., Adachi, Y., Forester,]., Hyvarinen,]., Richter, S., Chipman, T, ... Wix,]. (2013). Industry Foundation
Classes Release 4 (IFC4) Documentation. Retrieved from http://www.buildingsmart-
tech.org/ifc/IFC4/final/html/

Lu, W., Fung, A., Liang, C., & Rowlinson, S. (2015). Demystifying construction project time-effort distribution
curves: a BIM and non-BIM comparison Weisheng. Retrieved from
http://ascelibrary.org/doi/abs/10.1061/9780784413517.034

Lu, W., Fung, A., Peng, Y., Liang, C., & Rowlinson, S. (2014). Cost-benefit analysis of Building Information
Modeling implementation in building projects through demystification of time-effort distribution
curves. Building and Environment, 82, 317-327. http://doi.org/10.1016/j.buildenv.2014.08.030

Malsane, S., Matthews,]., Lockley, S., Love, P. E. D., & Greenwood, D. (2015). Development of an object model
for automated compliance checking. Automation in Construction, 49(PA), 51-58.
http://doi.org/10.1016/j.autcon.2014.10.004

Marchant, A. B. (2010). Obstacles to the Flow of Requirements Verification. Systems Engineering, 13(1).
Retrieved from http://doi.org/10.1002/sys.20127

Ministry of Infrastructure and the Environment. (2005). Handreiking Functioneel Specificeren opq
Handreiking Functioneel Specificeren. Retrieved from
http://www.coinsweb.nl/downloads/Handreiking_functioneel_specificeren.pdf

National Institute of Building Sciences. (2011). BuildingSMART Alliance. Retrieved from
http://www.buildingsmartalliance.org/index.php/nbims

Nawari, N. O., & Alsaffar, A. (2015). Practical Approaches for Computable Building Codes. Proc. of the 32nd
CIB W78 Conference 2015, 27th-29th October 2015, Eindhoven, The Netherlands, 3(6), 569-576.
http://doi.org/10.13189/cea.2015.030601

Nederlands Normalisatie-instituut. (1993). NEN 2574 - Construction drawings. Arrangement of data on
building drawings.

Pauwels, P., & Terkaj, W. (2016). EXPRESS to OWL for construction industry: Towards a recommendable and
usable ifcOWL ontology. Automation in Construction, 63, 100-133.
http://doi.org/10.1016/j.autcon.2015.12.003

Pauwels, P., Van Deursen, D., De Roo,]., Van Ackere, T., De Meyer, R., Van de Walle, R., & Van Campenhout, .
(2011). Three-dimensional information exchange over the semantic web for the domain of
architecture, engineering, and construction. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 25(04), 317-332. http://doi.org/10.1017/S0890060411000199

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo,]., De Meyer, R., Van De Walle, R., & Van Campenhout, .
(2011). A semantic rule checking environment for building performance checking. Automation in
Construction, 20(5), 506-518. http://doi.org/10.1016/j.autcon.2010.11.017

Pels, H., Beek,]., & Otter, A. (2013). Systems Engineering as a First Step to Effective Use of BIM. Product
Lifecycle Management for Society, 409, 651-662. http://doi.org/10.1007/978-3-642-41501-2_64

ProRail. (2015). Handboek Systems Engineering (SE) Overzicht in processen , informatie en technieken,
(April), 1-149. Retrieved from http://www.leidraadse.nl/downloads

Radulovic, F., Poveda-Villalén, M., Vila-Suero, D., Rodriguez-Doncel, V., Garcia-Castro, R., & Gémez-Pérez, A.
(2015). Guidelines for Linked Data generation and publication: An example in building energy
consumption. Automation in Construction, 57, 178-187. http://doi.org/10.1016/j.autcon.2015.04.002

Rijkswaterstaat. (2015). Procesbeschrijving systems engineering voor RWS projecten, (Juni). Retrieved from
http://www.leidraadse.nl/downloads

81

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Rijkswaterstaat, Bouwend Nederland, ProRail, & NLinginieurs. (2009). Leidraad voor Systems Engineering
binnen de GWW-sector. Retrieved from http://www.leidraadse.nl/downloads

Schaap, H., Bouwman, J.,, & Willems, P. (2008). COINS-referentiekader voor functioneel specificeren.
Retrieved from www.coinsweb.nl

Scheithauer, D., Esep, 1., & Forsberg, K. (2013). V-Model Views, (Koéhler 1947), 502-516. Retrieved from
https://content.hitseng.eu/knowledge/pubs/downloads/vmv.pdf

Schneider, F.,, & Berenbach, B. (2013). A literature survey on international standards for systems
requirements engineering. Procedia Computer Science, 16, 796-805.
http://doi.org/10.1016/j.procs.2013.01.083

Shishko, R., & Aster, R. (2007). NASA systems engineering handbook. Retrieved from
http://adsabs.harvard.edu/full/ 1995NASSP6105.....S

Solihin, W., & Eastman, C. (2015). A Knowledge Representation Approach to Capturing BIM Based Rule
Checking Requirements Using Conceptual Graph. Proc. of the 32nd CIB W78 Conference 2015, 27th-
29th October 2015, Eindhoven, The Netherlands.

Solihin, W., & Eastman, C. (2015). Classification of rules for automated BIM rule checking development.
Automation in Construction, 53, 69-82. http://doi.org/10.1016/j.autcon.2015.03.003

Sparrius, A. (2014). The life cycle of a requirement. INCOSE International Symposium, 24(S1), 417-436.
Retrieved from http://onlinelibrary.wiley.com.dianus.libr.tue.nl/doi/10.1002/j.2334-
5837.2014.00031.x/full

US Department of Defense Systems Management College. (2001). Systems Engineering Fundamentals.
22060-5565, (January), 222. Retrieved from http://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-885j-aircraft-systems-engineering-fall-2005/readings/sefguide_01_01.pdf

Visser, A. (2011). Handboek Specificeren. Ede: CROW. Retrieved from
http://www.crow.nl/publicaties/handboek-specificeren

W3C. (2011). What is the Semantic Web, 1. http://doi.org/10.1016/B978-0-12-385965-5.10001-9

Walraven, A., & de Vries, B. (2009). From demand driven contractor selection towards value driven
contractor selection. Construction = Management and Economics, 27(6), 597-604.
http://doi.org/10.1080/01446190902933356

Werkgroep Leidraad Systems Engineering. (2007). Leidraad voor Systems Engineering binnen de GWW-
sector v.1, 73. Retrieved from http://www.leidraadse.nl/downloads

Young Jr., N. W,, Jones, S. a, & Bernstein, H. M. (2007). Interoperability in the Construction Industry, 36.
Retrieved from http://www.aia.org/aiaucmp/groups/aia/documents/pdf/aias077485.pdf

Zhang, C., & Beetz, J. (2015). Model Checking on the Semantic Web: IFC Validation Using Modularized and
Distributed Constraints. Proc. of the 32nd CIB W78 Conference 2015, 27th-29th October 2015,
Eindhoven, The Netherlands, 819-827.

Zhang, C., Beetz, |., & Vries, B. De. (2013). Towards Model View Definition on Semantic Level: A State of the
Art Review, (July 2015), 1-10. Retrieved from
https://www.researchgate.net/publication/260763029_Towards_model_view_definition_on_semantic_
level_a_state_of_the_art_review

Zhang, C., Beetz,]., & Weise, M. (2015). Interoperable Validation for IFC Building Models Using Open
Standards. Journal of Information Technology in Construction, 20(2015), 24-39. Retrieved from
https://www.researchgate.net/publication/271823060_Interoperable_validation_for_IFC_building_mo
dels_using_open_standards

Zhang, S., Teizer,]., Lee,]. K., Eastman, C. M., & Venugopal, M. (2013). Building Information Modeling (BIM)
and Safety: Automatic Safety Checking of Construction Models and Schedules. Automation in
Construction, 29, 183-195. http://doi.org/10.1016/j.autcon.2012.05.006

82

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Zhong, B. T., Ding, L. Y., Luo, H. B., Zhou, Y., Hy, Y. Z., & Hu, H. M. (2012). Ontology-based semantic modeling
of regulation constraint for automated construction quality compliance checking. Automation in
Construction, 28, 58-70. http://doi.org/10.1016/j.autcon.2012.06.006

83

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex A - Interview Questions

The interview report with the transcription is available upon request. This is due to the confidentiality of the
comments. Below the questions of the interviews are stated.

The following people have been interviewed

25-4-2016 Bunnik Jeroen Mackaij BIM Advisor
29-4-2016 Bunnik Kobus van der Zwaal SE advisor
2-5-2016 Bunnik Ruud Verstegen SE advisor
2-5-2016 Bunnik Jaco Prins BIM Advisor
4-5-2016 Utrecht Gilby Moelands SE advisor Infrastructure
9-5-2016 Bunnik Robin van Esch Project leader BIM
11-5-2016 Bunnik Bert Leeuwis SE Advisor
11-5-2016 Bunnik Jeroen van Beek Process manager
13-5-2016 Bunnik Anne-Marie van Dijk Project Coordinator
17-5-2016 Bunnik Jeroen Harink BIM Advisor
25-5-2016 Den Haag Hans van Hoven Plan Developer

Design Process
1. What is your function within BAM?
Where do mistakes in the design process occur most often?
How can these mistakes be prevented?
How should the design process be changed to effectuate this prevention?
Who is responsible for these changes?
What kind of requirements causes the most errors in the design process?

O v A WN

Systems Engineering
7. What is your definition of Systems Engineering?
8. What are the biggest benefits of Systems Engineering
9. What is the biggest problem with the implementation of Systems Engineering in the AEC industry?
10. What is good method to create a System breakdown structure in relation to the link between
objects and spaces?
11. What is your definition of BIM?
12. How do you see a connection between BIM and Systems Engineering?
13. When looking to this connection, what are the biggest limitations to realise this connection?
14. Where lies the future in the field of Systems Engineering?

Verification
15. What are the most costly mistakes if they need to be redone?
16. How should verification take place in the design process?
17. What is your definition of a good verification process?
18. What goes wrong most often in a verification process?
19. What are the most important parts of a verification process?
20. When and how often should verification take place?
21. Who is and who should be responsible for verification during the design process?
22. Which type of requirements are the hardest to verify?

Automation of verification
23. Can verification be done with the use of rule checking techniques?
24. [s automated verification the future?
25. How do you imagine that a translation of requirements in to rules should be done?
26. What kind of automated requirement check would you think is the most useful?
27. How should this automated requirements checker work?

84

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex B - Verification Process

N Start verificatie
Voorbereiding proces

Projectteam
bepalen

Smart maken
eisen

Integrale

Eisenanalyse
Dialoog klant

conflicterende
eisen en
interpretatie

Definiéren Objecten Definiéren risico’s

Nee, loop stappen
Na voor compleetheid

Alloceren objecten Risico allocatie aan
aan eisen

Bepalen
Risico allocatie aan onderhevige
objecten discplines aan
objecten en eisen

Alloceren
Kennisdragers aan
risico’s

Verantwoordelijken
& eigenaren
alloceren adhv
disciplines

Bepalen
Verantwoordelijken
voor eisen

Bepalen Level of
Detail

‘oorbereiding
voldoet

Opstellen verificatie procedure

Doel van

verificatie
duidelijk
hebben

Eigenaar &
invioed
discplines
verduidelijken

Verificatie

methodes opstellen Bt

en alloceren

& detailniveau
verduid

Verificatie Nee, controleer waar
Prestatie Verantwoordelijken missende delen zijn

definiéren

aanwijzen en
eigenaar maken

I Input & output I

erificatie
voorbereiding
voldoet

Jastart onmerpprf\

Begin
ontwerpproces.

Verificatie tijdens ontwerpfases

Verificaties

o 4\

Verificaties
voldoen

MY Uitvoering ontwerp
' proces

Rapportage &
documentatie

Oplevering
geverifieerd
ontwerp

85

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex C - Requirements Hierarchy

Well formedness model Correctness of Objecttype
Cost efficient _) Clash free model Intersections
Process value Modelling Quality Naming & identification ObjectiD
Process Location requirements Geo Location
Availabiliy of properties Objectproperty
hermal Comfort (heating) Temperature SoundLevels
Thermal Comfort (cooling) Airflow Soundpressurelevels|
internal Comfort (air) Heatgain Light emmission
High product value Use value Comfort Audiological Comfort Capacity Reflection Factor
Visual comfort (ight) Humidity lluminance
Internal Comfort (moisture)
Aesthethic Quality Quality levels
Finishing requirements Finishing Level
Material requirements Material
Emotional value aesthetics Colour requirements Colour (RGB)
Transparency Transparancy Rating
Spatiality Area
Visibiity Line of sight
. Disability access HasOpening
Future value Accessibility penings HasDisabilityAccess
Spatial Functionality Height
Headroom Length
Mountability Width
Functionallity Destructabil
ICT functionality Distance
Oceupation Wifi coverage
Function Definition Occupation
enasmis e
Availabllity Property avalability o
Cardinality e
Fire safety requirements @RIy
Smoke safety req
Safety Escape route req e rating
smoke permeability
Compartiments Requirements
o Cleaning frequency
Exploitation & Cleaning requirements Maintenance frequency
Maintainability Maintenance requirements Cleaning Cost
Maintenance cost
Access requirements Resistence class
Security Vandalism Requirements Accessiblly rating
Graffitiresitence
€PC level
Carbon footprint
Durability Durable materials Emission rating
Reusability Rating
Energy efficiency rating
Equivalent quality requirement
Quality Quality of product M‘}“"'::’ ““"’j“
Specifications of product SR
= Loadbearing Requirements Material Strength
Structurability Strength Requirements Flexibilty
Testing Tolerence requirements Test performance
Ease of use Usability requirements Functions
Unit cost requirement Unit cost / unit
. . Transportation cost Transport Cost / unit
Low cost ownership Economic value Low Cost Installation cost requirement Labour cost / unit
/ unit
Life cycle cost Life cycle cost requirements Life cycle Cost

86

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex D - Space Classification

This classification is here represented as a figure to show the hierarchy. In Annex G this hierarchy is
translated to the BAM OTL and represented as a ontology. The turtle file is available upon request.

1341 1351
.............. Lvingspace
|

1331 8athing
1332 Tollet 13420ther
space usage space
1343 Non- _{ 1352 ‘
1

xxxxx

sssssssssss

87

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex E - Selected Requirements

These requirements have been selected for the further development of the requirement
checker. From these requirements two requirements have been implemented in the

prototype.

size of 1000mm

Objects: Window, External Wall, Office Space
Property: Size
Value: 1000 mm

Comfort Value checking of a wall between two different spaces Spaces - wall -
Acoustic A wall between a User and a movement space must have a | object relation;
comfort maximum acoustic rating of 65 dB value
Objects: Wall, User Space, Movement Space
Property: Acoustic Rating
Value: 65 dB
Modelling Data quality checking of objects; Classification coding Value
quality A wall must have the correct NL-SfB code (22.11)
Well formed | Objects: Wall
Property: Classification Code
Value: 22.11
Safety Material checking: Combustibility Property
Fire safety A fire separation wall must be made of a material Non- | existence
Combustible
Objects: Fire Separation Wall
Property: Non-Combustible
Spatiality Gross area checking of space types Space type value
Area The gross area of an office type X must be at least 24m2
Objects: Office Space
Property: Area
Value 24 m2
Aesthetics Checking of size of objects in a wall in a certain space Space - object
Size A window in an external wall in an office space must have a | relation; value

Functionality

Wall Height Checking

Value

Objects: User Space, Smoke Detector
Property: Containment

Headroom Internal walls must be at least 2500mm high

Objects: Internal Wall

Property: Height

Value: 2500 mm
Availability Object occurrence in a space checking Spaces - object
Object Every unique user space must contain a smoke detector Containment
Occurrence

88

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Availability | Amount of objects in a space checking Spaces - object
Object Every unique user space must contain at least 3 power sockets Containment
quantity Objects: User Space, power sockets amount
Property: Amount
Value: 3
Safety Value checking of an object in a certain Space type Space - object
Fire Safety | The walls in an office space must have the property Fire | relation; property
resistance class
Objects: Wall, Office Space
Property: Fire Resistance
Costs Cost requirements checking Value
Unit costs | Internal walls metal stud must not exceed the cost of €X,- per

m2

Objects: Internal Metal stud Wall
Property: Cost

Value: €/m2

Valie- 3

89

Moonen L.T. (2016) - Eindhoven University o

f Technology & BAM Advies en Engineering

Annex F - SPIN Constraint Templates

In this annex the Constraint templates are stated and an example is given.

Template 1: Type Existence

Statement

Example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a ?0ObjectClass .
FILTER NOT EXISTS {
?s ?p 0 .
o a D .
} .
}

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:bo spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:window .
FILTER NOT EXISTS {
?s grw:containedIn ?o .
?0 a bam:ExternalWall .
} .
}

Arguments which must be defined

ObjectClass = a certain object from the BAM OTL

p (predicate) = a condition where the existence is
applying to

D = an element where the objectclass has a condition
to

This template checks the existence of a certain type. In the example the existence of a window in a wall is
queried upon. It brings forward the elements which aren’t according to the property.

90

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 2: Property Existence

Statement

Example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a ?0ObjectClass .
FILTER NOT EXISTS {
?s ?p 0 .
} .
}

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b0 spin:violationRoot ?s .
_:b0 spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:wall .
FILTER NOT EXISTS {
?s grw:HasClassification 20 .
} .
}

Arguments which must be defined

ObjectClass = a certain object from the BAM OTL
p (predicate) = a property which must be present as a
relation of the object

This template checks if a property exists. It queries an element and then a property is queried upon with

the use of the predicate. It brings forward all elements

which don’t have the property

< PROPERTY

91

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 3: Cardinality

Statement

Example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a ?0ObjectClass .
FILTER {
(op:count(?s, p, D) > ?n) |
(op:count(?s, ?p, ?D) < ?m)) . } .
}

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b0 spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:Door .
FILTER {
(op:count(bam:Door, pset:compartmentation,
bam:Space) > 1) || (op:count bam:Door,

pset:compartmentation, bam:Space) < 1))
} .
}

Arguments which must be defined

ObjectClass = a certain object from the BAM OTL

p (predicate) = a property which must be present as a
relation of the object

D = an element where the objectclass has a condition
to

n = amount of objects minimum

m = amount of objects maximum

This template checks if a a certain object exist exactly. It queries an element and then filters how much of

these elements exists. It brings back if there are to less

92

or to many elements

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 4: Value

Statement

Example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .

_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a ?0ObjectClass .
FILTER NOT EXISTS {
?s ?p 0 .
FILTER operator(?o, ?a)
.
}

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b0 spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:Wall .
FILTER NOT EXISTS {
bam:Wall pset:acousticRating ?o.
FILTER >(?0, 65) .
.
}

Arguments which must be defined

ObjectClass = a certain object from the BAM OTL

p (predicate) = a property which must be present as a
relation of the object

operator = the condition for the value (=, <, > etc.)

a = Value of the property

This template checks if an object has a property with a certain value. It queries an object and filters if the
value of property is according to a certain value. It brings forward all elements which don’t have the
property or a value that isn’t according to the condition

93

< VALUE

Moonen L.T. (2016) - Eindhoven University o

Template 5: Space type amount

f Technology & BAM Advies en Engineering

Space type amount

Example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a ?SpaceClass .
FILTER {
(op:count(?s, ’p, D) > ?n) [
(op:count(?s, ?p, ?D) < ?m)) .
}

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b0 spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:0fficeSpace .
FILTER {
(op:count(Bam:Officspace
grw:ContainedIn
?bam:Project) > x || (Bam:0fficspace

grw:ContainedIn

?bam:Project) < x).
} .

}

Arguments which must be defined

SpaceClass = a certain space from the BAM OTL

p = a predicate which must be present as a relation of
the object to the total project

D = an element where the space has a condition to

n = required value for the amount of spaces

m = required value for the amount of spaces

This template checks if a certain amount of a space type exists in the model. It queries a spacetype in the
project. It brings back if the amount of spaces isn’t according to the required value

94

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 6: Space type value

Statement Example
CONSTRUCT { CONSTRUCT {
_:b@ a spin:ConstraintViolation . _:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s . _:b0 spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning . _:b@ spin:violationLevel spin:Warning .
} }
WHERE { WHERE {
?s a ?SpaceClass . ?s a bam:0fficeSpace .
FILTER NOT EXISTS { FILTER NOT EXISTS {
?s ?p 0 . Bam:0fficeSpace pset:GrossPlannedArea ?o
FILTER operator (20, 20) . .
} . FILTER >(?0, 20) .
} J
}
Arguments which must be defined SpaceClass = a certain space from the BAM OTL

p = a predicate which must be present as a relation
between the space and the property

operator = the condition for the value (=, <, > etc.)

a = Value of the property

This template checks if a space has a property with a certain value. It queries a space and filters if the value
of property is according to a certain value. It brings forward all spaces which don’t have the property or
have a value that isn’t according to the condition

< VALUE

95

Moonen L.T. (2016) - Eindhoven University o

Template 7: Space — Space Relation

f Technology & BAM Advies en Engineering

Statement

Example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}

WHERE {
?s a ?SpaceClass .
FILTER NOT EXISTS {
?s ?p 0 .
o a D .
T

}

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:0fficeSpace .
FILTER NOT EXISTS {
Bam:OfficeSpace grw:nextspace ?0
?0 a bam:VerticalMovementSpace .
T
}

Arguments which must be defined

ObjectClass = a certain object from the BAM OTL

p (predicate) = a property which must be present as a
relation of the object

operator = the condition for the value (=, <, > etc.)

a = Value of the property

This template checks if a certain space type is adjacent to another space type. It queries the relation
between two different space types. It brings forward all primary space types which haven’t got an adjacent

required spacey type.

96

< SPACE RELATION

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 8: Space - object Containment

Statement

Example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .

_:b@ spin:violationLevel spin:Warning .

}

WHERE {
?s a ? SpaceClass .
FILTER NOT EXISTS {
?s ?p 0 .
?0 a ?objectClass .
T

}

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b0 spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:0fficeSpace .
FILTER NOT EXISTS {
bam:officeSpace hasContainedProduct ?o
?0 a Bam:PowerSocket
.
}

Arguments which must be defined

SpaceClass = a certain space from the BAM OTL

p = a predicate which must be present as a relation
between a space and an object

ObjectClass = a certain object from the BAM OTL

This template checks if an object is contained in a space. It queries a space and filters out the spaces which
don’t contain the object. It brings forward all spaces which don’t contain the objects.

< OBJECT

97

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 9: Space - object Containment amount

Statement Example
CONSTRUCT { CONSTRUCT {
_:b@ a spin:ConstraintViolation . _:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s . _:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning . _:b@ spin:violationLevel spin:Warning .
} }
WHERE { WHERE {
?s a ? SpaceClass . ?s a bam:0fficeSpace .
FILTER (op:count(?o0, ?p, D) > ?n) || FILTER {
(op:count(?0, ?p, ?D) < P’m)) op:count(bam:officeSpace
hasContainedProduct Bam:PowerSocket) > ?n)
} || (op:count(bam:officeSpace
hasContainedProduct Bam:PowerSocket) < ?m))
} .
}
Arguments which must be defined SpaceClass = a certain space from the BAM OTL

p (predicate) = a property which must be present as a
relation of the object

D = an object which is contained in the Spaceclass

n = amount of objects minimum

m = amount of objects maximum

This template checks if an object is contained in a space. It queries a space and filters out the spaces which
don’t contain the object. It brings forward all spaces which don’t contain the objects.

< OBJECT

98

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 10: Space - object relation; property

Statement Example
CONSTRUCT { CONSTRUCT {
_:b@ a spin:ConstraintViolation . _:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s . _:b0 spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning . _:b@ spin:violationLevel spin:Warning .
} }
WHERE { WHERE {
?s a ?objectClass . ?s a bam:InternalWall .
?s grw:isBoundaryOf 2o . ?s grw:isBoundaryOf ?o0 .
?0 a ?spaceClass . ?0 a bam:0fficeSpace .
FILTER NOT EXISTS { FILTER NOT EXISTS {
?s ?p2 02 . Bam:InternalWall pset:Combustable true
. .
} }.
}
Arguments which must be defined SpaceClass = a certain space from the BAM OTL

ObjectClass = a certain object from the BAM OTL
p = a predicate which must be present as a property of
the contained object

This template checks if an object contained in a certain space has a property. It queries objects which are
present in a space and filters out the objects which don’t have the property. It brings forward all objects
which don’t have the property

< PROPERTY

99

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 11: Space - object relation; value

Statement

Example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s grw:isBoundaryOf 2o .
?s a ?objectClass .
?0 a ?spaceClass .
FILTER NOT EXISTS {
?s ?p2 02 .
FILTER operator(?02, ?a)
.
}

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b0 spin:violationRoot ?s .
_:b0 spin:violationLevel spin:Warning .

}
WHERE {
?s grw:isBoundaryOf ?o0 .
?s a bam:wall
?0 a bam:0fficeSpace .
FILTER NOT EXISTS {
?s pset:acousticRating ?02 .
FILTER (202 > 45) .
} .
}

Arguments which must be defined

SpaceClass = a certain space from the BAM OTL
ObjectClass = a certain object from the BAM OTL
p = predicate as a property of the contained object
operator = the condition for the value (=, <, > etc.)
a = avalue

This template checks if an object contained in a certain space has a property. It queries objects which are
present in a space and filters out the objects which don’t have the property. It brings forward all objects

which don’t have the property

< VALUE

100

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 12: Spaces - wall relation; value

Statement Example
CONSTRUCT { CONSTRUCT {
_:b@ a spin:ConstraintViolation . _:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s . _:b@ spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning . _:b@ spin:violationLevel spin:Warning .
} }
WHERE { WHERE {
?s a ?objectClass . ?s a bam:internalWall .
?s grw:isBoundaryOf 2o . ?s qrw:isBoundaryOf ?o0 .
?0 a ?spaceClass(X) . ?0 a bam:0fficeSpace .
?s grw:isBoundaryOf 202 . ?s qrw:isBoundaryOf ?02 .
?02 a ?spaceClass(Y) . ?02 a bam:HorizontalMovementSpace .
FILTER NOT EXISTS { FILTER NOT EXISTS {
?s ?p P03 . ?s pset:acousticRating ?o03 .
FILTER operator(?03, ?a) . FILTER (?03 > 55) .
} . } .
} }
Arguments which must be defined SpaceClass = a certain space from the BAM OTL (X&Y)

ObjectClass = a certain object from the BAM OTL
p = predicate as a property of the contained object
operator = the condition for the value (=, <, > etc.)
a = avalue

This template checks if an object contained in a certain space has a property. It queries objects which are
present in a space and filters out the objects which don’t have the property. It brings forward all objects
which don’t have the property

< VALUE

101

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Template 13: Spaces - object relation; value

Statement

Example

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b0 spin:violationLevel spin:Warning .

CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:bo spin:violationLevel spin:Warning .

} }
WHERE { WHERE {
?s a ?objectClass(X) . ?s a bam:Window ..
?s grw:isPlacedIn 2o . ?s grw:isPlacedIn ?o0 .
?0 a ?objectClass(Y) . ?0 a bam:Wall.
?s grw:isBoundaryOf 202 . ?s grw:isBoundaryOf ?02 .
?02 a ?spaceClass . ?02 a bam:0fficeSpace .
FILTER NOT EXISTS { FILTER NOT EXISTS {
?s ?p P03 . ?s pset:Size ?03 .
FILTER operator(?03, ?a) FILTER (?03 > 1000) .
. .
} }
Arguments which must be defined ObjectClass = a certain object from the BAM OTL
(X&Y)

SpaceClass = a certain space from the BAM OTL

p = predicate as a property of the contained object
operator = the condition for the value (=, <, > etc.)
a = avalue

This template checks if an object contained in a certain space has a property. It queries objects which are

present in a space and filters out the objects which
which don’t have the property

don’t have the property. It brings forward all objects

< VALUE

102

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex G - BAM OTL

Firstly the overview in Topbraid of all created elements can be seen. After that the notation in turtle can be
seen.

103

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

HOH OH H H

@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix

baseURI: http://www.bam.com/bamNL_otl

imports: http://bimsparql.org/pset#

imports: http://bimsparql.org/query-rewriting

imports: http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1
prefix: bam

bam: <http://www.bam.com/bamNL_otl#> .

ifcowl: <http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#> .
owl: <http://www.w3.0rg/2002/07/owl#> .

query-rewriting: <http://bimsparql.org/query-rewriting#> .

rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

sp: <http://spinrdf.org/sp#> .

spin: <http://spinrdf.org/spin#> .

xsd: <http://www.w3.0rg/2001/XMLSchema#> .

<http://www.bam.com/bamNL_otl>
rdf:type owl:Ontology ;
owl:imports <http://bimsparql.org/pset#> ;
owl:imports <http://bimsparql.org/query-rewriting> ;
owl:imports <http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1> ;
owl:versionInfo "Created with TopBraid Composer"~”xsd:string ;

bam:BalkonySpace
rdf:type owl:Class ;
rdfs:subClassOf bam:UndefinedSpace ;

bam:BasicTechnicalSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:TechnicalSpace ;

bam:CafeSpace
rdf:type owl:Class ;
rdfs:label "Cafe space"~"xsd:string ;
rdfs:subClassOf bam:HorecaSpace ;

bam:CanteenSpace
rdf:type owl:Class ;
rdfs:label "Canteen space"~"xsd:string ;
rdfs:subClassOf bam:GatheringSpace ;

bam:Ceiling
rdf:type owl:Class ;
rdfs:subClassOf owl:Thing ;

bam:ChimneySpace
rdf:type owl:Class ;
rdfs:subClassOf bam:UndefinedSpace ;

bam:Column
rdf:type owl:Class ;
rdfs:subClassOf owl:Thing ;

bam:CommercialSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:UserSpace ;

104

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

bam:CommonSpace

bam:Door
rdf:type owl:Class ; rdf:type owl:Class ;
rdfs:subClassOf bam:FunctionalSpace ; rdfs:subClassOf owl:Thing ;

bam:CommunicationSpace
rdf:type owl:Class ;
rdfs:label "Communication space"~"xsd:string ;
rdfs:subClassOf bam:0fficeSpace ;

bam:EducationSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:UserSpace ;

bam:ElectricalUtilitySpace
rdf:type owl:Class ;
rdfs:subClassOf bam:TechnicalSpace ;

bam:ConferenceSpace
rdf:type owl:Class ;
rdfs:label "Conference space"~*xsd:string ;

rdfs:subClassOf bam:0fficeSpace ; Bam'EngineRoomSpace

rdf:type owl:Class ;

bam:ControlSpace rdfs:subClassOf bam:TechnicalSpace ;

rdf:type owl:Class ; .
rdfs:subClassOf bam:TechnicalSpace ; bam:EntranceSpace

bam: CrawlSpace rdf:type owl:Class ;
rdf:type owl:Class ; . rdfs:label "Entrance
rdfs:subClassOf bam:UndefinedSpace ; space"rxsd:string ;

: rdfs:subClassOf bam:GatheringSpace ;
bam:DetentionSpace

rdf:type owl:Class ;
rdfs:subClassOf bam:UserSpace ;

bam:EnvironmentallyControlledSpace
rdf:type owl:Class ;

: rdfs:subClassOf bam:UserSpace ;
bam:DiningRoom

rdf:type owl:Class ;
rdfs:label "Dining room"~~xsd:string ;
rdfs:subClassOf bam:LivingSpace ;

bam:ExpeditionSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:FunctionalSpace ;

bam:DisabledToiletSpace Bam:Externalwall

rdf:type owl:Class ; rdf:type owl:Class ;
rdfs:subClassOf bam:SanitarySpace ; rdfs:subClassOf bam:Wall

bam:HorecaKitchen
rdf:type owl:Class ;
rdfs:label "Horeca kitchen"~~xsd:string ;
rdfs:subClassOf bam:HorecaSpace ;

bam:Floor
rdf:type owl:Class ;

bam:FunctionalSpace
rdf:type owl:Class ;

bam:HorecaSpace rdfs:subClassOf bam:Space ;

rdf:type owl:Class ;

rdfs:subClassOf bam:UserSpace ; Bam'GatheringSpace

rdf:type owl:Class ;

bam:HorizontalMovementSpace rdfs:subClassOf bam:UserSpace ;

rdf:type owl:Class ;

rdfs:subClassOf bam:MovementSpace ; Bam'HealthCareSpace

rdf:type owl:Class ;

bam:HotelRoom rdfs:subClassOf bam:UserSpace ;

rdf:type owl:Class ;
rdfs:label "Hotel room"~"xsd:string ;
rdfs:subClassOf bam:HorecaSpace ;

bam:ICTTechnicalSpace

rdf:type owl:Class ;
rdfs:subClassOf bam:TechnicalSpace ;

105

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

bam:IndustrialSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:FunctionalSpace ;

bam:SmokingSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:FunctionalSpace ;

bam:InternalWall
rdf:type owl:Class ;
rdfs:subClassOf bam:Wall ;

bam:Space
rdf:type owl:Class ;
rdfs:subClassOf owl:Thing ;

bam:JudicialSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:UserSpace ;

bam:SportsSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:UserSpace ;

bam:Kitchen
rdf:type owl:Class ;
rdfs:label "Kitchen"~"xsd:string ;
rdfs:subClassOf bam:LivingSpace ;

bam:Stairs
rdf:type owl:Class ;
rdfs:subClassOf owl:Thing ;

bam:StorageSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:FunctionalSpace ;

bam:LeasureSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:UserSpace ;

bam:StudySpace
rdf:type owl:Class ;
rdfs:label "Study space"~"xsd:string ;
rdfs:subClassOf bam:LivingSpace ;

bam:LivingRoom
rdf:type owl:Class ;
rdfs:label "Living room"~~xsd:string ;
rdfs:subClassOf bam:LivingSpace ;
bam:PrinterSpace
rdf:type owl:Class ;
rdfs:label "Printer space"~~xsd:string ;
rdfs:subClassOf bam:0fficeSpace ;

bam:TechnicalSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:Space ;

bam:ToiletSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:SanitarySpace ;

bam:ReceptionSpace
rdf:type owl:Class ;
rdfs:label "Reception space"~~xsd:string ;

rdfs:subClassOf bam:GatheringSpace ; bam:UndefinedSpace

rdf:type owl:Class ;

bam:ReligionSpace rdfs:subClassOf bam:Space ;

rdf:type owl:Class ;

rdfs:subClassOf bam:UserSpace ; éam'UserSpace

rdf:type owl:Class ;

bam:RestaurantSpace rdfs:subClassOf bam:Space ;

rdf:type owl:Class ;
rdfs:label "Restaurant space"~"xsd:string ;

bam:VerticalMovementSpace
rdfs:subClassOf bam:HorecaSpace ;

rdf:type owl:Class ;

: rdfs:subClassOf bam:MovementSpace ;
bam:SanitarySpace

rdf:type owl:Class ;
rdfs:subClassOf bam:Space ;

bam:Scullery
rdf:type owl:Class ;
rdfs:label "Scullery"~"xsd:string ;
rdfs:subClassOf bam:LivingSpace ;

bam:SecuritySpace

rdf:type owl:Class ;
rdfs:subClassOf bam:TechnicalSpace ;

106

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

bam:ShaftSpace
rdf:type owl:Class ;
rdfs:subClassOf bam:UndefinedSpace ;

bam:MeetingSpace
rdf:type owl:Class ;
rdfs:label "Meeting space"~"xsd:string

bam: ShowerSpace rdfs:subClassOf bam:OfficeSpace ;
rdf:type owl:Class ;

rdfs:subClassOf bam:SanitarySpace ; Eam'MovementSpace

rdf:type owl:Class ;

bam:SleepingSpace rdfs:subClassOf bam:Space ;

rdf:type owl:Class ; .
rdfs:label "Sleeping space"~~xsd:string ; bam:NightClubSpace

rdfs:subClassOf bam:LivingSpace ; rdf:type owl:Class ;

rdfs:label "Night club
space""xsd:string ;
rdfs:subClassOf bam:HorecaSpace ;

bam:WaitingSpace
rdf:type owl:Class ;
rdfs:label "Waiting space"~"xsd:string ;

rdfs:subClassOf bam:GatheringSpace ; Bam'officeSpace

rdf:type owl:Class ;

bam:Wall rdfs:subClassOf bam:UserSpace ;

rdf:type owl:Class ;

rdfs:subClassOf owl:Thing ; bam:0therSanitaryFunctionSpace

rdf:type owl:Class ;

bam:WashingSpace rdfs:subClassOf bam:SanitarySpace ;

rdf:type owl:Class ;

rdfs:subClassOf bam:SanitarySpace ; Bam:PantrySpace

rdf:type owl:Class ;

bam:WasteDisposalSpace rdfs:label "Pantry space"~"xsd:string

rdf:type owl:Class ;
rdfs:subClassOf bam:FunctionalSpace ; rdfs:subClassOf bam:OfficeSpace ;

bam:Window
rdf:type owl:Class ;
rdfs:subClassOf owl:Thing ;

bam:ParkingSpace

rdf:type owl:Class ;

rdfs:subClassOf bam:FunctionalSpace ;
bam:PersonalOfficeSpace

rdf:type owl:Class ;

rdfs:label "Personal office
space"""xsd:string ;

rdfs:subClassOf bam:OfficeSpace ;

bam:WorkSpace
rdf:type owl:Class ;
rdfs:label "Working space"~"xsd:string ;
rdfs:subClassOf bam:0fficeSpace ;

bam:LivingSpace bam:PresentationSpace
rdf:type owl:Class ; rdf:type owl:Class ;
rdfs:subClassOf bam:UserSpace ; rdfs:label "Presentation

space""xsd:string ;

bam:MechanicallInstallationsSpace rdfs:subClassOf bam:GatheringSpace ;

rdf:type owl:Class ;
rdfs:subClassOf bam:TechnicalSpace ;

107

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex H - SPIN Inference Rules

Firstly the objects are defined with a spin:construct rule in owl:thing. Secondly the properties are defined
with use of a spin:magicProperty

// Definition for a Functional Space//

CONSTRUCT {
?s a bam:FunctionalSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “FunctionalSpace” .
}

// Definition for a User Space//
CONSTRUCT {
?s a bam:UserSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “UserSpace” .
}

// Definition for a Movement Space//
CONSTRUCT {
?s a bam:MovementSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “MovementSpace” .
}

// Definition for a Technical Space//
CONSTRUCT {
?s a bam:TechnicalSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “TechnicalSpace” .
}

// Definition for a Sanitary Space//
CONSTRUCT {
?s a bam:SanitarySpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “SanitarySpace” .
}

108

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

// Definition for an Undefined Space//
CONSTRUCT {
?s a bam:undefinedSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “UndefinedSpace” .
}

// Definition for an ToiletSpace//
CONSTRUCT {
?s a bam:ToiletSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “ToiletSpace” .
}

// Definition for an DisabledToiletSpace//
CONSTRUCT {
?s a bam:DisabledToiletSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “DisabledToiletSpace” .
}

// Definition for WashingSpace//
CONSTRUCT {
?s a bam:WashingSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “WashingSpace” .
}

// Definition for a ShowerSpace//
CONSTRUCT {
?s a bam:ShowerSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “ShowerSpace” .
}

// Definition for an OtherSanitarySpace//
CONSTRUCT {
?s a bam:0therSanitarySpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “OtherSanitarySpace” .
}

109

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

// Definition for an CommercialSpace//
CONSTRUCT {
?s a bam:CommercialSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “CommercialSpace” .
}

// Definition for an DetentionSpace//
CONSTRUCT {
?s a bam:DetentionSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “DetentionSpace” .
}

// Definition for an EducationSpace//
CONSTRUCT {
?s a bam:EducationSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “EducationSpace” .
}

// Definition for an EnvironmetalyControlledSpace//
CONSTRUCT {
?s a bam:EnvironmentallyControlledSpace .

}
WHERE {

?s ifcowl:longName_IfcSpatialStructureElement ?y .

?s a ifcowl:IfcSpace .

?y a ifcowl:IfclLabel .

?y express:hasString “EnvironmentallyControlledSpace” .
}

// Definition for a HealtcareSpace//
CONSTRUCT {
?s a bam:HealthcareSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “HealthcareSpace” .
}

// Definition for a HorecaSpace//
CONSTRUCT {
?s a bam:HorecaSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “HorecaSpace” .
}

110

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

// Definition for an JudicialSpace//
CONSTRUCT {
?s a bam:JudicialSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “JudicialSpace” .
}

// Definition for an LeasureSpace//
CONSTRUCT {
?s a bam:LeasureSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “LeasureSpace” .
}

// Definition for a LivingSpace//
CONSTRUCT {
?s a bam:LivingSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “LivingSpace” .
}

// Definition for a MeetingSpace//
CONSTRUCT {
?s a bam:MeetingSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “MeetingSpace” .
}

// Definition for a OfficeSpace//
CONSTRUCT {
?s a bam:0fficeSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “OfficeSpace” .
}

// Definition for a ReligionSpace//
CONSTRUCT {
?s a bam:ReligionSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “ReligionSpace” .
}

111

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

// Definition for a SportsSpace//
CONSTRUCT {
?s a bam:SportsSpace .

}
WHERE {
?s ifcowl:longName_IfcSpatialStructureElement ?y .
?s a ifcowl:IfcSpace .
?y a ifcowl:IfclLabel .
?y express:hasString “SportsSpace” .
}

// Definition for a Wall//
CONSTRUCT {
?s a bam:Wall .

3
WHERE {

?s a/rdfs:subClassOf* ifcowl:IfcWall .
}

// Definition for an Internal Wall //
CONSTRUCT {
?s a bam:InternalWall .

}
WHERE {
?s a/rdfs:subClassOf* ifcowl:IfcWall .
?s pset:isExternal false .
}

// Definition for an External Wall //
CONSTRUCT {
?s a bam:ExternalWall .

}
WHERE {
?s a/rdfs:subClassOf* ifcowl:IfcWall .
?s pset:isExternal true .
}

// Definition for a FireCompartmentWall //
CONSTRUCT {
?s a bam:Wall .

}
WHERE {
?s a/rdfs:subClassOf* ifcowl:IfcWall .
?s pset:Compartment true .
}

// Definition for a Window//
CONSTRUCT {
?s a bam:Window .

}
WHERE {

?s a ifcowl:IfcWindow .
}

// Definition for a PowerSocket//
CONSTRUCT {
?s a bam:PowerSocket .

}
WHERE {

?s ifcowl:name_IfcRoot ?y .

?s a ifcowl:IfcFlowTerminal .

?y a ifcowl:IfclLabel .

?y express:hasString ?n .

FILTER CONTAINS(?n, "63_CGA wcd")
}

112

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex I - SPIN Constraint template queries

In the back end of the tool the following SPIN Constraint queries are used;

Comfort Value checking of a wall between two different spaces Spaces - wall -
Acoustic A wall between a User and a movement space must have a | object relation;
comfort minimum acoustic rating of 65 dB value
CONSTRUCT {
_:b@ a spin:ConstraintViolation .
_:b@ spin:violationRoot ?s .
_:b@ spin:violationlLevel spin:Warning .
}
WHERE {
?s a bam:internalWall .
?s qrw:isBoundaryOf ?o0 .
?s qrw:isBoundaryOf ?02 .
?0 a bam:0fficeSpace .
?02 a bam:HorizontalMovementSpace .
FILTER NOT EXISTS {
?s pset:acousticRating 03 .
FILTER (?03 < 65) .
}.
}
Availability Object containment in a space checking Space - object
Object Every unique user space must contain a power socket Containment
Occurence

CONSTRUCT {
_:b0 a spin:ConstraintViolation .
_:b0 spin:violationRoot ?s .
_:b@ spin:violationLevel spin:Warning .

}
WHERE {
?s a bam:0fficeSpace .

FILTER NOT EXISTS {
?s qrw:hasContainedProduct ?o .
?0 a Bam:PowerSocket .
} .

}

These templates are translated in the following way in the .TTL (turtle) file;

Acoustic Comfort;

rdf:type sp:Construct ;
sp:templates (

[

sp:object spin:ConstraintViolation ;
sp:predicate rdf:type ;
sp:subject _:b90104 ;

sp:object [
sp:varName "s"~"xsd:string ;
1
sp:predicate spin:violationRoot ;
sp:subject _:b90104 ;

113

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

]
[
sp:object spin:Warning ;
sp:predicate spin:violationLevel ;
sp:subject _:b90104 ;
]
) s
sp:where (
[
sp:object [
sp:varName "o"~"xsd:string ;
13
sp:predicate query-rewriting:isBoundaryOf ;
sp:subject [
sp:varName "s"~"xsd:string ;

15
]
[
sp:object [
sp:varName "o02"~"xsd:string ;
13

sp:predicate query-rewriting:isBoundaryOf ;
sp:subject [
sp:varName "s"~"xsd:string ;

15

sp:object bam:InternallWall ;
sp:predicate rdf:type ;
sp:subject [

sp:varName "s"~"xsd:string ;

15

sp:object bam:0fficeSpace ;
sp:predicate rdf:type ;
sp:subject [

sp:varName "o"~"xsd:string ;

15

sp:object bam:HorizontalMovementSpace ;
sp:predicate rdf:type ;
sp:subject [

sp:varName "02"~"xsd:string ;

15

rdf:type sp:Filter ;
sp:expression [
rdf:type sp:notExists ;
sp:elements (
[
sp:object [
sp:varName "o03"~"xsd:string ;
13
sp:predicate <http://bimsparql.org/pset#acousticRating> ;

114

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

sp:subject [
sp:varName "s"~"xsd:string ;
15
1
[
rdf:type sp:Filter ;
sp:expression [
rdf:type sp:gt ;

sp:argl [
sp:varName "o03"""xsd:string ;
15
sp:arg2 69 ;
13
]
) s

Availability: Power socket;

bam:constraint_powersocket_1
rdf:type sp:Construct ;
sp:templates (
[
sp:object spin:ConstraintViolation ;
sp:predicate rdf:type ;
sp:subject _:b26654 ;

]
[
sp:object [
sp:varName "s"~"xsd:string ;
13

sp:predicate spin:violationRoot ;
sp:subject _:b26654 ;

sp:object spin:Warning ;
sp:predicate spin:violationLevel ;
sp:subject _:b26654 ;
1
) s
sp:where (
[
rdf:type sp:TriplePath ;
sp:object bam:Space ;
sp:path [
rdf:type sp:SeqgPath ;
sp:pathl rdf:type ;
sp:path2 [
rdf:type sp:ModPath ;
sp:modMax -2 ;
sp:modMin O ;
sp:subPath rdfs:subClassOf ;
13
153
sp:subject [

115

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

sp:varName "s"~"xsd:string ;
15
]
[
rdf:type sp:Filter ;
sp:expression [
rdf:type sp:notExists ;
sp:elements (
[
sp:object [
sp:varName "o"~"xsd:string ;
13
sp:predicate query-rewriting:hasContainedProduct ;
sp:subject [
sp:varName "s"~"xsd:string ;

1;

sp:object bam:PowerSocket ;
sp:predicate rdf:type ;
sp:subject [

sp:varName "o"~xsd:string ;

15

116

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex] - Tool Flowchart

According to the selected
requirement, the correct template is
brought forward

According to the selected template
the objects, spaces and properties are
brought forward in the querry

Queries are run to bring forward the
elements which aren’t complying

Start Checking

Sekect Spin
Rules

Select Correct
.owl classes
and proiperties

Run SPIN Rules

End Checking

117

Load Model File and
translate IFC to rdf

Loading the building model in .ifc
format file. Translation with the use of
Convertor to RDF. This is done outside

of the interface

Select requirements
to check

When model is loaded, you select
requirements to be checked

When requirement is chosen the
required relations, objects, properties
and values need to be selected to
define which template is needed

Choose Input

Check data
availability &
consistency

Data Checking is needed before
execution. This process is outside of
the scope of this research

Execute checks

When data is valid, check can be
executed.

Report Checks

Result is an overview of the issues and
conformance (2d report and 3d
viewer)

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex K - Script Tool
Firstly the front end of the tool is described in the following script

Secondly the back end of the script is described as followed

Backend script

package backend_constraints;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.InputStream;

import java.util.ArraylList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import org.topbraid.spin.inference.DefaultSPINRuleComparator;
import org.topbraid.spin.inference.SPINInferencesWithoutConstructor;
import org.topbraid.spin.inference.SPINRuleComparator;

import org.topbraid.spin.system.SPINModuleRegistry;

import org.topbraid.spin.util.CommandWrapper;

import org.topbraid.spin.util.SPINQueryFinder;

import org.topbraid.spin.vocabulary.SPIN;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;
import com.hp.hpl.jena.query.Query;

import com.hp.hpl.jena.query.QueryExecution;

import com.hp.hpl.jena.query.QueryExecutionFactory;
import com.hp.hpl.jena.query.QueryFactory;

import com.hp.hpl.jena.rdf.model.Model;

import com.hp.hpl.jena.rdf.model.ModelFactory;
import com.hp.hpl.jena.rdf.model.Resource;

import com.hp.hpl.jena.vocabulary.OWL;

public class Backend {

Model model;

Model ifcowl;
OntModel spin;
OntModel bam;

static HashMap<String, List<Resource>> hashmap = new HashMap<String,
List<Resource>>();

public static Backend init() {
// input Spin files, bam OTL and IFCOWL

Backend backend = new Backend();

InputStream ifcowl =
Backend.class.getResourceAsStream("resources/IFC2X3_TC1l.ttl");

backend.ifcowl = ModelFactory.createDefaultModel ();

backend.ifcowl.read(ifcowl, null, "TTL");

InputStream bamotl =
Backend.class.getResourceAsStream("resources/bam_OTL.ttl");

backend.bam = ModelFactory.createOntologyModel (OntModelSpec.OWL_MEM);

backend.bam.read(bamotl, null, "TTL");

118

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

InputStream pset =
Backend.class.getResourceAsStream("resources/experiment.ttl");

backend.spin = ModelFactory.createOntologyModel (OntModelSpec.OWL_MEM);

backend.spin.read(pset, null, "TTL");

InputStream grw =
Backend.class.getResourceAsStream("resources/query_rewriting.ttl");
backend.spin.read(qrw, null, "TTL");

List<Resource> constraints = new ArrayList<Resource>();

Resource constraintl =
backend.spin.getResource("http://www.bam.com/bamNL_otl#constraint_acoustic_3");

constraints.add(constraintl);

hashmap .put("Comfort", constraints);

SPINModuleRegistry.get().init();

SPINModuleRegistry.get().registerAll(backend.spin, null);

return backend;

}
public void readModel(String s) {
// read file into memory

model = ModelFactory.createDefaultModel();

InputStream input;

try {
input = new FileInputStream(s);
model.read(input, null, "TTL");

} catch (FileNotFoundException el) {
el.printStackTrace();

}

}
private void addConstraint(Model spin, Resource constraint) {
// add constraints out of the ttl file

spin.add(OWL.Thing, SPIN.constraint, constraint);

}
public void selectConstraints(List<String> strings) {
// selection of the constraints which can be connected to the buttons.

for (String s : strings) {
List<Resource> constraints = hashmap.get(s);
for (Resource constraint : constraints) {
addConstraint(bam, constraint);
}

}

public void execute() {
// Run all constraints queries, when button start checker is executed

long startInference = System.currentTimeMillis();
Model newTriples = ModelFactory.createDefaultModel ();
OntModel ontModel =

ModelFactory.createOntologyModel (OntModelSpec.RDFS_MEM_RDFS_INF);
ontModel.addSubModel(newTriples);
ontModel.add(ifcowl);
ontModel.add(model);
ontModel.add(bam);

119

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

spin.add(bam);
Map<Resource, List<CommandWrapper>> cls2Query =
SPINQueryFinder.getClass2QueryMap(spin, ontModel, SPIN.rule,
false, false);
SPINRuleComparator comparator = new DefaultSPINRuleComparator(ontModel);
SPINInferencesWithoutConstructor.runWithoutConstructors(ontModel,
newTriples, cls2Query, null, null, false,
SPIN.rule, comparator, null);
long endInference = System.currentTimeMillis();
float inferenceTime = (float) (endInference - startInference);
System.out.println("Inference Time: " + inferenceTime / 1000);
System.out.println("New Triples size: " + newTriples.size());
String q = "prefix bam: <http://www.bam.com/bamNL_otl#> \n"+"prefix spin:
<"+SPIN.BASE_URI+"> \n"
+ "prefix query-rewriting: <http://bimsparql.org/query-
rewriting#>\n"
+ "prefix pset:<http://bimsparqgl.org/pset#>\n" + "CONSTRUCT
{\n" + " _:b0@ a spin:ConstraintViolation .\n"
+ " _:b@ spin:violationRoot ?s .\n" +
spin:Warning .\n" + "}\n" + "WHERE {\n"
+ "?s query-rewriting:isBoundaryOf ?o .\n" + "?s query-
rewriting:isBoundaryOf ?02 .\n"
+ "?s a bam:InternalWall .\n" + "?0 a bam:MeetingSpace .\n" +
"?02 a bam:HorizontalMovementSpace .\n"
+ "FILTER NOT EXISTS {\n" + "?s pset:acousticRating ?03 .\n" +
"FILTER (?03 > 50) .\n" + "} .\n" + "}";
Query query = QueryFactory.create(q);
QueryExecution gexec = QueryExecutionFactory.create(query, ontModel);
Model output = gexec.execConstruct();
FileOutputStream out;

try {

_:b0 spin:violationLevel

out = new FileOutputStream (new File (new File
(System.getProperty("user.home"), "/Desktop"), "output.ttl"));
output.write(out, "TTL");
} catch (FileNotFoundException e) {
e.printStackTrace();
}

}

Front end script

Window 1

package FrontEnd;

import java.awt.EventQueue;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.border.EmptyBorder;

import javax.swing.JLabel;

import javax.swing.ImageIcon;

import javax.swing.JButton;

import javax.swing.JTextPane;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.Color;

public class Image extends JFrame {
private JPanel contentPane;
/**

120

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

* Launch the application.
*/
public static void main(String[] args) {

EventQueue.invokelLater(new Runnable() {
public void run() {
try {
Image frame = new Image();
frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();

1)
}

/**

* Create the frame.

*/

public Image() {
setTitle("Requirements Checker");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setBounds (700, 380, 450, 300);
contentPane = new JPanel();
contentPane.setBackground(Color.WHITE);
contentPane.setBorder(new EmptyBorder(5, 5, 5, 5));
setContentPane(contentPane);
contentPane.setLayout(null);

JLabel 1blNewLabel = new JLabel("Requirements Checker");

1blNewLabel.setIcon(new
ImageIcon("C:\\Users\\1l.moonen\\workspace\\AutomatedVerificationTool\\Images\\bam.jpg"));

1blNewLabel.setBounds(23, 21, 175, 82);

contentPane.add(1lblNewlLabel);

JLabel 1blNewLabel 1 = new JLabel("");

1blNewLabel 1.setIcon(new
ImageIcon("C:\\Users\\1l.moonen\\workspace\\AutomatedVerificationTool\\Images\\logo-tue-
150x150.png"));

1blNewLabel 1.setBounds(245, 27, 158, 66);

contentPane.add(1lblNewLabel 1);

JButton btnStartRequirementsChecker = new JButton("Start Requirements
Checker");
btnStartRequirementsChecker.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent argod) {
dispose();
SelectionOfRequirements nw = new SelectionOfRequirements();
SelectionOfRequirements.NewScreen();

}
1)
btnStartRequirementsChecker.setBounds (120, 190, 193, 46);
contentPane.add(btnStartRequirementsChecker);

JTextPane txtpnAutomatedVerificationOf = new JTextPane();
txtpnAutomatedVerificationOf.setEditable(false);
txtpnAutomatedVerificationOf.setText("Automated Verification of Client
specific Requirements\r\nA Prototype By Luuk Thomas Moonen\r\n2016");
txtpnAutomatedVerificationOf.setBounds (120, 114, 193, 65);
contentPane.add(txtpnAutomatedVerificationOf);

121

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Window 2
package FrontEnd;

import java.awt.EventQueue;

import java.awt.event.ActionEvent;
import java.awt.event.ActionlListener;
import java.awt.Color;

import java.io.File;

import javax.swing.JFrame;

import javax.swing.JOptionPane;

import javax.swing.JButton;

import javax.swing.JTextField;

import javax.swing.JTextPane;

import javax.swing.filechooser.FileNameExtensionFilter;
import javax.swing.JFileChooser;

public class SelectionOfRequirements {

private JFrame frmRequirementsChecker;
private static JTextField textField;
private File selectedFile;

ik
* Launch the application.
*/
public static void NewScreen() {
EventQueue.invokelLater(new Runnable() {
public void run() {
try {
SelectionOfRequirements window = new
SelectionOfRequirements();
window.frmRequirementsChecker.setVisible(true);
} catch (Exception e) {
e.printStackTrace();

}
}
1
}
/**
* Create the application.
*/

public SelectionOfRequirements() {
initialize();

¥
/**

* Initialize the contents of the frame.

*/

private void initialize() {
frmRequirementsChecker = new JFrame();
frmRequirementsChecker.getContentPane().setBackground(Color.WHITE);
frmRequirementsChecker.setTitle("Requirements Checker");
frmRequirementsChecker.setBounds (700, 380, 450, 300);
frmRequirementsChecker.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frmRequirementsChecker.getContentPane().setLayout(null);

JButton btnLoadFile = new JButton("Browse");

btnLoadFile.setBounds(285, 98, 89, 23);
frmRequirementsChecker.getContentPane().add(btnLoadFile);

122

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

btnLoadFile.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

JFileChooser fileChooser = new JFileChooser();
FileNameExtensionFilter filter = new
FileNameExtensionFilter("IFC or TTL Files", "TTL", "IFC");
fileChooser.setFileFilter(filter);
fileChooser.setCurrentDirectory(new
File(System.getProperty("user.home")));
int result = fileChooser.showOpenDialog(null);
if (result == JFileChooser.APPROVE_OPTION) {
selectedFile = fileChooser.getSelectedFile();
textField.setText(selectedFile.getAbsolutePath());

1)

textField = new JTextField();

textField.setBounds(67, 99, 208, 20);
frmRequirementsChecker.getContentPane().add(textField);
textField.setColumns(10);

JTextPane txtpnAnIfcFile = new JTextPane();
txtpnAnIfcFile.setEditable(false);

txtpnAnIfcFile.setText("Select an IFC or a TTL file to continue");
txtpnAnIfcFile.setBounds(67, 143, 251, 48);
frmRequirementsChecker.getContentPane().add(txtpnAnIfcFile);

JButton btnNext = new JButton("Next");
btnNext.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
if (selectedFile != null) {
RequirementsSelection nw = new
RequirementsSelection();

nw.NewScreen(textField.getText());
frmRequirementsChecker.dispose();

} else {
JOptionPane.showMessageDialog(frmRequirementsChecker,
"No IFC file has been loaded.");

}

}
})s
btnNext.setBounds(335, 228, 89, 23);
frmRequirementsChecker.getContentPane().add(btnNext);

JButton button = new JButton("Previous");
button.setBounds (236, 228, 89, 23);
frmRequirementsChecker.getContentPane().add(button);

Window 3

package FrontEnd;
import java.awt.EventQueue;

import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.JCheckBox;
import javax.swing.JTextPane;
import javax.swing.JButton;

123

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JPanel;

import javax.swing.JTextField;

import java.awt.Color;

public class RequirementsSelection {

private JFrame frmRequirementsChecker;
private JTextField txtComfortRequirements;
static String textField;

/¥
* Launch the application.
*/
public static void NewScreen(String textfield) {
textField = textfield;
EventQueue.invokelLater(new Runnable() {
public void run() {
try {
RequirementsSelection window = new
RequirementsSelection();
window.frmRequirementsChecker.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}

1)
}

/**
* Create the application.
*/
public RequirementsSelection() {
initialize();
}

/**

* Initialize the contents of the frame.

*/

private void initialize() {
frmRequirementsChecker = new JFrame();
frmRequirementsChecker.getContentPane().setBackground(Color.WHITE);
frmRequirementsChecker.setTitle("Requirements Checker");
frmRequirementsChecker.setBounds (600, 300, 653, 536);
frmRequirementsChecker.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frmRequirementsChecker.getContentPane().setLayout(null);

final JCheckBox chckbxNewCheckBox = new JCheckBox("Comfort");
chckbxNewCheckBox.setSelected(true);
chckbxNewCheckBox.setBounds (113, 111, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxNewCheckBox);

JCheckBox chckbxNewCheckBox_1 = new JCheckBox("Accessibility");
chckbxNewCheckBox_1.setBounds(113, 137, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxNewCheckBox_1);

JCheckBox chckbxFunctionality = new JCheckBox("Functionality");
chckbxFunctionality.setBounds(113, 163, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxFunctionality);
final JCheckBox chckbxAvailability = new JCheckBox("Availability");
chckbxAvailability.setBounds(113, 189, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxAvailability);

JCheckBox chckbxSafety = new JCheckBox("Safety");

124

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

chckbxSafety.setBounds(113, 215, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxSafety);

JCheckBox chckbxSecurity = new JCheckBox("Security");
chckbxSecurity.setBounds (113, 241, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxSecurity);

JCheckBox chckbxQuality = new JCheckBox("Quality");
chckbxQuality.setBounds(113, 267, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxQuality);

JCheckBox chckbxSpatiality = new JCheckBox("Spatiality");
chckbxSpatiality.setBounds(113, 293, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxSpatiality);

JCheckBox chckbxStrength = new JCheckBox("Strength");
chckbxStrength.setBounds (113, 319, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxStrength);

JCheckBox chckbxCosts = new JCheckBox("Costs");
chckbxCosts.setBounds(113, 345, 97, 23);
frmRequirementsChecker.getContentPane().add(chckbxCosts);

JTextPane txtpnInThisMenu = new JTextPane();

txtpnInThisMenu.setEditable(false);

txtpnInThisMenu.setText("In this menu the requirement types must be chosen
to define which\r\nrequirements will be checked automatically");

txtpnInThisMenu.setBounds(79, 45, 417, 46);

frmRequirementsChecker.getContentPane().add(txtpnInThisMenu);

JButton button = new JButton("Next");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
if(chckbxNewCheckBox.isSelected() ||
chckbxAvailability.isSelected()){
ObjectSelection nw = new ObjectSelection();
ObjectSelection.NewScreen(textField);
frmRequirementsChecker.dispose();
} else {
JOptionPane.showMessageDialog(frmRequirementsChecker,
"TODO");

}
1
button.setBounds(538, 464, 89, 23);
frmRequirementsChecker.getContentPane().add(button);

JButton button_1 = new JButton("Previous");
button_1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent argod) {

}
1)
button_1.setBounds(439, 464, 89, 23);
frmRequirementsChecker.getContentPane().add(button_1);

JButton btnRequirements = new JButton("Requirements");
btnRequirements.setBounds(216, 111, 126, 23);
frmRequirementsChecker.getContentPane().add(btnRequirements);

JButton button_2 = new JButton("Requirements");
button_2.setBounds(216, 137, 126, 23);
frmRequirementsChecker.getContentPane().add(button_2);

JButton button_3 = new JButton("Requirements");

button_3.setBounds(216, 163, 126, 23);
frmRequirementsChecker.getContentPane().add(button_3);

125

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

JButton button_4 = new JButton("Requirements");
button_4.setBounds (216, 189, 126, 23);
frmRequirementsChecker.getContentPane().add(button_4);

JButton button_5 = new JButton("Requirements");
button_5.setBounds(216, 215, 126, 23);
frmRequirementsChecker.getContentPane().add(button_5);

JButton button_6 = new JButton("Requirements");
button_6.setBounds (216, 241, 126, 23);
frmRequirementsChecker.getContentPane().add(button_6);

JButton button_7 = new JButton("Requirements");
button_7.setBounds(216, 267, 126, 23);
frmRequirementsChecker.getContentPane().add(button_7);

JButton button_8 = new JButton("Requirements");
button_8.setBounds(216, 293, 126, 23);
frmRequirementsChecker.getContentPane().add(button_8);

JButton button_9 = new JButton("Requirements");
button_9.setBounds(216, 319, 126, 23);
frmRequirementsChecker.getContentPane().add(button_9);

JButton button_10 = new JButton("Requirements");
button_10.setBounds(216, 345, 126, 23);
frmRequirementsChecker.getContentPane().add(button_10);

JPanel panel = new JPanel();

panel.setBounds (393, 111, 221, 267);
frmRequirementsChecker.getContentPane().add(panel);
panel.setLayout(null);

JCheckBox chckbxHeating = new JCheckBox("Heating Requirements");
chckbxHeating.setBounds(6, 36, 167, 23);
panel.add(chckbxHeating);

JCheckBox chckbxNewCheckBox_2 = new JCheckBox("Air Ventilation
Requirements");

chckbxNewCheckBox_2.setBounds(6, 88, 167, 23);

panel.add(chckbxNewCheckBox_2);

JCheckBox chckbxNewCheckBox_3 = new JCheckBox("Cooling Requirements");
chckbxNewCheckBox_3.setBounds(6, 62, 167, 23);
panel.add(chckbxNewCheckBox_3);

JCheckBox chckbxAudiologicRequirements = new JCheckBox("Audiologic
Requirements");

chckbxAudiologicRequirements.setSelected(true);

chckbxAudiologicRequirements.setBounds(6, 114, 167, 23);

panel.add(chckbxAudiologicRequirements);

JCheckBox chckbxLightingRequirements = new JCheckBox("Lighting
Requirements");

chckbxLightingRequirements.setBounds(6, 140, 167, 23);

panel.add(chckbxLightingRequirements);

txtComfortRequirements = new JTextField();
txtComfortRequirements.setEditable(false);
txtComfortRequirements.setText("Comfort requirements");
txtComfortRequirements.setBounds(6, 9, 125, 20);
panel.add(txtComfortRequirements);
txtComfortRequirements.setColumns(10);

126

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

JCheckBox chckbxMoistureRequirements

Requirements");

new JCheckBox("Moisture

chckbxMoistureRequirements.setBounds(6, 166, 167, 23);

panel.add(chckbxMoistureRequirements);

JCheckBox chckbxReflectionRequirements

Requirements");

Window 4

package FrontEnd;
java.awt.EventQueue;

import
import
import
import
import
import
import
import
import
import

public

javax.
javax.
javax.
javax.
javax.
javax.

= new JCheckBox("Reflection

chckbxReflectionRequirements.setBounds(6, 192, 167, 23);
panel.add(chckbxReflectionRequirements);

swing.
swing
swing.
swing.
swing
swing.

JFrame;

.JCheckBox;

JTextPane;
JButton;

.JPanel;

JRadioButton;

java.awt.event.ActionlListener;
java.awt.event.ActionEvent;
java.awt.Color;

class ObjectSelection {

private JFrame frmRe;
static String textField;

/**

* Launch the application.

*/

public static void NewScreen(String textfield) {
textField = textfield;

¥
/**

EventQueue.invokelLater(new Runnable() {
public void run() {

1)

try {

ObjectSelection window = new ObjectSelection();
window.frmRe.setVisible(true);

} catch (Exception e) {

e.printStackTrace();

}

* Create the application.

*/

public ObjectSelection() {

}
/**

initi

alize();

* Initialize the contents of the frame.

*/

private void

frmRe
frmRe
frmRe
frmRe

initialize() {
= new JFrame();

.getContentPane().setBackground(Color.WHITE);

.setTitle("Requirements Checker");
.setBounds (600, 300, 586, 501);

127

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

frmRe. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frmRe.getContentPane().setLayout(null);

JCheckBox chckbxWalls = new JCheckBox("Externall Walls");
chckbxWalls.setBounds(162, 92, 142, 23);
frmRe.getContentPane().add(chckbxWalls);

JCheckBox chckbxInternalWalls = new JCheckBox("Internal Walls");
chckbxInternalWalls.setSelected(true);
chckbxInternalWalls.setBounds(162, 118, 142, 23);
frmRe.getContentPane().add(chckbxInternalWalls);

JCheckBox chckbxFloors = new JCheckBox("Floors");
chckbxFloors.setBounds (162, 144, 142, 23);
frmRe.getContentPane().add(chckbxFloors);

JCheckBox chckbxStairs = new JCheckBox("Stairs");
chckbxStairs.setBounds (162, 170, 142, 23);
frmRe.getContentPane().add(chckbxStairs);

JCheckBox chckbxRoofs = new JCheckBox("Roofs");
chckbxRoofs.setBounds(162, 196, 142, 23);
frmRe.getContentPane().add(chckbxRoofs);

JCheckBox chckbxConstruction = new JCheckBox("Construction");
chckbxConstruction.setBounds(162, 222, 142, 23);
frmRe.getContentPane().add(chckbxConstruction);

JCheckBox chckbxExternalOpenings = new JCheckBox("Openings");
chckbxExternalOpenings.setBounds (162, 248, 142, 23);
frmRe.getContentPane().add(chckbxExternalOpenings);

JTextPane txtpnInThisMenu = new JTextPane();

txtpnInThisMenu.setEditable(false);

txtpnInThisMenu.setText("In this menu the object types must be chosen for
the selected requirements. ");

txtpnInThisMenu.setBounds(10, 11, 417, 46);

frmRe.getContentPane().add(txtpnInThisMenu);

JButton button = new JButton("Previous");
button.setBounds (370, 430, 89, 23);
frmRe.getContentPane().add(button);

JButton button_1 = new JButton("Next");
button_1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

frmRe.dispose();
ValueInput nw = new ValueInput ();
Valuelnput.NewScreen(textField);

}
1
button_1.setBounds (469, 430, 89, 23);
frmRe.getContentPane().add(button_1);

JCheckBox chckbxInternalOpenings = new JCheckBox("Mechanical Facilities");
chckbxInternalOpenings.setBounds (162, 274, 142, 23);
frmRe.getContentPane().add(chckbxInternalOpenings);

JCheckBox chckbxElectronicFacilities = new JCheckBox("Electronic
Facilities");

chckbxElectronicFacilities.setBounds(162, 300, 142, 23);

frmRe.getContentPane().add(chckbxElectronicFacilities);

128

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

JCheckBox chckbxFoundationFacilities = new JCheckBox("Foundation
Facilities");

chckbxFoundationFacilities.setBounds (162, 326, 142, 23);

frmRe.getContentPane().add(chckbxFoundationFacilities);

JButton btnInSpace = new JButton("In Space");
btnInSpace.setBounds(370, 92, 162, 23);
frmRe.getContentPane().add(btnInSpace);

JPanel panel = new JPanel();
panel.setBounds (352, 78, 208, 288);
frmRe.getContentPane().add(panel);
panel.setLayout(null);

JRadioButton rdbtnUserSpace = new JRadioButton("User Space");
rdbtnUserSpace.setBounds(23, 50, 137, 23);
panel.add(rdbtnUserSpace);

JRadioButton rdbtnFunctionalSpace = new JRadioButton("Functional Space");
rdbtnFunctionalSpace.setBounds(23, 76, 137, 23);
panel.add(rdbtnFunctionalSpace);

JRadioButton rdbtnSanitarySpace = new JRadioButton("Sanitary Space");
rdbtnSanitarySpace.setBounds(23, 102, 137, 23);
panel.add(rdbtnSanitarySpace);

JRadioButton rdbtnTechnicalSpace = new JRadioButton("Movement Space");
rdbtnTechnicalSpace.setBounds(23, 128, 137, 23);
panel.add(rdbtnTechnicalSpace);

JRadioButton rdbtnUndefinedSpace = new JRadioButton("Undefined Space");
rdbtnUndefinedSpace.setBounds (23, 154, 137, 23);
panel.add(rdbtnUndefinedSpace);

JRadioButton rdbtnTechnicalSpace_1 = new JRadioButton("Technical Space");
rdbtnTechnicalSpace_1.setBounds(23, 180, 137, 23);
panel.add(rdbtnTechnicalSpace_1);

JPanel panel 1 = new JPanel();

panel 1.setlLayout(null);

panel 1.setBounds(154, 78, 162, 288);
frmRe.getContentPane().add(panel_1);

Window 5

package FrontEnd;

import java.awt.EventQueue;

import javax.swing.JFrame;

import javax.swing.JTextPane;
import javax.swing.JButton;

import javax.swing.JEditorPane;
import javax.swing.JTextField;
import java.awt.event.ActionListener;
import java.util.ArraylList;

import java.util.List;

import java.awt.event.ActionEvent;
import java.awt.Color;

import javax.swing.UIManager;

import backend_constraints.Backend;

public class ValueInput {

129

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

private JFrame frmRequirementsChecker;
private JTextField txtInputValue;

private JTextField txtRequirementStatement;
public static Backend backend;

static String textField;

/**
* Launch the application.
*/
public static void NewScreen(String textfield) {
textField = textfield;
EventQueue.invokeLater(new Runnable() {
public void run() {
try {
ValueInput window = new ValueInput();
window.frmRequirementsChecker.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}

1)
}

/**

* Create the application.

*/

public ValueInput() {
initialize();

}

/**

* Initialize the contents of the frame.

*/

private void initialize() {
frmRequirementsChecker = new JFrame();
frmRequirementsChecker.getContentPane().setBackground(Color.WHITE);
frmRequirementsChecker.setTitle("Requirements Checker");
frmRequirementsChecker.setBounds (600, 300, 585, 503);
frmRequirementsChecker.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frmRequirementsChecker.getContentPane().setLayout(null);

JTextPane txtpnInThisMenu = new JTextPane();

txtpnInThisMenu.setText("In this menu the values of the templates must be
selected per requirement Check");

txtpnInThisMenu.setBounds(10, 11, 500, 40);

txtpnInThisMenu.setEditable(false);

frmRequirementsChecker.getContentPane().add(txtpnInThisMenu);

JTextPane txtSelectedRequirement = new JTextPane();

txtSelectedRequirement.setText("The following requirement is built up with
the templates and with the selected elements ;");

txtSelectedRequirement.setBounds(10, 45, 550, 40);

txtSelectedRequirement.setEditable(false);

frmRequirementsChecker.getContentPane().add(txtSelectedRequirement);

JButton button = new JButton("Previous");
button.setBounds (339, 430, 89, 23);
frmRequirementsChecker.getContentPane().add(button);

JButton btnStartCheck = new JButton("Start Check");
btnStartCheck.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent argod) {
ReportOutcome nw = new ReportOutcome();
frmRequirementsChecker.dispose();

130

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

JFrame window2 = new JFrame();

window2.setVisible(true);
window2.getContentPane().setBackground(Color .WHITE);
window2.setTitle("Requirements Checker");
window2.setBounds (100, 100, 300, 200);
window2.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window2.getContentPane().setLayout(null);

JTextPane txtpnExecution = new JTextPane();

txtpnExecution.setText("Please wait while checks are executed
")

txtpnExecution.setBounds (100, 100, 300, 200);

window2.getContentPane().add(txtpnExecution);

List<String> strings=new ArrayList<String>();
strings.add("Comfort");

backend = Backend.init();

backend.readModel (textField);
backend.selectConstraints(strings);
backend.execute();

window2.dispose();

nw.NewScreen();

}
1
btnStartCheck.setBounds (440, 430, 118, 23);
frmRequirementsChecker.getContentPane().add(btnStartCheck);

JEditorPane editorPane = new JEditorPane();
editorPane.setBackground(UIManager.getColor("Button.background"));
editorPane.setBounds(10, 153, 169, 46);
frmRequirementsChecker.getContentPane().add(editorPane);

txtInputValue = new JTextField();
txtInputValue.setText("Input value for X");
txtInputValue.setBounds (187, 153, 169, 46);
frmRequirementsChecker.getContentPane().add(txtInputValue);
txtInputValue.setColumns(10);

txtRequirementStatement = new JTextField();
txtRequirementStatement.setText("An Internal Wall between a user and a
movement space must have an acoustic rating of at least X");
txtRequirementStatement.setBounds(10, 92, 400, 50);
frmRequirementsChecker.getContentPane().add(txtRequirementStatement);
txtRequirementStatement.setColumns(10);

Window 6

package FrontEnd;
import java.awt.EventQueue;

import javax.swing.JFrame;
import javax.swing.JTextPane;
import java.awt.Font;

public class ReportOutcome {

private JFrame frmRequirementsChecker;

131

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

/**
* Launch the application.
*/
public static void NewScreen() {
EventQueue.invokelLater(new Runnable() {
public void run() {
try {
ReportOutcome window = new ReportOutcome();
window.frmRequirementsChecker.setVisible(true);
} catch (Exception e) {
e.printStackTrace();

}

1)
}

/**

* Create the application.

*/

public ReportOutcome() {
initialize();

}

/**

* Initialize the contents of the frame.

*/

private void initialize() {
frmRequirementsChecker = new JFrame();
frmRequirementsChecker.setTitle("Requirements Checker");
frmRequirementsChecker.setBounds (600, 300, 400, 250);
frmRequirementsChecker.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frmRequirementsChecker.getContentPane().setLayout(null);

JTextPane txtpnQuerySuccesfull = new JTextPane();
txtpnQuerySuccesfull.setEditable(false);
txtpnQuerySuccesfull.setFont(new Font("Tahoma", Font.BOLD, 16));
txtpnQuerySuccesfull.setText("Check succesfull!");
txtpnQuerySuccesfull.setBounds (103, 45, 151, 25);
frmRequirementsChecker.getContentPane().add(txtpnQuerySuccesfull);

JTextPane txtpnOutputGeneratedAt = new JTextPane();
txtpnOutputGeneratedAt.setEditable(false);
txtpnOutputGeneratedAt.setText("Output generated and saved to desktop");
txtpnOutputGeneratedAt.setBounds(16, 102, 351, 25);
frmRequirementsChecker.getContentPane().add(txtpnOutputGeneratedAt);

JTextPane txtpnInTotal = new JTextPane();

txtpnInTotal.setEditable(false);

txtpnInTotal.setFont(new Font("Tahoma", Font.BOLD, 11));

txtpnInTotal.setText("In total 4 bam:InternalWalls are non-complying with
the requirement. See output for more information.");

txtpnInTotal.setBounds(16, 138, 351, 34);

frmRequirementsChecker.getContentPane().add(txtpnInTotal);

132

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex L - Application windows

In this annex the application windows of the interface of the requirements checker can be seen.

Window 1 - Starting the application

Window 2 - Selecting the to be checked file

133

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Window 3 - Selecting the need and the accompanying requirement type

Window 4 - Selecting the elements of the to be checked requirement

134

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Window 5 - Statement of the selected requirement and input of required value

Window 6 - outcome of the check

135

Moonen L.T. (2016) - Eindhoven University of Technology & BAM Advies en Engineering

Annex M - Flowchart Template selection

v

A

A
al

! ! ! |

I I l l |

EIEN

013:

oeds Jo u

sadAj a:

s9)e|dWwa} 0} uoie|as aney sanuado.d:

136

