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Summary 
Efficiency, sustainability, and safety are the drivers for the construction industry to seek 

automation, where has been adopted for a long time in other industries. Additive 

manufacturing and specifically 3D concrete printing have been studied in the last two decades, 

showing numerous potentials in reducing waste, increasing the time of construction, 

increasing precision in construction, reducing CO2 emission, while increasing labour safety. 

Mass customization is another motivation brought by the opportunity of 3D printing, which 

results in realising structures without extensive and expensive formworks. Concrete as a most 

used material in the construction industry is a reliable material, is focused to be integrated 

into  3D printing. It is the final aim to make two stages of design and construction closer, 

reaching the ability to be able to print the designed structure. 

3D concrete printing, however, is a complex process, which numerous parameters are 

interacting, and defining the final quality and properties. Material properties, design 

parameters, process parameters and manufacturing constraints are interacting with each 

other and defining the characteristics of the final product. Process parameters are classified 

in the category, about which there is the least knowledge available, while having an influential 

role in bridging design and production phase, realizing the as-planned design. Process 

parameters like Pint speed, Nozzle type, and Pump pressure are interacting with each other 

and have a big influence on process targets such as dimensional accuracy and mechanical 

properties of the final product.  

Print speed, Pump degree, and Nozzle distance have been selected as process parameters 

which influence deformation and cross section of a printed layer. Layer cross section and 

deformations affect stability, functionality and aesthetics of the final product, while it is most 

likely not to meet dimensional requirements, defined in the design phase. There are more 

factors may affecting dimensional accuracy, but the mentioned parameters are those which 

can be modified for the printing process, hence they are the first set of parameters to be 

investigated. 

In order to investigate the effect of mentioned parameters, the possibility to change the 

parameters in different levels played an influential role in selecting the process parameter. 

Due to the scope of the research and development graduation project, three mentioned 

parameters are selected. Further developments can look at the effects of other parameters 

investigated in this research.  

The main objective of this research and development project is to improve the process and 

product of 3D concrete printing by 

I. Depicting a clear understanding of the interrelated process parameters; 

II. Develop a Decision Support System to provide the possibility of conscious leverage of 

process parameters. 

As a result, the following steps has been taken by employing RSM a type of experimental 

design to reach the objective of this project. 

I. Generate efficient number of concrete printed data as means of interrelation studies,   
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II. Distinguish influential process parameters according to defined process targets, 

III. Specify level of influence of process parameters, 

IV. Establishing precise relationship among process parameters and targets (empirical 

model). 

V. Visualize results for a better and clearer understanding, 

VI. Develop dimensional Decision Support System 

Derived models relating process parameters to dimensions of a printed layer, then are used 

in a framework developed to support users’ decisions in making process-related decisions. 

dimensional Decision Support System (dDSS) is developed to bridge design and production 

stage by tracking decisions virtually and visually. 

As a result, proper process parameters to reach specific dimensional performances can be 

selected, without trial and error experimentations. More importantly, understanding the 

process of concrete printing has been increased. By conscious leveraging of process setting, 

dimensional requirements of a printed layer are met and quality of the product is ensured to 

be satisfactory. 

Moreover, collaborations between two technical and managerial level can be improved and 

facilitated. Because from one level, the interactions between decisions and consequences are 

translatable to another level, due to their high interrelations. So better understanding of the 

dimensional requirements of 3D concrete printing will be gained. 

dDSS and in general proposed methodology and framework for experimentation, analysis, and 

Decision Support System, improve concrete printing process, bridging design and production 

stage, reducing efforts of post processing and finally improve the final product quality.  

This research and development graduation project is the first effort to develop a Decision 

Support System for 3Dconcrete printing and seeks to establish an approach of studying 

underlying relationships and support process-related decisions. 
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Abstract 
3D concrete printing as an additive manufacturing method can bring a revolution to the 

construction industry by increasing sustainability, efficiency, and safety. Concrete printing is a 

complex process  influenced by numerous parameters from different disciplines and stages of 

design and construction. Among them, process parameters have a great role in defining the 

final product quality, and there are least known about their interrelations and effect on 

process and product quality criteria. A printed layer dimensional performance is chosen to be 

studied in order to increase stability, precision and compliant with requirements, in addition, 

to proposing a methodology to investigate the effect of process parameters on final product 

quality of concrete printing process. The design of Experiment methodology is employed to 

derive empirical models and be used as  the core of developed Decision Support Systems. 

dimensional Decision Support System (dDSS) is developed to assists decision makers’ decision 

regarding process parameters to reach defined dimensional performance, and improve 

concrete printing g process and product. Decisions in both managerial and technical level can 

benefit from dDSS, increase the traceability of concrete printing process by technical decision 

makers and also managers. 

Keywords: 3D concrete printing, Process parameter, Decision Support Systems, Design of 

experiment, dimensional performance, dDSS 
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1. Reading guide 
Research has been categorised in 5 main steps as it can be seen in the figure below. 

The first step is taken in chapter 2 with introduction and elaboration on the main motivation 

of conducting research. Moreover, the overall research problem is defined, analysed and main 

research objectives and questions are described. 

Chapter 3 is glossary explaining used terminology related to the context of the project. 

Then, In the Investigation phase with literature review in chapter 4, main elements of the 

research are thoroughly investigated, which creates an extensive ground to narrow down the 

research questions and tackle defined problem in this research and development project. 

Development phase described in chapter 5 defines the detailed technical and managerial 

issues in the current phase of 3D concrete printing project, elaborates on methodology, 

employ data and analyse data sets, and reach to the most precise outcomes by validation. 

Finally, the Decision Support System is developed. 

Employment phase explained in chapter 6 elaborates on the applications of the developed 

Decision Support System in the context and process of 3D concrete printing. 

And finally in the step of Lessons Learned elaborated in chapter 7, research questions are 

answered, conclusions are derived and recommendations for improvement and also further 

research are suggested. 

The graph below shows the research outline for this research and development project. 

 

 

 

 

 

 

 

 

 

 

 



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Research outline 
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2. Introduction 
In this chapter, first, the research context will be discussed. In the problem definition, then 

the main research question will be defined  after analysing the research problem. And 

eventually, research sub-questions are recognized to reply on the main research questions. 

This chapter is closed by presenting the expected results of the research. 

2.1. Research context: Toward an automated industry 

The construction industry is known as a more or less conservative industry to implement 

innovative technologies. It is partly because of cost-benefit considerations, inherent 

complexities and numerous steps and involved stakeholders. But at the same time, 

construction industry faces several challenges, such as inefficient processes, health threats  

against labours and complex, time-consuming collaboration among numerous players. 

Hence there is a great need to pave the path of the industry toward more efficient, traceable 

and safer performance. Hence, automated manufacturing is an inevitable approach to reduces 

labours, construction costs, and time, increases efficiency, safety and freedom in design (S. 

Lim et al., 2012).  

Within automated manufacturing approaches, there are Subtractive and Additive methods. 

The first approach starts off with a big block of material (wood, metal, or anything else), and 

a machine tool shaves off pieces to create what you want. Additive Manufacturing (AM) 

techniques like 3D printing instead, add material layer-wise to create something (Horvath & 

Cameron, 2015). 

One of the major advantages of the latter case is the absolute reduction of waste in the 

construction process. Moreover, the method brings the opportunity to realise non-repetitive 

complex shapes and designs which conventional construction methods are unable to offer. 

Bridging design and construction in large scale is the essence of the approach.  

3D printing which brought in the 90s is a term identified more with the Consumer Goods and 

home appliances while AM term describes the method and refers to industry applications 

(Vallés, 2014). Nowadays 3D printing term is also used in its different applications in different 

industries which vary from healthcare to food industry, automotive to ornamental 

accessories. Another application of the 3D printers, in general, is Prototyping, as it visualises 

the design, while production time and cost can be reduced.  

 So, there is a wide range of materials used in 3D printing to and this trend is attracting more 

diverse materials to enter new industries. 

The construction industry is adopting this technology to profit from the advantages to lead 

the industry toward a smarter, faster and more efficient environment. Nowadays, enthusiastic 

start-ups, research institutes, and universities are investigating different material with various 

type of 3D printers, from glass to steel, from bioplastics to concrete. 

3D printing is a wise choice to link the most used construction material, concrete in the 

industry with the state-of-the-art technology of 3D printing, which eliminates the obstacles of 
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conventional methods and enable the designer to think free about the design and more 

efficient use of material, by distributing it where is needed. 

As it can be witnessed that advantages of 3D printing in the construction industry bring a great 

necessity to dig into the field and face the challenges of the new field. 

Hence, the aim of this research and development graduation project is to develop the 

implementation of 3D concrete printing at the current stage, and more importantly, propose 

a methodology for constant improvement of the process and clarifying underlying 

relationships between its various elements . 

2.2. Problem definition and objective 
3D Concrete printing process a complex process, in which numerous parameters and variables 

are interacting with each other on results of the process. These different parameters are 

within different categories: 

I. Material characteristics, 

II. Structural and Architectural design and analysis  

III. Process parameters  

3D model or shape, characteristics of the printable material (concrete), loads and boundary 

conditions, and decisions regarding different printing strategies influence each other in the 

process of 3D concrete printing. However, the interrelations are unknown at this stage. 

Optimum suggestions among various settings within the decision variables in the process lead 

us to deal with the changing and uncertain environment of 3D concrete printing. As a result, 

lots of time and energy are saved by knowing possible shapes regarding the specific printing 

strategies and according to specific characteristics of the concrete compositions, for instance. 

While mostly the interactions between the mentioned factors are investigated by time and 

energy consuming experiments, limited to a specific case, while one variable is varied and 

investigated at  the time. For another design or element, even if the same settings are going 

to be used, again resources are dedicated to finding the proper setting among variables( like 

printing speed and pumping degree). 

As a result, the aim is to develop a Decision Support System to leverage interconnected 

parameters, those which are related to printing process and strategy. Such a leverage brings 

up an opportunity in the changing environment of 3D printer implementation which defines 

objectives of: 

I. DEPICTING A CLEAR UNDERSTANDING IN 3D CONCRETE PRINTING PROCESS, 

AMONG THE INTERRELATED PROCESS PARAMETERS; 

 

II. DEVELOP A DECISION SUPPORT SYSTEM TO PROVIDE THE POSSIBILITY OF 

CONSCIOUS LEVERAGE OF PROCESS PARAMETERS. 
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As a result, tedious trial-error efforts are no longer necessary find the required, proper setting 

during the 3D concrete printing process. Thus, both process and product of 3D concrete 

printing will be improved, by supporting the designer in process-related decisions. 

The main objective of the research: 

 

PRODUCT AND PROCESS IMPROVEMENT OF 3D CONCRETE PRINTING. 

 

2.3. Research question(s) 
In order to reach the main objective and motivation of the research and development 

graduation project mentioned above, it is important to investigate: 

I. HOW CAN CONCRETE PRINTING PROCESS BE IMPROVED IN THE MANNER WHICH 

ENHANCE THE FINAL PRODUCT OF THE PROCESS? 

In the broader sense, 3D concrete printer should be seen as a process which intersects 

different stages of construction and design. So parameters in one stage affect decisions in 

another, creating a loop which integrates decisions in both stages. By improving the process 

in a way that decisions and their consequences can be predicted, an intermediator stage is 

shaped which can clarify decisions in two other stages of design and construction (concrete 

printing the product).  

In order to reach the aim of developing a Decision Support System, design and construction 

should be linked, so that a concurrent flow between these two steps can be constructed. So 

here raises the second research question: 

II. HOW IS IT POSSIBLE TO BRIDGE THE DESIGN AND PRODUCTION PHASE IN 3D 

CONCRETE PRINTING PROCESS? 

Here arise sub-questions, which are necessary to be answered to reach the answer of the 

above-mentioned question:  

i. Which levels of decisions in design and production phase would be necessary at the 

current stage, to be focused? 

ii. What type of tool or system should be developed to act as the intermediator 

between design and construction? 

iii. What are the components of the system? 

iv. Who are the target groups of such Decision Support System? 

Moreover, in order to be able to improve the process of concrete printing, production process 

should be investigated and important relations between important parameters should be 

understood. Hence the third research question is:  

III. HOW IS IT POSSIBLE TO ESTABLISH A BETTER UNDERSTANDING OVER THE 3D 

CONCRETE PRINTING PROCESS? 
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It is important to elaborate on the following sub-questions to tackle the research question 

mentioned above: 

i. What are key process decisions and targets in 3D concrete printing? 

ii. How is it possible to identify the significant parameters regarding a specific process 

target? 

iii. What are the criteria for a method to be used in the system, which lead to efficient, 

understandable and explainable predictions of process decisions and targets? 

2.4. Expected results 
Results of this research project will cover two expectations: 

First, in order to increase the awareness of 3D concrete printing process, there will be derived 

relationships between key variables and performance criteria of 3D concrete printing process. 

In this relationships, the mutual effect of design and production (construction) will be 

investigated. 

Second expectation will be fulfilled by establishing an understanding among, process 

parameters and targets. As a result, decision makers, researchers and process operators will 

be aware of trade-offs for process-related decisions and their consequences are traced 

virtually.  
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3. Glossary 
 

3D Concrete Printing (3DCP) 

Additive Manufacturing (AM) 

Adequacy check 

Analysis of Variance (ANOVA) 

Artificial Neural Networks (AAN) 

Bayesian Belief Networks (BBN) 

Blocking 

Central Composite Design (CCD) 

Circumscribed Central Composite (CCC) 

Coding 

Cuboidal Region 

Database 

Data pre-processing 

Decision Support System (DSS) 

Design of experiment 

Design region 

Dimensional performance of a printed layer 

Face centred Central Composite (CCF) 

First order approximation 

Frame-Based Systems (FBS) 

Full Factorial design (FF) 

Fuzzy Logic (FL) 

Genetic Algorithms (GA) 

Gray Rational Analysis (GRA) 

Inscribed Central Composite (CCI) 

Layer dimension : Height, Top width, Bottom width 

Mass customization 

  

Model fitting 

Model Management System 

Model-based Decision Support System 

NdPr model 

Optimum response 

Problem Processing System (PPS) 

Process parameters  

Process target 

PuPr model 

Randomizing 

Response Surface Methodology (RSM) 

Rotatability 

Rule-Based Systems (RBS) 

Second order approximation 

Sequential procedure 

Taguchi method 

User Interface (UI) 
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4. Literature study 
Literature study is the investigation phase mentioned in research outline of chapter 1. The aim 

of the literature study is to elaborate on 3D concrete printing process and identifying key 

parameters affecting the product. As a result, a proper overview is reached to understand the 

interaction among parameters and their effect on characteristics of the final product.  

In order to reach the main objective, literature study has been conducted to investigate the 

process improvement of Additive Manufacturing(AM) process, in general. Such an attempts 

are not numerous and there has been no research done in the field of concrete printing. So 

this section reviews efforts performed to improve AM in different industries. An important 

section in this chapter investigates important methods used to depict an understanding 

among parameters of unknown relationships. Finally, methods are compared and important 

criteria are defined to select the most suitable method for this research and development 

project. 

After understanding 3D concrete process and elements, and investigating the methods and 

requirements of additive manufacturing improvement, to complete the knowledge which 

leads to the objectives, is studying architecture, elements and different types of Decision 

Support Systems(DSS). DSS is the platform, which defines the relation of key parameter in 3D 

concrete printing, and interacts with its user to support related decisions in the design, 

printing process, and post processing.  

4.1. 3D Concrete Printing and built environment 
Three-dimensional (3D) printing has been used in the different industrial sector as a manner 

in order to automated manufacturing process, while accelerating  production and diminish 

waste. 3D printing makes it possible to produce various types of objects. These objects range 

from Tissues with blood vessels to the prototype of a new engine in an automotive company 

(Perkins & Skitmore, 2015). By decreasing the costs of 3D printing, such technology is finding 

its way to different industries. Construction is an industry, which is in need of reducing waste, 

increasing mass customization, decreasing the time of construction, while reduces injuries 

during the construction process.  

3D printing brings new opportunities to concrete and cementitious material construction. The 

possibility to construct structures without extensive formwork is of the important advantages 

in terms of rate of construction, freedom of design and cost reduction, as formwork dedicates 

35–60 % of the overall costs to itself (Perrot, Rangeard, & Pierre, 2015a).  

Concrete Printing is an extrusion-based Additive Manufacturing (AM), using cement mortar, 

however, the process has been developed to retain 3-dimensional freedom and has a small 

resolution of deposition comparing to another large scale AM in the construction industry. It 
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provides the possibility of a greater control of internal and external geometries(S. Lim et al., 

2012). 

4.1.1. 3D concrete printing process 
The process is similar to other additive manufacturing processes. The general steps are: 

 

Solid geometry 

design

STL file format 

Conversion 

Printing path 

generation

G-code file 

creation
Printing designed 

elements
Post processing

Connecting printer 
components

Setting w/c controlling nozzle 
distance

Leveling printing 
path

Pump temperature 
and pressure 

control

 

 Figure 3: 3D concrete printing process 

 

A printing element is designed as a CAD model, converted as an STL file format, sliced with the 

desired layer thickness, a printing tool path for every layer generated, and a G-Code file for 

printing created (Sungwoo Lim et al., 2011). 

Figure 2: TU/e 3D Concrete printer 
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The finishing and post-processing of concrete printing differ because it produces the 

characteristic ribbed finish. This effect can also be controlled by using zero slump concrete, or 

leveraging process parameters to minimize the need to adjust dimensions. Such a finishing 

can be designed to be exploited the effect. In the case that a smooth surface is required, either 

the wet material is trowelled during the building process or the printed finish is ground to a 

smooth surface (S. Lim et al., 2012). Attaching a trowel to the nozzle can smoothen the printed 

layer.  

In order to print the element, the printer should be assembled, by attaching different parts 

such as connections, hose, pump. Then, according water to cement ratio is set, normally it is 

set constant for different printings, to keep the characteristics of the concrete constant. This 

is because of the fact that the behaviour of material in the wider range of the normal w/c ratio 

is unknown.  

Nozzle distance is the distance between printing surface and nozzle head of the printer.  It is 

done to check the levelling of the printing path after that printing surface is levelled. During 

the printing process, pump temperature and pressure are constantly measured at the 

connection where the hose meets mixer. So that abnormal fluctuations can be traced and if 

needed show proper reaction. 

4.1.2. 3D concrete printing key parameters 
There are numerous parameters influencing printing process and the characteristics of the 

final product. Moreover, these parameters have interactions with each other in their influence 

on process targets or performance criteria. Key parameters are categorised as following. 

Design phase parameters are those by which element are structurally or architecturally 

designed, in order to  response properly to the operational and constructional requirements. 

Imposed loads and external forces which define the design of the element are also considered 

in this category. Moreover, design parameters are also referred to parameters which define 

shape and form, material type and distribution and density and boundary conditions of the 

element are important parameters of the design phase.  

Figure 4: Process key parameters 
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Manufacturing constraints are those parameters which define the printability of a design. 

Some of the most important ones are defined by machinery limitations, material properties, 

fineness of printed layer, minimum dimensions of openings, maximum overhang, 

performance speed of synchronised activities. The latter case has an effect on the print speed, 

and it decreases the speed, at a certain point such as corners, when several printer inputs 

change. 
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Figure 5: Design phase parameters 

Figure 6: Manufacturing constraints 
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Material properties are categorized as a state, fresh and hardened properties. During 3D 

concrete printing process, fresh properties are the dominant factor.  

 

 

 

 

 

 

 

 

 

 

In literature, fresh properties of concrete are divided into four key fresh properties (S. Lim et 

al., 2012) Here, state parameters which explain the basic state of printed material, is as 

considered as the category of fresh properties.  affecting the development of hardened 

properties of concrete. So fresh properties of printed concrete contain the following 

characteristics. 

I.  Workability : The ease and reliability with which material is moved through the 

delivery system; 

II.  Extrudability :The ease and reliability of depositing material through a deposition 

device; 

III.  Buildability : The resistance of deposited wet material to deformation under load; 

and 

IV.  Open time : The period where the above properties are consistent within 

acceptable tolerances. 

V. State parameters: Parameters reflecting fundamental properties of concrete, 

which are time dependent and required to develop the structure of the concrete 

in different stages.  

  Hardened 

properties 

  

  

  

  Fresh 
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Figure 7: Material properties 
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State parameters are concrete related parameters, which reflects properties of concrete such 

as temperature and moisture content in time, which form the internal reactions for cement 

hydration. Cement hydrates through reactions with water inside the concrete mix, produce 

Calcium silicate hydrate (C-S-H) C-S-H is the primary reason of concrete strength, and binding 

aggregates in the concrete mix, with a rock shape texture. Through initial setting, cement 

particles are agglomerated, forming the material in a way that it is not workable and 

extrudable anymore, but the links within particles can be broken by stirring the mix or 

material. Then the final setting starts which strong links are being made among agglomerated 

cement C-S-H particles and the one-way reactions are being constructed to form the solid 

binding material, holding aggregates together.  

The total contained moisture amount within the concrete mix, as water or water vapour, is 

known as the moisture content and is indicated as a percentage of the concrete mass. It is an 

important parameter as provides water content required for setting and hardening process of 

concrete. 

The maturity of concrete is a human-made state parameter defined usually by the product of 

time and temperature of the concrete in time. Maturity then is used to understand the 

strength development of concrete. Maturity is calculated by tracing variations in temperature 

of fresh concrete during the time. Each concrete mix has its own strength-maturity 

relationship, which can be used for strength estimation of the mixture after printing. 

In 3D concrete printing, the placement of concrete is layer wise. Due to the discrete manner 

of concrete placement, state parameters of layers may vary. Such a variation affects the 

interaction among layer. In the other words, layers are facing each other in different states, 

which arise the necessity to study state properties among layers as well.   
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Figure 8: Fresh material properties 
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It is important to notice the fact that environmental condition indirectly affects state 

properties of concrete. Environmental parameters are those which are related to the 

condition in which the printing process is performed. It can be controlled or uncontrolled. 

Controlled environment reached by placing facilities to keep the conditions of the printing 

environment controlled and at desired levels. Such a facilities can be humidifiers, shelters to 

protect against rain (outdoor construction), heaters, and provisions for better curing of the 

printed elements.  

The uncontrolled environment is printing conditions, which environmental parameters are 

changing in a manner which there is a minimum control on them, such are printing on site, in 

outdoor situations, or in the laboratory when there is no control over the environmental 

variables variations.  

The most important environmental parameters are temperature and relative humidity. 

In the operation phase, hardened properties of density, compressive strength,  flexural 

strength , tensile bond strength between layers are dominant factors, which affect the 

characteristics of the printed elements (T. T. Le et al., 2012). 

 

 

 

 

 

Figure 9: State properties 
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Process parameters are those which are defined by the printing strategy and approach to 

manufacturing, defining proper settings for a printing process, in order to realise as planned 

elements as designed as possible. Such parameters range from printer physical components 

such as nozzle type to printer material deposition regime, such as print speed. Such a 

parameters define layer height for instance, or how fast materials placed at a certain point, 

which affects the final characteristics of printed element. The properties of built components 

depend on settings of different process parameters fixed at the time of manufacturing (Panda, 

2009). In 3D concrete printing, the following process parameters are key process parameters: 
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Figure 10: Hardened material properties 
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Above mentioned parameters have close interaction with each other and are interrelated. In 

a way that material properties have an influence on design parameter determination. Process 

parameters define the strategy to realize designed elements and have a great impact on final 

characteristics of printed element. Above all, manufacturing constraints define the possibility 

and the extent which the printing process can comply to as-designed parameters. As a result, 

such a fact  affects the design and creates a loop into the design phase. Even direction of 

printing and direction of the element operation under load is determining the extent which 

the element will response to the expected external condition. 

Printing speed should be set in a way that concrete remains wet enough to provide the 

sufficient coherent bond between layers, while it is stiff enough to carry loads of upper layers 

without collapsing, cracking or unwanted deformations. So it affects the buildability of the 

concrete. Printing speed also affects the workability and as a result extrudability of the 

concrete as it affects the printing gap which specifies the hardening of the concrete. In the 

case of low printing speeds and long printing gap, workability, and extrudability decrease so 

the chance of blockage in the tube, as well as a crack in the printed elements increases. 

Moreover, it will decrease the bond strength and hence the strength development. In the fast 

printing speeds, the maturity of the concrete element is affected and layers accept loads in 

early stages of maturity, hence strength cannot be developed sufficiently which result in the 

lower loading capacity of the final product (Wolfs, 2015). So printing speed is an important 

factor to be investigated. 

Nozzle type/shape has an influence on bonding strength between layer as it defines the 

effective surface of layers’ cross section. Hence the type of nozzle has a strong impact on 

strength development of the printed element. Moreover, different nozzle types result in the 

different final surface of the product, it the other words, it affects the smoothness of the 

surface and so the application of the printed product. As a result, nozzle type will reflect 

considerations made according to the applications and requirements of the product, and also 

its expected load bearing capacity. 

Layer height is determined by Nozzle type/shape and affects the final surface of the product 

which is one of the factors that define its application. Overall printing process speed is also 

influenced by layer height. In higher layer heights, element reaches to the defined height 

faster which also has an impact on loading capacity. As the printed product is loaded faster or 

in the earlier stages of the maturity process, so strength development is affected. Layer height 

influences both fresh and hardened properties of the concrete. 

Printing strategy factors, as it is mentioned has a close relationship with concrete as the 

material of the process. Fresh and hardened properties of the concrete affect directly 

buildability, workability, extrudability and open time of the concrete. Thus, it specifies the 

application, structural and design aspects and construction time of the process. 

For example, print speed defines the open time of a layer, affecting the bond strength of 

layers, which also is affected by the humidity of environment during the curing process. There 

are numerous complex interaction and interrelation which creates a web of interlinked 

parameters, which via several loops, their value changes and  affect others and show their 
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collective influence on final criteria, such as element stiffness, bonding strength or final 

realized height of a printed wall.  

 As a result, it is necessary to establish the relationship among and within the categories of 

parameters. So correction loops among categories of parameters will be established, and 

effects of parameters’ variation will be traced in and  modifications will be implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3. 3D concrete printing: Cause and effect analysis 
There are several parameters affecting the behaviour of a printed element, such factors can 

be depicted in cause and effect or Ishikawa diagram. Cause–effect diagrams depict the 

relationship between a given negative effect and its causes (Dumas, 2013). Parameters are 

grouped into categories and, such categories are helpful to lead the search for causes. 

A cause–effect diagram contains main horizontal line (the trunk) from which a number of 

branches stem. At one end of the trunk is the effect that is being analysed. 

 

 

 

 

 

 

Figure 13: Interrelated parameters 
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Figure 14: Cause-effect diagram 
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4.2. Methodology investigation 
In this section, methodology study has been conducted in order to find the most proper 

method in order to develop the Decision Support System for the context of 3D concrete 

printing. 

Methodology study has been performed by (i) investigating the previous efforts for additive 

manufacturing process improvements and (ii) overall methodology study on the most 

common Decision Support Systems.  

4.2.1. Process improvement  in Additive manufacturing 
In this section, previous studies are investigated which have been conducted to improve 

different types of Additive Manufacturing (AM). Hence, methods which are used to increase 

the understanding of AM are studied here. Literature study here was conducted to cover 

methods as broad as possible, and the main goal is to  show the implementation of theories, 

get an insight over their added values and limitations. 

The improvement of the efficiency of 3D printing rapid prototyping is investigated by Feng et 

al (Li-jie FENG, 2013), considering the strong effect of complexity and interlocking nature of 

3D printing system. In this research, the interactional and inter-constraint influences of the 

factors within 3D printing process are countered. These factors are the degree of 

specialization of the operator, advanced level of the equipment, the characteristics of the 

moulding material, the complexity of the moulding object, construction of 3D model, effects 

of environmental factors (Li-jie FENG, 2013). 

 In the research, entropy weight method as an objective method of defining the weight of  

influencing factors. The method can calculate the entropy weight of every index by using 

information entropy and through the entropy weight to revise the weight of each index and 

obtain more objective index weight (Li-jie FENG, 2013). 

In addition to that, System Dynamics modelling is used to model the interrelation of the 

factors and tracking the dynamics of the process. System dynamics describes the structure of 

a nonlinear, multi-feedback systems by feedback loops.  Hence, the research model 3D 

printing process in system dynamics and explore different factors on the impact of 3D printing 

rapid prototyping system and then direct the enterprise to improve the efficiency of 3 d 

printing rapid prototyping system (Li-jie FENG, 2013).  

Data used to structure the model and calculate entropy weights are gathered through expert 

evaluation method, which means that 50 experts in the field analyse and obtain relevant 

certain value through experience and 3 years of data from 2011 to 2013. 

The scope of this research is in managerial level, categorizing factors and looking at them from 

a higher level, rather than investigating the parameters in technical level. Hence the 

underlying relations within the factors are known and include calculate entropy weights of the 

factors, current and previous value of factors, defined by expert evaluation method.  

While for the case of 3D concrete printing, first, the focus is on the process parameters, which 

are at the technical level. Second the underlying relations are unknown and desired to be 
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defined. Hence such an entropy method cannot fully satisfy the needs in 3D concrete printing 

context. On the other hand, system dynamic modelling can be used to structure the 

managerial model of the thesis, which is links to quality, time and cost of the process, 

emanated from the outcomes of the proposed settings in the technical model. Because the 

relations to calculate cost and time of construction are easy to derive, while the dynamic 

changes and trade-offs can be tracked  which are of importance.  

Regarding investigating the effect of process variables on the quality and characteristics of the 

printed parts and elements, lots of researches have been done for Fused deposition modelling 

(FDM). FDM  Fused deposition modelling (FDM) is a fast growing rapid prototyping (RP) 

technology due to its ability to build functional parts having a complex geometrical shape in 

the reasonable time period (Anoop Kumar Sood, 2010). In the FDM process, the material is 

selectively deposited from the liquefier head, which melts the material such as acrylonitrile 

butadiene styrene (ABS), polycarbonate (PC), and PC-ABS blend.  

Same as the 3D concrete printing process, the key success of FDM process depends on the 

suitable setting of process parameters (Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 

2015). In the researchers conducted to establish a model and understanding the relations 

among process parameters and properties of the printed elements, the main focus is to 

optimize the derived model. So optimum set of parameters is found regarding certain multi-

objective properties of FDM product.  

The mentioned focus on determining the optimum process conditions results in the ensured 

quality of products, improved dimensional precision, reduced wastes, increased productivity 

and reduced cost and time (Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 2015). 

Moreover, the complex process of FDM or additive manufacturing, in general, makes finding 

the optimum parameters hard, as there are conflicting parameters involved. The presence of 

those conflicting parameters affects the Part quality & Mechanical properties. The part quality 

and mechanical properties of fabricated part can be attributed to proper selection of process 

parameters  (Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 2015). There are efforts done 

for FDM process which can tackle the mentioned challenge in the process optimization. 

According to the mentioned points, methods used for FDM additive manufacturing are proper 

examples of investigating, modelling and optimizing process parameters to gain satisfying 

product characteristics. Below summarized methods used for FDM process are compared by 

Mohamed et al (Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 2015). 
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Table 1: Comparison of Methods used n FDM process (Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 2015) 

 

 

 

 

 

 

 

 

 

 

 

Taguchi method is an effective tool for optimizing process parameters which provide a simple, 

reliable and effective approach in practical applications to improve the product quality at low 

cost. It is relatively normal to understand, has short computational time with minimum 

amount of data needed for modelling. Taguchi method leads to the non-optimal global 

solution because of the confounded interactions. This method cannot handle multiple-

response quality criteria, so this fact limits its application for predictive model creation 

(Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 2015). Moreover, the level of prediction 

derived from the method is low.   

The Response Surface Methods (RSM) is a collection of mathematical and statistical 

techniques useful for the modelling and analysis of problems in which a response of interest 

is influenced by several variables and the objective is to optimize this response (Montgomery, 

2012). 

RSM is considered to be a more promising method for optimization as it gives very low 

standard error towards experimental verification. It can be noted that RSM is a powerful 

optimization design allowing multi-objective optimization in cases that are required to 

optimize more than one response. 

 In addition, RSM is strong- in identifying the critical parameters, the main and interaction 

effects of parameters which provide enough information for experimental studies 

(Montgomery, 2012). Furthermore, the significance of interactions and square terms of 

variables are more clearly predicted in RSM (Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 

2015). Also, the prediction accuracy is high, a provide a graphical representation of responses 

and parameters and their interaction. 

Full factorial design (FF) allows investigating the influence on response outputs by process 

parameters. The main disadvantage of the method is the need of more experimental data to 
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reach a better accuracy in the model (Montgomery, 2012), which make the model creation 

process more expensive. Fraction factorial design requires less number of runs, but due to 

confounded interaction, optimum process setting cannot be determined accurately 

(Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 2015). Moreover, the method cannot 

handle multiple responses, which has a negative impact on its applications. 

Gray Rational Analysis (GRA) is used to measure  the relationship between process 

parameters, while as a result of confounded interaction possibility, finding the optimal setting 

is very slow (Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 2015).  

Artificial Neural Networks (ANN) is the most popular empirical modelling applied to express 

the mathematical relationship between the process parameters and quality characteristics 

(Mohamed, Syed H. Masood, & Jahar L. Bhowmik, 2015). ANN uses human brain reasoning 

model to understand the most proper relation between inputs and predicting the outcome or 

output. The network creates model according to input-output training data set, while having 

the ability to establish a complex non-linear relationship between process parameters and 

quality characteristics. ANN requires a large number of training data, which increases the 

computational time and hence the expenses of the experiment. This method cannot be 

retrained in the case of adding data to an existing network. It should be noted that ANN 

provides enough information about factors and their effects on the output responses only if  

screen experimental designs are done in addition to ANN (Mohamed, Syed H. Masood, & Jahar 

L. Bhowmik, 2015). 

Genetic Algorithms (GA) are classes of Evolutionary Algorithms (EA), which model genetic 

evolution. Evolutionary computation (EC) has as its objective of survival of the fittest: the weak 

must give way to the strong (Onwubolu, 2009). GA does not need deep knowledge in 

mathematics, while requiring long computational time and high amount of data. 

Fuzzy sets and Fuzzy Logic (FL) allow approximate reasoning, with these uncertain facts to 

infer new facts, with a degree of certainty associated with each fact. In a sense, fuzzy sets and 

logic allow the modelling of common sense. The uncertainty associated with fuzzy logics 

differs from what statistical one. Statistical uncertainty is resolved through observations, while 

fuzzy uncertainty is due to vagueness, imprecision and/or ambiguity (Onwubolu, 2009). Hence 

it is suitable for the complex process of 3D concrete printing, as it is associated with high 

uncertainties, due to the presence of large amount of variables, in which there is limited 

control. 

However, the fuzzy logic approach requires developing rule and database. Thus, having in-

depth knowledge of mathematics is necessary. Moreover, fuzzy logic requires a large amount 

of data storage, which may slow down the process (Mohamed, Syed H. Masood, & Jahar L. 

Bhowmik, 2015). 

It can be concluded that method of AM improvement depends on the scope of variables under 

study, availability of data, the level of precision and the expected aim from relationships. Such 

a relationships, clarify the influence of parameters involved in AM process, on final product 

properties, which leads to facilitate decision-making process to find the proper setting, In 
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order to satisfy defined performance of the product. These methods can be used in a platform, 

to construct Decision Support System, which s elaborated in the next section. 

4.2.2. Overall methodology study  
In this section, five main methods used in developing Decision Support Systems and expert 

systems are investigated and described.  The aim here is to study methods used in common 

systems and find their relevance to the context of this research.  

It is expected from 3D concrete printing decision support model to derive supports in the 

decisions required to realize the desired product. Hence a program is required to make 

reasoned judgements or give assistance in a complex area in which human skills are fallible or 

scarce(Todd, 1992). Here is the point where expert systems are applied in addition to Decision 

Support Systems, in order to assist the designer in leveraging interacting factors properly so 

that the desired outcome get produced without trial and error, using the strength of learning 

in the system. Within the expert systems, the following methods are studied: (i) Rule-Based 

Systems(RBS), (ii) Frame-Based Systems (FBS), (iii) Bayesian Belief Networks (BBN), (iv) 

Artificial Neural Network (ANN).  

4.2.2.1. Rule-Based Systems (RBS) 
In this approach, problem-solving knowledge is expressed in sets of rules which consist of 

antecedents as conditions and they result in consequences if conditions have a true 

statement. 

IF <antecedent> THEN <consequents> 

They incorporate practical human knowledge in conditional if-then rules(Hayes-Roth, 1985). 

In the other words, it follows the human reasoning for problem-solving and decision-making. 

RBSs adaptively determine the best sequence of rules to execute. Moreover, they explain their 

conclusions by retracing their actual lines of reasoning and translating the logic of each rule 

employed into natural language(Hayes-Roth, 1985). Hence, it is understandable and 

transparent to experts(designers, operators, and researchers in the 3D concrete printing). 

Each rule shapes the path within the branching sets of nodes. By tracing the special path the 

system performs, so RBSs are known as modular know-how. Hence, knowledge can be refined 

and new sets can be added to improve the performance of the system. 

RBS consists of the knowledge base which contains rules and facts and inference engine which 

interpret current states, understand the meaning of rules and hence apply appropriate rules. 

The latter component is also known as rule interpreter.  

Rules can be used in different approaches to be applicable in different situations. They can be 

used as deductive knowledge, which supports the inference, verification or evaluation 

tasks(Hayes-Roth, 1985). On the other hand, they can use to be goal(s)-oriented and seeks 

through the knowledge to reach defined goal(s). More importantly, they can dig into what if 

scenarios, as they get employed to address causal relations. Two latter cases are interesting 

for the 3D concrete printing context as it is possible to derive causal relations and reach 

predefined outcomes by leveraging interacting shape, material, printing strategy and force 

factors. 
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RBSs leave space to incorporate a large amount of judgement, heuristic and experimental 
knowledge, which in 3D concrete printing is an ideal situation, as relations should be 
understood by further experimental data. Moreover, Knowledge derived from experiments 
can be used to feed the knowledge base in the same format. In the other words, they require 
little processing to be implemented. Transparency ad tractability of the approach is positive 
points which come from the similarity of the approach to human reasoning. The rule is known 
as a relatively independent piece or chunk of know-how. Chunks are elementary patterns in 
perception and thinking that people use to make sophisticated high-level decisions(Hayes-
Roth, 1985). 
One of the disadvantages of RBSs is that it is often difficult to represent knowledge in terms 

of rules(Ramsey, Reggia, Nau, & Ferrentino, 1986). In the 3D concrete printing  context, the 

limitation applies when it is needed to implement knowledge of an expert, who uses his/her 

experience as the main reference. Moreover, all the necessary context for a rule’s application 

should be provided in its antecedents clauses(Ramsey et al., 1986). Especially in our case, due 

to the number of interacting factors, and lack of knowledge dominance, it is not possible to 

provide all required antecedents to construct the rule sets completely. Even if we can provide 

all necessary contextual information, a large number of rule sets should be generated and 

integrated. Another main disadvantage is the “directionality “ of rule production in RBS and 

intuitive inference by experts. In a way that in the presence of a certain cause, specific 

manifestation occurs: 

 IF < cause> THEN < manifestation > 

In the context of this proposal, it can be “reducing w/c in the mixture of concrete (as a decision 

variable or causes), crack in the printed layer occurs (manifestation)”. There are certainty 

factors associated in this direction of derived knowledge This is the opposite direction of the 

rule generation in RDSs, which uses manifestations as conditions to fire the rule. If the prior 

probabilities of causes are available, one could derive certainty factors from the given 

information, but without that knowledge, it is often difficult to determine them, and 

subsequently the certainty factors used in real-world expert systems are, at best, rather 

arbitrary(Ramsey et al., 1986). Hence, one abstract solution can be the introduction of non-

intuitive intermediate problem features for bookkeeping the purposes. 

On the basis of the points mentioned above, RBS is suitable to integrate a large number of 

judgments, heuristics and experimental knowledge, which in the context of the research large 

number of experiments is necessary. Moreover, the format of the derived knowledge will be 

kept. The method works properly when the organization of the knowledge is branching logic, 

Rules, Description/tables (Ramsey et al., 1986) , which in the case of implementation in the 

context, it would be a table. 

In addition, there should be few problem features defined as input with small context-

dependency, otherwise, writing a set of rules would be difficult because all of the contexts for 

using each rule would have to be included in the antecedents of that rule. Even assuming that 

one could identify a priori all of this relevant context, the resulting knowledge base would be 

a potentially huge set of rules(Ramsey et al., 1986). In 3D concrete printing , features 

influencing the process and outcomes are numerous in the shadow of rules’ high context-
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dependency. Even if few features get involved in building the primary version of the decision 

support tool, further development of the system will be limited according to this method, as 

it will be complicated to integrated numerous features as input. 

In 3D concrete printing , outcomes such as a cross section of a layer and stability of the layer 

are dependent. Hence, the strength of the Decision Support System will be increased if these 

multiple simultaneous outcomes could be integrated. RBS is suitable to incorporate 

dependent outcomes as well as mutually exclusive ones. Both mentioned assumptions can be 

used for categorical and combination of categorical and probabilistic outcomes, which the 

latter case seems the most suitable for the context of the research. The reason is because 

there is still limited control and knowledge over influential parameters involved in the 3D 

printing process. 

4.2.2.2. Frame-Based Systems (FBS) 
FBSs are a type of knowledge representation that uses  frames as their primary element of 

knowledge representation. A frame is a structure of  a  concept, situation or scenario 

representation, which contains all kind of information needed to describe, define and satisfy 

the certain sets of outcomes and causes in the specific situation. Frames are an application of 

object-oriented programming for expert systems. In the other words, a frame lists various 

attributes and characteristics of the situation, which is treated as an object.  

 Using descriptive knowledge representation, FBSs perform inference according to 

hypothesize-and-test cycles. Given one or more initial problem features, the expert system 

generates a set of potential hypotheses or "causes" which can explain the problem features. 

These hypotheses are then tested by (i) the use of various procedures which measure their 

ability to account for the known features, and (ii) the generation of new questions which will 

help to discriminate among the most likely hypotheses. This cycle is then repeated with the 

additional information acquired(Ramsey et al., 1986). This approach is based on human 

reasoning and natural abduction, which tends to come up with the best explanation according 

to the most likely observed outcomes. 

To project the implementation of this approach in the context of 3D concrete printing , it is 

proposed to use the same logic for medical diagnosis problem-solving expert systems. In order 

to simulate hypothesize-and-test reasoning, this system employs a generalized-set-covering 

model in which there is a universe of all possible manifestations(symptoms) and a universe 

which contains all possible causes (disorders). For each possible cause, there is a set of 

manifestations which the cause can explain. Likewise, for each possible manifestation, there 

is a set of causes which results in  the manifestation. Given a diagnostic problem with a specific 

set of manifestations which are present, the inference mechanism finds all sets of causes with 

minimum cardinality which could "explain" (cover) all of the manifestations(Ramsey et al., 

1986).  

In the context of the proposal, manifestations turn into evaluation and performance criteria 

defined by the designer to satisfy specific needs and applications. Causes turn into decision 

variables during printing such as printing speed, pump pressure, layer height, nozzle shape, 

and dimension.  
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One of the advantages of such an approach is that frame generation is easy and natural and 

can be derived from descriptive information, which in this case eliminate the need of data 

process to input the knowledge. Another advantage is that information and relatives causes 

are placed in one frame, hence, that fact makes it suitable for a problem with high context-

dependency, associated with multiple problem features as input. Furthermore, this method 

works very well when multiple cause/disorders/selection are involved in a large 

selection/diagnosis problem(Ramsey et al., 1986). This feature really fits the goal in the 3D 

concrete printing  context, as there are multiple selections of decision variables associated 

with interrelated causes. Those causes can be categorical or the combination of categorical 

and probabilistic, as FBS work well same as RBSs. What makes this approach even more useful 

for the context is the fact that it can be associated with statistical methods to flow between 

the frames. 

Finally, the hypothesize-and-test algorithms focus on the most likely outcome, thereby less 

time is consumed in a question-answering session with a user. In addition, people sometimes 

feel more comfortable using such systems because they can understand the reasoning of the 

system(Ramsey et al., 1986).  

On the other hand, there are serious problems associated with FBSs which arise from the fact 

that this method is experimental and few real world applications tested the performance of 

the method. There are technical issues that limit the performance of such methods, such as 

the point that the questioning process terminates and the decision is generated. Especially 

when the method looks for the most likely outcomes and hypothesize-and-test limits the 

number of questions. Another area of doubt is how to select optimally next questions to ask. 

Finally, the algorithms of abductive inference are complex and have time-consuming decision-

making processes(Ramsey et al., 1986). 

4.2.2.3. Bayesian Belief Networks(BBN) 
The following explanation gives a proper insight about BBN: “The Bayesian Belief Network 

(BBN) provides a technique to (i) represent knowledge and uncertainties in a causal network 

and (ii) use the network for probabilistic reasoning.” (Arentze)  

BBN shape Directed Acyclic Graph (DAG) which are defined by nodes and directed edges. 

Nodes represent variables and direct edges show the statistical conditional relation between 

two directed nodes, In particular, an edge from node Xi to node Xj indicates that a value taken 

by variable Xj depends on the value taken by variable Xi. Roughly speaking that variable Xi or 

parent node, “influences” Xj, the child node (Ben-Gal, Ruggeri, Faltin, & Kenett, 2007).  

The quantitative part of BBNs is represented as tables of probabilities or Conditional 

Probability Distribution (CPD) which represent the local probability that a child node takes on 

each of the feasible values – for each combination of values of its parents (Ben-Gal, Ruggeri, 

Faltin, & Kenett, 2007). Feasible values mean the defined states for each variable in the 

network, which can be continuous or discrete. The graph of a BBN represents n variables of X1 

, X2, …, Xn if: 
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P (𝑋1, 𝑋2, … , 𝑋𝑛) =  ∏ P (𝑋 |𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑗))

𝑛

𝑗=1

 

Where parents(Xj) denotes the set of all variables Xj , such that there is an arc from node i to 

node j in the graph (Pourret & Naim, 2008).  

Employing Bayesian Belief Network (BBN) helps to understand the causal relationships of 

Situational, Decisions and outcome variables while considering the associated uncertainties. 

Moreover, thanks to the theory behind BBN, by knowing states of some variables, it is possible 

to calculate distributions of other variables according to certain defined objective or 

maximized utility.  

By using the probabilistic distribution derived from the uncertain environment, the system 

finds the right path to reach a specific goal. For instance, by knowing the shape, material, print 

speed and compressive strength, the required thickness of printed layer will be suggested. 

The further step can be automated in the printer and results in an automated modification in 

the batch, mixture and printing strategies.  

One of the main advantages of such a method is the reasoning process can operate on BBNs 

by propagating information in any direction, in spite of the fact that the arrows represent the 

direct causal connection between the variables(Ben-Gal, Ruggeri, Faltin, & Kenett, 2007), both 

backward and forward reasoning. This is because of the strength of Bayes probability theorem 

in addressing conditional probability(Arentze): 

P(A│B)P(B)=P(A,B) 

P(B│A)P(A)=P(A,B) 

It follows that: 

P(A│B)=(P(B│A)P(A))/P(B) 

As a result, Bayes' rule enables us to compute P(A|B) in terms of P(B|A). In the context of 3D 

concrete printing , this feature is so helpful, in a way that in the light of existence evidence in 

each layer of the network, unknown factor or decision variable could be determined.  

Another advantage is that this method encounters knowledge that experts are not aware of 

or cannot verbalize. This is because of the fact that BBNs use statistical data and information 

to build their network.  

One of the biggest disadvantages of BBNs is that they require the availability of exact 

probabilities, which is a time-consuming and costly process(Ramsey et al., 1986). In the 

context of 3D concrete printing , we stand in a Boolean position, if the selected decision and 

attribute variables require several machine resetting, it is not feasible to derive needed data. 

On the other hand, if variables get selected in a way that they can be changed in a continuous 

printing tool path, producing that huge sets of data would be easy as there will be no need of 

resetting the printer, while investigating different states of the variables in the experiment.  
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In the same manner, evaluation criteria or utility derived from BBNs should be easily valuable 

since there are going to be numerous data production and hence there would be the need of 

evaluation for each case.  

Another problem is that the unrealistic assumptions should be made in order to use BBN. One 

of them is that the outcomes should be mutually exclusive(Ramsey et al., 1986), which in the 

context of the proposal it brings up limitations, especially for the further developments of the 

system. The other one is that the problem features should be independent, which this 

assumption can degrade the performance. 

4.2.2.4. Artificial Neural Network (ANN) 
Like other methods of expert systems, ANN uses human brain reasoning model to understand 

the most proper relation between inputs and predicting the outcome or output. As it can be 

inferred from the name, this method models brain neural network which is fired by inputs and 

build the logical relations among the network in a way which neural networks in human brain 

transmit messages.  

The human brain consists about 10 billion interconnected set of nerves called neurons, which 

are basic information-processing units and are connected by 60 trillion synapses(Arentze). 

This huge network makes the brain a powerful processing centre, while it is made by basic 

structures of interconnected neurons. A neuron consists of a cell body, soma, a number of 

fibres called dendrites, and a single long fibre called the axon. While dendrites branch into a 

network around the soma, the axon stretches out to the dendrites and somas of other 

neurons. Signals are propagated from one neuron to another by electrochemical reactions 

which release chemical substances from the synapses and cause a change in the electrical 

potential of the soma. When the potential reaches its threshold action potential is sent down 

through the axon. The pulse spreads out and eventually reaches synapses, causing them to 

increase or decrease their potential(Arentze). Hence, neural networks contribute to the 

learning process by changing the relations by weakening or strengthen their connections 

through experience. 

Analogous to neural networks, ANN consists of neurons as processors which are 

interconnected by weighted links passing signals or inputs from one neuron to another. The 

output signal is transmitted through the neuron's outgoing connection which corresponds to 

the biological axon. The outgoing connection splits into a number of branches that transmit 

the same signal. Those branches terminate at the incoming connections of other neurons in 

the network(Arentze). 

The neuron computes the weighted sum of the input signals and compares the result with a 

threshold value, θ which is corresponding to the electrical potential of the biological neuron. 

If the net input is less than the threshold, the neuron output is -1. But if the net input is greater 

than or equal to the threshold, the neuron becomes activated and its output attains a value 

+1.  
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                                               𝑋 = ∑ 𝑥𝑖 × 𝑤𝑖𝑛
𝑖=1                             

 

 

where X is the net weighted input to the neuron, xi is the value of input i, wi is the weight of 

input i, n is the number of neuron inputs, and Y is the output of the neuron. This type of 

activation function is called a sign function). Other activation functions of step, linear and 

sigmoid functions can be also used according to the applications.  

The most common way that the perceptron algorithm is used for learning from a batch of 

training instances is to run the algorithm repeatedly through the training set until it finds a 

prediction vector which is correct on all of the training set. This prediction rule is then used 

for predicting the labels on the test set (Kotsiantis, 2007).  

On the basis of the points mentioned above, by introducing inputs to a black box modelling 

neural network approach to learning, continuous outputs will be derived from predictions of 

a dataset. In the context of 3D concrete printing, predictions about the buildable number of 

layers can be made according to the inputs such as shape, printing speed, and type of 

concrete. In the case of multiple outcome predictions, ANN responds sequential, in a way that 

predicts outcomes one after the other, although ANN omits the limitation of linear modelling. 

This is the limitation of the methods in comparison with BBN, which predicts multiple 

outcomes simultaneously.  

 

4.2.3. Method comparison 
In this section methods discussed above are compared according to  criteria in order to select 

the method which leads to efficient data generation and processing in terms of time and 

quantities. Moreover, the proper method should meet specific requirements, mentioned as 

following:  

VII. Generate efficient number of concrete printed data as means of interrelation studies,   

VIII. Distinguish influential process parameters after parameter study (parameter 

screening), according to defined target of 3D concrete printing, 

IX. Specify level of influence of process parameters (significance study), 

X. Establishing relationship among process parameters and targets (empirical model). 

XI. Incorporate possible non-linearity in the models and study interaction among 

parameters, 

XII. Provide precise prediction of process and target parameters, 

XIII. Visualize results for a better and clearer understanding, 

XIV. Pave the way of analysis toward process optimization. 

As a result, a method which satisfies the criteria mentioned above to an acceptable extent 

leads to reaching the main objectives of this research and development project. The main goal 

is to improve the product and process of 3D concrete printing by : 

I. Depicting a clear understanding of the interrelated process parameters; 
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II. Develop a Decision Support System to provide the possibility of conscious leverage of 

process parameters. 

Finally, the method should be understandable enough and are able to depict clear 

relationships which can be traceable, and explainable by physical and mechanistic law, 

involved in 3D concrete printing. Some methods such as ANN, establish relationships in a black 

box, which is usually hard to be interpreted by researchers and experts. Such a methods are 

considered to be unsuitable as explaining the constructed relationships are hard ad do not 

follow mechanistic logics. 

According to the results of the comparison shown in the table below, RSM method, which is a 

type of Design of Experiment (DoE) is the most suitable method. Some literature argues the 

prediction accuracy of RSM. He prediction accuracy of RSM depends on the defined range of 

experiment and its direction and/or the distance from the centre of the design region. If the 

relatively small region of design is selected, RSM will perform good predictions. RSM method 

will be elaborated more in next chapter. 

After studying methods, general components of Decision Support Systems, as the main 

framework of the tool is investigated in the next section. 

 

 

Table 2: Comparison table 
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4.3. Decision Support Systems 

Computerized Decision Support Systems practically became to exist with minicomputers 

development, timeshare operating systems, and distributed computing, and got implemented 

in the mid-1960s, when researchers began systematically studying the use of computerized 

quantitative models t assist in decision making and planning (Burstein & Holsapple, 2008). 

“ Decision Support System(DSS) is an interactive computer program that uses analytical 

methods and models to help decision – makers to formulate alternatives for large unstructured 

problems, analyse their impacts and then select appropriate solutions for implementation. 

(Kumar, B, & Pragti, Decison Support System: An Overview, 2006) ” 

DSS makes the right information available for decision- makers at the right time, provide 

model-based reasoning capabilities, enable users to generate and select an alternative 

solution for a given problem in a given scenario (Kumar, B, & Saxena, Decision Support System: 

An Overview, 2006). 

As a result, more practical solutions with more cost effectively efforts are suggested, 

improving the quality of decision-making process. Moreover, interactive DSS provides the 

opportunity to establish an interactive dialogue between user and system, incorporating 

dynamics of the process, and improving what-if scenario generation and presentation. 

DSS provide knowledge and/or knowledge- processing capability that is necessary for making 

decisions or making sense of decision situations (Holsapple, 2008). 

Graph bellow, represents a decision process, can be sliced into Simon’s three stages of 

intelligence, design, and choice, which contains specific decision procedure and a mechanism 

such as optimization. In decision process, actions of DSS and user can be involved 

concurrently. The decision sponsor, participant(s), implementer, and the consumer may be 

individuals, or groups, having more than one role mentioned above (Holsapple, 2008). By 

involving DSS in the process of decision making, the process is affected and its outputs lay in 

at least one of PAIRS direction (productivity, agility, innovation, reputation, satisfaction) 

(Holsapple, 2008). 
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Figure 15: Decision process (Holsapple, 2008) 

4.3.1. Decision Support System types 
Over the evolution of DSS, developers made use of various concepts like spreadsheets, 

database, networks, hypermedia, expert systems (ES), visual programming, intelligent agents, 

neural networks, Artificial Intelligence and statistical methods (Kumar, B, & Saxena, Decision 

Support System: An Overview, 2006), in order to develop DSS with different applications 

Here there is the main variant of the DSS, are studied in order  to investigate best options to 

use in the context of 3D concrete printing, according to defined objectives (see chapter 2). 

I. Model-driven DSSs emphasize access to and manipulation of financial, optimization, 

in addition to simulation models. Quantitative models provide the most fundamental level of 

functionality. Model-driven DSSs use limited data and parameters provided in the decision-

making process, to aid decision makers in analysing a process, but in general, large databases 

are not needed for model-driven DSSs (Department, 2008).  

II. Data-Driven DSS emphasize access to and manipulation of a time series of internal and 

external data in addition to real-time data. Simple file systems accessed by the query and 

retrieval tools provide the most basic level of functionality. Database systems that provide the 

possibility of manipulation of data by computerized systems fitted to a specific setting or by 

more general tools and operators bring more functionality. Data-driven DSSs with on- line 

analytical processing, provide the highest level of functionality and decision support that is 

linked to analysis of large collections of historical data (Department, 2008).  They provide the 

opportunity to incorporate an enormous amount of data, and investigate underlying patterns, 

trends and make the data-driven learning possible.  

III. Communications-driven DSSs use the network and communications technologies to 

ease and support collaboration in decision-making process and communication among 

stakeholders. In these systems, communication technologies are the dominant architectural 

component. Tools used include groupware, video conferencing and computer-based bulletin 

boards (Department, 2008), (Kumar, B, & Pragti, Decison Support System: An Overview, 2006). 
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IV. Document-Driven DSSs employ computer storage and technologies of processing to 

retrieve the document and related analysis. Database consisted of large documents, have 

normally the format of scanned documents, hypertext documents, images, sounds and video 

(Department, 2008). Product catalogues and specifications, procedures, policies and historical 

documents are examples of such systems.  

Natural language and statistical tools for extracting , manipulating and summarization of 

(u)structured information are used in this type of DSS (Kumar, B, & Saxena, Decision Support 

System: An Overview, 2006). 

V. Knowledge-Driven DSSs uses rule-based knowledge or expert knowledge in a specific 

discipline and based on certain facts, information ,performance, and procedure. They suggest 

a user in the specialized problem-solving domain, which contains information, knowledge and 

skills of problem-solving in a certain specialization. These type of DSS are also known as Expert 

Systems, as knowledge query and analysis is quite specialized. 

 

Figure 16: Decision Support System types 

4.3.2. Generic components and Architecture 
Components of each DSS is highly dependent on the application of DSS and also its context of 

use. But a typical DSS framework consists of two major systems (Kumar, B, & Saxena, Decision 

Support System: An Overview, 2006):  

I. Humans decision maker, who are end users with various roles and functions, 

II. Computer system, which consists of three main components: 

i. Database Management System (DBMS) 

ii. Model-base Management System(MBMS) 

iii. Dialogue Generation and Management System (DGMS) 
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Document-Driven
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DBMS is the collection of computer programs enabling the user to create, populate and 

manage database and control access to the data stored in it. DBMS can be either program 

running independently or embedded within a DSS generator (Kumar, B, & Saxena, Decision 

Support System: An Overview, 2006). DBMS provides knowledge about each database object 

from the entity, attributes, and types point of view. So DBMS components facilitate the 

collection, storage processing and managing of data (Kumar, B, & Pragti, Decison Support 

System: An Overview, 2006). 

MBMS is the critical elements of DSSs, which defines meaning to data and consists of collected 

program embedded in the system generator and provide the possibility of model creation, 

edit, update and usually process. MBMS generic components are a model directory, model 

base, and a command processor. Model-base store models in it, which has the role of pulling 

data from the database and transforming it to the format of the required knowledge, by the 

decision maker.  

DGMS acts as the user  interface of DSS, which is the gateway to both DBMS and MBMS, 

allowing the user to query required information and receive them, processed by DSS.  

 

 

 

 

 

 

 

 

 

 

 

Figure 17: DSS generic components 

The chapter of literature study gathered introductory information to the knowledge required 

to develop a Decision Support System for the 3D concrete printing process. Thorough 

investigations are conducted in next chapter, where the scope is narrowed down and specific 

DSS type, methodology, and 3D concrete printing key elements are recognized. 

 

 

 

 

Decision Support System

Computer system

DGMS DBMS MBMS

Model 
directory

Model 
base

Command 
processor

Decision 
maker



50 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

5. Developing 3D concrete printer Decision Support System 

5.1. Introduction 
Automation is a great necessity pushing construction industry toward investigating and 

implementing innovative construction techniques. 3D concrete printing is the technique 

which fills the gap between design and construction, brings up lots of advantages such as 

reduction in labor for safety reasons, reduction in construction time on site, reduction in 

production costs and an effort to increase architectural freedom. Moreover, quality, 

reliability, life cycle cost savings and the simplification of the workforce will be enhanced 

noticeably (Perkins & Skitmore, 2015). 

In order to reach the mentioned targets, 3D concrete process should be fully understood, 

influential factors should be detected and clear relations between process products and 

process parameter should be drawn. 

At this moment, the concrete printing process is not fully understood, as the effect of process 

parameters on each other and the product, characteristics are unknown. Moreover, material 

characteristics, process performances, and design platforms should be improved to satisfy 

defined requirements. of  There have been clarifying efforts to understand and improve the 

concrete printing process, limitations and introduce its influential factors(Perkins & Skitmore, 

2015), (Kumaraswamy & Dissanayaka, 2001)(S. Lim et al., 2012), (Feng, Meng, Chen, & Ye, 

2015), (T. T. Le et al., 2012), (Thanh T. Le et al., 2012), (Perrot, Rangeard, & Pierre, 2015b), 

(Zhang & Khoshnevis, 2013), but none of them have looked at the effect of related process 

parameters on the defined product characteristics.  

In this graduation project, in order to enhance the understanding of 3D concrete printing 

process, a decision support tool have been developed. This decision supports tool to support 

decisions in the printing process by showing the consequences of such decisions. The objective 

of such decision support tool is to show the effect of varying specific process parameters on 

the dimension of a printed concrete layer.  

In the core of the decision support tool, there is a model, investigating the effect of relevant 

process parameter on the dimension of a printed concrete layer. Furthermore, the model will 

establish a relationship between process parameters and dimension of a layer.  

Such a decision support tool will increase the understanding of the concrete printing process. 

More importantly , I  will diminish the gap between design and realization phase. 

 

5.2.  Printed layer dimensional accuracy 

5.2.1. Problem identification and importance 
One of the main goals of adopting 3D concrete printing is to bridge the gap between design 

and realisation. In order to reach such an aim, discrepancies between as-designed and as-built 

product should be as minimal as is possible. There is always constraint of reality which imposes 

limitations over design, which result in considerable differences between what can be realised 

and what it has been designed.  
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One of the first discrepancies between design and production is the final designed height or 

length (dependent on the direction of the element print and usage). Due to the deformations 

of dimensions of printed layers, the final realised height will be less that the designed height 

(for the same number of layers). Deformations will occur in Height and width of a layer after 

a layer is printed.  

Such a mismatch between design and realisation will affect the whole construction time and 

cost estimation in different phases of planning, design and construction. The actual time and 

cost needed to fulfil the designed requirement would be more since there will be more layers 

and material needed. So it is of importance to foresee the consequences of decisions in the 

printing process. 

Other main pitfalls of concrete printing are to provide required provisions to print a manner 

which is stable enough to create as high as it is possible in a continuous printing toolpath. 

There are different ways to increase the stability of the printed layers, which may vary from 

improvements of material characteristics, elements’ geometry and provision of 

supplementary material. 

One of the approaches to eliminate such a problem is to focus on micro instabilities raised due 

to deformations in the width of a printed layer. Deformation in width will cause the cross 

section of a layer to have a trapezoidal shape, with different top and bottom width.  Since 

there are errors in the placement of layers on each other, there will be eccentricity in 

introduced loads of upper layers. Because of the trapezoidal shape of the cross sections, this 

eccentricity will increase the chance of creating such a torque that may result in collapsing of 

the element.  

As a result, by decreasing deformation in cross section width, the instability can be reduced. 

The first step should be investigating the effect of process parameter on layer deformation, 

establishing the proper relation and gaining insight over dimension variations by changing 

printing setting.   

Each layer will deform, so the planned nozzle distance (z) from the layers below, should be 

updated, because, it will reduce the imprecisions of layer placement. And as a result, it will 

increase the stability of the printed element. The consequence is to link the constraints and 

realities in the printing process, in the design phase, when the G-code is being fed to the 

concrete printer. So, the printer will response automatically and dynamically during the 

process. Consequently, the gap between design and production would be diminished. 

There are also other parameters especially material related properties, which can affect the 

deformation of a layer. Although they worth being investigated, they are excluded from this 

research, because: 

the main aim of this research is to show the importance and effects of process parameters on 

deformation of a layer. So, the focus is investigating process parameters and propose a 

methodology to tackle properties of final printed product. 
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The objectives vary from situation to other situation, such mechanical properties or 

deformation of several layers. By proposed methodology in this graduation project, different 

properties of the concrete printing process can be enhanced. 

This graduation project aims to find the effect of relevant process parameter on the 

deformation of a layer and derive an empirical model. 

 

Figure 18: An example of a printed element surface 

5.2.2. Deformation analysis: Important process parameters 
3D concrete printing is a complex process, which the final process product, is affected 

considerably by parameters involved in the printing process. The properties of concrete 

printing process are a function of the different process parameter. Critical literature for 

various types of Rapid Prototyping (RP) or Additive Manufacturing (AM) have strongly 

suggested such a relation (Panda, 2009), (Li, Zheng, Nie, Zhao, & Huang, 2011), (Mohamed, 

Masood, & Bhowmik, 2015), (Garg, Siu, Lam, & Savalani, 2015). 3D concrete printing as a type 

of additive manufacturing has numerous influential process parameters which intervene in 

defining properties of final products. Adjusting relevant process parameters can improve 

products’ properties. 

By adjusting related process parameters dimensional accuracy of a printed layer can be 

improved. As it is mentioned, this research only focus on process parameters, which means 

that improving the dimensional accuracy by enhancing material characteristics, for instance, 

are excluded. 

There is no literature about the influential process parameters on the dimensional accuracy 

of 3D concrete printing. So in order to find out relevant parameters, process observation and 
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also literature study on other methods of 3D printing was conducted. The latter approach is 

used to give initial ideas, further investigations are done by observation because of inherent 

differences in different 3D printing processes and material.  

The summary of contributions to improving dimensional accuracy and corresponding relevant 

process parameters are shown below (Sood, Ohdar, & Mahapatra, 2009). 
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Figure 19: Additive Manufacturing dimensional accuracy 
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Although the behaviour of material, printing scale and method of FDM (Fused Deposition 

Modelling), SLS(Selective Laser Sintering) and concrete printing differ drastically, but it can be 

seen that some process parameters affect dimensions regardless of the mentioned 

differences: speed of printing and Layer thickness. It gives a clue in the case of 3D concrete 

printing which also should be approved by observations. 

During the observations the following parameters turn out to be important: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Printing speed (mm/min) is the speed of the moving nozzle which defines how fast a certain 

tool path can be printed. As a result, it specifies the amount of material extruded in a certain 

time interval in a certain length of the tool path. 

Observations have shown that higher the printing speed is, lesser the dimensional 

deformations are. The reasons are that the nozzle has less time to extrude material at a certain 

time in a certain location, hence there is less deformation due to its own weight for 

deformation. 

Pumping degree(Hz) will specify the amount of material which is deposited by rotation of the 

printer pump, Higher the pumping degree is, higher the deformation is, as the higher amount 

of material result in higher deformation of a layer due the layer weight.  

Nozzle dimensions which are the result of printer nozzle shape has a direct effect on 

dimensional deformations. By increasing the layer height, layer height deformation increases. 

The reason is the increase of the layer weight, which increases the layer deformation, due to 

  Layer  

height 

  

  Pump 

pressure 

  

  Number of 

layers 

  

  Nozzle 

distance 

  

  Print speed 

Figure 20:Observed influential Process parameters 
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the higher centre of mass. The resulted deformation is both in height and width direction. 

Change of nozzle width has not a significant influence on the layer deformation because in the 

same layer height the centre of layer mass does not change.   

The increase of the number of layers increases the weight of the layers laying on first layers, 

which results in higher deformation of layers.  

Nozzle distance from the surface on which concrete is going to be printed may show some 

influences on dimensional deformation, especially in interaction with other mentioned 

process parameters. How extruding material is pushing the deposited and how that can affect 

the deformations.  

There are more factors may affecting dimensional accuracy, but the mentioned parameters 

are those which can be modified for the printing process, hence they are the first set of 

parameters to be investigated. 

In order to investigate the effect of mentioned parameters, the possibility to change the 

parameters in different levels played an influential role in selecting the process parameter. At 

the time of starting the project, it was hard to change the nozzle dimensions to get different 

layer heights, so it was left aside. While fortunately now it is possible to 3D print different 

nozzles.  

The number of layers got limited to a single layer because it was crucial to first find the most 

simple relation for one layer. So that the influences of the process parameters are understood 

on a single layer deformation and in the next steps, research will be developed and elaborated. 

Another assumption has been taken in the combination of the included process parameters. 

For the same reason of limiting number of layers to one, the dual interaction of the process 

parameters is assumed as a base to form a relationship. By considering two process 

parameters, their effect and the level of influence will be more easily understood and a ground 

to further developments of the model will be founded. This issue is even more critical for 

technical researchers of the project and this decision has been reached to meet some levels 

of their concern.  

The aim is to define a single layer deformation model, which include few parameters in order 

to create a basis to establish a relationship between process parameters and dimensional 

deformation.  

As a result of the points mentioned above, two sets of process parameters has been assumed 

to investigate the influential process parameters on the dimensional deformation of a single 

printed layer. 

Print speed (Pr) and Pump degree (Pu) and in another set of process parameters, Printing 

speed (Pr) and Nozzle distance (Nd) are coupled. 
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The effect of these two sets of process parameters has been checked on deformation of a 

layer. Deformation has been targeted in height, top width and a bottom width of a layer 

printed by a nozzle of 25mm×25mm. 

The selection of such a nozzle was due to the availability of this type of nozzle at the time of 

designing and performing the research.  

 

 

 

 

 

 

By establishing an understanding of the introduced process parameters, two models is created 

connecting mentioned process parameters to predictions of height, top width, and bottom 

width.  

Such models will be the core of a decision support tool, assisting designers and operator 

during the printing process to derive the most proper decisions to fulfil the requirements. Next 

section will elaborate on the models and their components. 

5.3. Design of model-based Decision Support System 

In chapter 3 different types of Decision Support Systems have been explained. Among them, 

model-based Decision Support System would be a suitable match for the case of dimensional 

deformation. 

As described in section 5.3, at the core of the decision support model, there is a model created 

which relating influential process parameters to dimensional deformation. In the other words, 
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Nozzle 

distance 

  

  Print speed 

Figure 21: Focused process parameters 

Figure 22: a) Nozzle dimensions, b)Printed layer cross section 

a b 
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there is a model built to predicts height, top width and bottom width in two models. These 

models are the means to increase the understanding of concrete printing process, which can 

assist the designer and operator with the proper decisions.  

In this section, model-based Decision Support Systems are elaborated and required 

components for the case of dimensional Decision Support System has been mentioned.  

5.3.1. Model-based Decision Support Systems 
Model-based Decision Support Systems(DSS) are designed in order to help decision makers by 

employing models and data to communicate with the user via user interface. These models 

are mainly mathematical, which consists of (Burstein & Holsapple, 2008): 

i. Decision variables as input, which are controlled by user; 

ii. External variables as input, which are not controlled by user, and are under influence 

of environmental situations; 

iii. Outcome variables as output used for measuring the consequences of implementation 

of input. 

In the case of 3D concrete printed layer deformation, inputs are Print speed & pump degree 

in one model and Print speed & Nozzle distance on another model. 

External variables are a number of layers and nozzle type which are one and 25mm×25mm, 

due to mentioned reason in section 5.3.2. Output variables are dimensional prediction: height, 

top width, and bottom width. 

Benefits of model-based Decision Support Systems are as follows (Turban, 2007): 

i. Models allow easy manipulation of decision variables in order to track their influence 

on a system; 

ii. Simulating scenarios of the decision process; 

iii. Models enable the compression of time. Years of operations can be simulated in 

minutes or seconds of computer time; 

iv. The cost of generating, error occurrence and risks associated with modelling analysis 

is much less than the cost of a similar experiment conducted on a real system; 

v. Models enhance and reinforce learning and training. 

From the above-mentioned advantages, another advantage of model-based DSS in the 

context of concrete printing is the fact that the level of process parameters effect on 

dimensional deformations is understood. Moreover, the result of the model will shed light on 

the behaviour of material in deformation during the concrete printing process.  

 

5.3.2. Architecture 

In this section, the architecture of the model-based dimensional Decision Support System will 

be elaborated. Moreover, components, their elements and design environment of the 

Decision Support System will be mentioned. 
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In section 3.3 main components of general Decision Support Systems have been mentioned. 

In order to shape the ‘dimensional Decision Support System (dDSS)’, the main architecture of 

a DSS has been customized. 

Moreover, dDSS  is model-based DSS and its models play a centric role in defining relations, 

increasing the understanding and assisting the designer and operator with proper decisions. 

As a result, the architecture of dDSS is influenced by the architecture of model-based DSS. 

‘dimensional Decision Support System (dDSS)’ contains 4 main components: 

I. User Interface (UI): 

i. Language System (LS) 

ii. Presentation System (PS)  

II. Model Management System (MMS) 

III. Problem Processing System (PPS) 

IV. Data-base 
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Figure 23: dDSS architecture 

I.  User Interface (UI) component is the gateway for the user to dDSS to communicate, 

introduce specific levels of the process parameter and query required dimensional prediction. 

In the other words, UI performs as a link between user and DSS. 

Important issues taken into consideration while selecting the UI are screen design, choice of 

input and output devices, data and information representation format, use of different 

interface style (Kumar, B, & Saxena, Decision Support System: An Overview, 2006).  

Language System (LS) is a part of UI which consists of all messages the DSS can accept. It 

clarifies the situation introduced to the system, accept knowledge, Recall or derive knowledge 

and govern coordination, control and measurement knowledge.  

Presentation System (PS) presents all knowledge required through LS, seek knowledge for 

further clarification, and basically is the gateway of the DSS to communicate with the user 

(Holsapple, 2008).  

MATLAB has been chosen to develop the UI because of its (T.Smith, 2006): 

i. Simplicity of its layout: Graphical layout is intuitive for development and interaction  

LS: Language System 

PS: Presentation System 

PPS: Problem Processing System 

MMS: Model Management System 
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ii. Automatic code generation: MATLAB generate call-back function code and allows 

to focus on the details of the UI design.  

iii. Object property control: Provides complete overview over available properties and 

hierarchy allowing the developer to modify UI components efficiently.  

Through LS, the user can introduce Pump Degree(Pu) in Hz and Print Speed (Pr) in mm/min as 

process parameters, when the dimensional prediction is required by the user. Moreover, 

he/she can input desired layer dimensions in mm, in the case that proper process parameters 

are needed to reach desired dimensions. In both cases, inputs are in the format of the number. 

The user can also select output representation, according to its needs which can be in the 

form of 3D or contour graphs. Also requirements, steps, and conditions of the interaction of 

user and UI.  

Through PS, system provides knowledge in the form of: 

i. Number (e.g. showing print speed, Height or etc.) 

ii. Process parameter-dimension prediction graph: when one of the process 

parameters are given by the user. (e.g. Pu in known and the graph of Pr-H is 

required) 

iii. Contour graphs: Querying detailed knowledge over the influence of Pr and Pu on 

layer dimensions. 

iv. 3D response surface: Showing the overall trend and relationship of Pr and Pu on 

layer dimensions. 

 

II. Model Management System (MMS) is a software system that provides tools and 

environments to develop, store, and manipulate models, data, and solution methodologies 

associated with complex decision problems. 

In dDSS, different elements of MMS mentioned in literature are customised and combined. 

Because this approach creates an integrated MMS which contains essential elements to access 

models and linkages with other components. In integrated MMS, linkages are established in 

the same environment which is built more efficient and shows smoother performance. 

 Components of MMS are: 

i. Model base 

ii. Model development environment (MDE) 

iii. Model execution environment (MEE) 

The environment which MMS has been established is an open-source statistical programming 

language of R. R is comprehensive statistical analysis package, with numerous libraries 

incorporating a vast range of data manipulation techniques.  

Another positive feature of R is the fact that it is open source and free, allowing researchers, 

start-ups, and organizations to an extensive access to a powerful software, to perform 
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statistical analysis. As a result, there would be no need for spending for licenced statistical 

software. 

Integrated MMS is designed and developed in R and its components are elaborated in the 

following sentences. 

Model-base is a collection of computer-based decision models. Its function is similar to a 

database, except that the stored objects are models. The models in the model base can be 

divided into different categories, such as strategic, tactical, operational, and analytical (Ting-

Peng Liang, 2008).  

In the case of dDSS, there are two models at the technical level, relating process parameters 

to a printed layer dimensions. Both models presented below can predict backward, in the 

sense of predicting proper process parameters, leading to desired layer dimension. 
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Figure 24: Pump degree-Print speed model (PuPr) 
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Figure 25: Nozzle distance- Print speed model (NdPr) 

It is an important decision upon the experimenter to define a region of interest for each 

process parameter. Such a range specifies the fact that the parameters change. Process 

knowledge is needed to specify design region. This process knowledge is usually a combination 

of practical experience and theoretical understanding (Montgomery, 2012).  
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For dDSS, for each process parameter, the medium level is defined as a level which is used in 

the most cases. Such a level has been chosen as they are the levels which are used the most, 

while do not introduce excessive pressure on the printer, or affect the quality of the extruded 

material and printed element. For the same reason, the range for each process parameter has 

been exceeded. 

For the case of PuPr model, Too much increase in Pump degree (Pu) results in the excessive 

rise of material temperature, and consequently changing the behaviour of material in a way 

that changes material characteristics in the design phase. Moreover, high Pump degree 

increases friction between extruding material and pump, which resulted in extra pressure on 

pump joints and splashed out the material. On the other hand, low levels of Pu results in 

stocking the pump, because it is not able to direct the material to a 5 to 10-meter hose 

responsible for depositing the material. As a result, Pu has been varied in a range ±10% from 

the medium (usual) pump level. 

For the Print speed (Pr), the situation is less critical, because it has less effect on material 

characteristics and printer machinery. High levels of Pr result in discontinuity in print path, 

while low levels of Pr cause major deformations  in the printed object, increase the time of 

construction, material use and cost of the concrete printing process. So the range of ±18% of 

the average level of Pr, define the range of print speed variation. 

For NdPr model, the range for Pr is assumed to be as defined for PuPr model. Nozzle distance 

has a minimum equal to the height of the nozzle. And its maximum is the nozzle distance 

which in different values of Pr in a defined range, the material is still extruded continuously.  

Ranges and levels of the variation for process parameters in experimentation are elaborated 

in sampling section. 

Model Development Environment (MDE) is used to build the model. It also provides a platform 

on which models can be created, saved, integrated, selected, and maintained if necessary. 

Model Execution Environment (MEE)executes the mentioned models and perform further 

manipulations on models (Ting-Peng Liang, 2008). 

R has been chosen because it provides the environment to integrate different component 

mentioned above and realised mentioned components which are described in an abstract 

way. MMS and specifically model base are the core of the dDSS. 
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Figure 26: MMS components and environments 

III. Problem Processing System (PPS) is the most active component of dDSS which is the 

software engine. PPS recognize the problem and solve it by providing required knowledge 

from MMS, according to user inputs and queries. In the other words, PPS links UI to the core 

of MMS, to provide input needed to derive required knowledge, and finally, represent them 

in the right format (and as is asked) to the used. As the MMS is the core of decision system, 

PPS acts like veins pumping data and knowledge through the whole body of the dDSS. 

Some PPS behaviours are overt (witnessed by the user via PPS emission of PS elements) and 

others are covert (strictly internal, yielding assimilations of knowledge) (Ting-Peng Liang, 

2008). 

The First-order abilities  of PPS are those which appear in front-line of dDSS and are on the 

basis of primary knowledge-manipulation activities within the MMS. These abilities are: 

i. Knowledge acquisition 

ii. Knowledge assimilation 

iii. Knowledge selection 

iv. Knowledge generation 

v. Knowledge emission 

Second-order abilities of PPS are concerned with over- sight and governance of first-order 

abilities within and/or across decision episodes. The abilities mentioned below have an 

important influence on arrangement and interplay of the first order abilities. 

i. Coordination: ability to arrange knowledge-manipulation tasks 

ii. Control: refers to the ability to ensure the quality and sufficiency of knowledge 

processing 

iii. Measurement: the ability to track processing and outcomes within and across decision-

making episodes in terms of desired criteria. 

The environment of developing PPS is MATLAB, as it is a common approach to using it for a 

prototype of a computational system and conduct the further developments in a framework 

of programming language after approving the proof of concept.  
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The reasons are the extensive libraries and packages of MATLAB, its desktop environment 

allowing to work interactively with data, Suitable UI (for reasoning see above) and its strong 

built-in data representation.  

In the case of dDSS, PPS has to communicate smoothly with other components of the system. 

UI is one of the components by which both first and second order abilities of PPS is closely 

represented. It is more efficient to develop both environments in the same environment.  

On the basis of the points mentioned in the UI and PPS part, MATLAB found to be a proper 

choice.  

IV. Database plays a centric part in dDSS, which is a container of designs and generated 

experiments’ data. Those data lead to deriving required knowledge in MMS, controlled, 

measured, coordinated by PPS, represented by UI .  

In the database, specifications of the model base are stored to be accessed by PPS in order to 

perform second order functions on the knowledge, for further processing. Moreover, in a 

database designed experiment configurations has been stored, by which the model is initially 

built. Above mentioned data are stored in the format of CSV. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Database components and format 

 

Below, in an integrated diagram, dDSS has been presented. 
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Figure 28: Extensive overview on dDSS 
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In the next section, the elements will be elaborated by explaining underlying methods and 

details in dDSS components. As a result, the theoretical abilities and functionalities of MMS, 

PPS and database mentioned above will be realized.  

5.4. Methodology 

As it can be seen in Figure previous section, Model Management System (MMS) is the core of 

dimensional Decision Support System (dDSS), containing the models producing the enquired 

knowledge. As a result, in this section, the methodology of constructing models in MMS has 

been elaborated. 

In order to construct underlying models, according to the described method, data generated, 

to provide enough observation for explaining the relations between process parameters and 

single layer dimensions. Data settings, generated and implemented are explained in this 

section.  

 

5.4.1. Design of Experiment (DoE) 
In order to increase the understanding of the behaviour  of layer dimensional deformation, 

data-driven approach has been selected. The required behaviour shed light on the effects of 

influential process parameters on layer deformation. These effects are complex and can be 

hardly explained by mechanistic models, which try to investigate via mechanistic and physical 

rules. 

As a result, data-driven approach creates an opportunity to observe, approximate and explain 

the relationship among process parameters of 3D concrete printing and dimensional 

deformations. Hence, experiments are needed to be designed in order to provide sufficient 

data with right setting to realize dimensional predictions. 

In order to understand what happens to concrete printing process, process parameters under 

investigation, deliberately varied in certain levels, and outputs (layer dimensions) have been 

observed. In the other words, experiments should be conducted in order to understand the 

cause-and-effect relationship. 

Moreover, it is important to determine how process parameters are responsible for the 

observed changes in layer dimensions, develop models relating process and response 

parameters, using the models for process improvement and facilitate decision –making. 

Experiments should be planned and designed to provide required data, that the observations 

can reach the abovementioned goals. 

Well-designed experiments can often lead to a model of system performance; such 

experimentally determined models are called empirical models. A well-designed experiment 

is important because the results and conclusions that can be drawn from the experiment 

depend on to a large extent on the manner in which the data were collected (Montgomery, 

2012).  

There are different experiment strategies:  
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The best-guess approach, which starts with an arbitrary combination of the parameters, 

observe the outputs, switching the levels of one or two parameters, to improve the response 

parameters. This approach is not suitable for the 3D concrete printing process, as the 

technique requires a great deal of theoretical and practical knowledge under study. Moreover, 

suppose the initial best-guess does not produce the desired results. Now the experimenter 

has to take another guess at the correct combination of factor levels. This could continue for 

a long time, without any guarantee of success.  

To understand another drawback, suppose the initial best-guess produces an accept- able 

result. Now the experimenter is tempted to stop testing, although there is no guarantee that 

the best solution has been found (Montgomery, 2012). 

One-factor-at-a-time (OFAT) starts with a baseline set of levels selection, and by considering 

all parameters except one which is varied in the considered range. This parameter varying will 

be repeated to represent the behaviour of response parameters against each of the input 

parameters. The main disadvantage of such a method is the fact that it is not possible to show 

the effect of parameters’ interaction. The one-factor-at-a-time strategy will usually produce 

poor results and the method is less efficient than other statistical methods.  

Design of experiment (DoE) or experimental design, is the name given to the techniques used 

for guiding the choice of the experiments to be performed in an efficient way (Ralston, 2003). 

Three main principles of statistical DoE are replication, Blocking, randomization. 

Replication is repeating the experimentation in order to obtain more precise model and 

estimation of errors in experiments. 

Randomization refers to the order of experiments run, and by including such a principle the 

experiments are not under the influence of previous or subsequent runs. 

Blocking is employed to improve the precision of targets and response parameters. For 

instance, in the concrete printing process, each bag of printable concrete may vary in quality 

and they perform different characteristics. So, this accounted as nuisance factor, which can 

be eliminated by blocking. Each block forms homogenous experimental conditions, in terms 

of batches of concrete. Then the analysis will be done within and between blocks to show the 

dependency of the experiment to the blocking factor and eliminate that. 
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Figure 29: DoE steps 

In the context of 3D concrete printing, DoE provides the possibility of efficiently directing the 

resources toward the response parameters, while considering interactions. As a result, the 

such a strategy for experiment design fits the purpose of making a model to achieve 

dimensional prediction and facilitate the process of decision-making in process parameter 

setting selection. 

5.4.1.1. DoE types 
In this section, the most common types of DoE have been explained, then the criteria to 

choose a method used to create Model Management System (MMS) in dDSS has been 

explained.  

Randomized Complete Block Design (RCBD) is a DOE technique based on blocking, mentioned 

in the previous section. There are always uncontrollable  parameters (nuisance factor) which 

affect the dimensions of a layer, in addition to process parameters under investigations 

(primary parameters). Thus, experiments should be randomized while data generation, so 

averagely, their effect will hopefully be negligible. RCBD is useful when the interest is focusing 

on one particular primary parameter whose influence on the response variable is supposed to 

be more relevant (Ralston, 2003). Hence, blocking technique on the other factors is used , to 

keep the values of the nuisance factors constant. So a batch of experiments is performed 

where the primary factor assumes all its possible values, while possible combinations of the 

nuisance factors are provided, to realise randomized blocking. Number of experiments is 

shown as follows:  

𝑁(𝐿𝑖) = ∏ 𝐿𝑖  𝑘
𝑖=1           

 Equation 1 

Where L is levels of k parameters involved in the experimental investigation. 

Here the aim is to focus on the primary factor, but in the case of dDSS, the effect of all 

considered process parameters are important to be clear, and they have all the same priority 

of investigation. 
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Factorial experiment is a strategy of experimentation allowing the variation of parameters 

together and is an important concept in designing experimentations for engineering 

disciplines. The method can be in two manners, full or fractional. 

In full factorial, Ln experiments are planned to be performed, where n is the number of 

parameters, and L is the levels of investigating parameters. Full factorial is probably the most 

common and intuitive strategy of experimental design (Ralston, 2003).  

In fractional factorial, the number of planned experiment have been reduced to combining k 

parameters out of n number of parameters (Lk), to reduce the cost and time needed to data 

generation. The idea of the fractional factorial design is to run only a subset of the full factorial 

experiments. Doing so, it is still possible to provide quite good information on the main effects 

and some information about interaction effects. The fractional factorial samples must be 

properly chosen, in particular, they have to be balanced and orthogonal. By balanced, we 

mean that the sample space is made in such a manner so that each factor has the same 

number of samples for each of its levels (Ralston, 2003). 

Plackett-Burman is very economical, two-levels, resolution III designs, which its relation is I = 

ABD = ACE = BCDE (A, B, … are parameters under study), estimating the main effects, while 

might be confounded with two-factor interactions. Resolution is an important property and 

ability to separate main effects and low-order interactions from one another. Formally, the 

resolution of the design is the minimum word length in the defining relation excluding which 

its defining relation (Box, Hunter, & Gord, 2005). The method is suitable for making rough 

estimations of the main effects, which makes it a bit unsuitable for dDSS, as interactions are 

not considered. 

Plackett-Burman designs are helpful only for screening the design space to detect the large 

main effects and the sample size must be a multiple of four up to thirty-six (Ralston, 2003).   

The Taguchi method is focusing on finding the best values of the process parameters 

(controllable factors) to decrease the sensitivity of the changes in nuisance factors. As a result, 

the method is also called Taguchi robust parameter design. Taguchi gives information about 

the interaction between the controllable process parameter and the noise parameters, which 

are important for a robust solution.  This method does not handle non-linear dynamics and a 

mathematical model is not derivable from the technique. Moreover, the prediction 

preciseness of the method is not high. 

Response surface Methodology (RSM) consists of a group of mathematical and statistical 

techniques used in the development of an adequate functional relationship between 

responses of interest (dimensional prediction of a printed layer, and a number of associated 

process (or input) parameters. In general, such a relationship is unknown but can be 

approximated by a low-degree polynomial model(Khuri & Mukhopadhyay, 2010). Two 

important models are commonly used in RSM which is first order and second order model. 

The aim of conducting such a technique is: 

I. Establishing a relationship which is able to predict response variables, 

II. Through hypothesises, the level of significance of parameters will be tested, 
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III. To determine the optimum setting of process parameters on the region of interest. 

After this short elaboration on a different type of DoE, next section states the selected method 

to construct the Model Management System (MMS) of the Decision Support System of a 

concrete printed layer.  

5.4.1.2. Selection of DoE method 
As it is mentioned in the previous section, there is a number of DoE techniques   order to be 

implemented for constructing dimensional Decision Support System (dDSS). On the basis of 

the criteria mentioned below, the RSM technique has been selected.  

The number of levels L for each process parameter is an influencing factor in choosing RSM 

method because L provides the possibility to investigate the relationships by considering the 

possible non-linearity. For dDSS, it is important to implement the technique which 

incorporates such a possibilities, as the relationships are not known. As a result, the L bigger 

than 2 will be more suitable to construct MMS models. 

The choice of a suitable DOE technique depends also on the aim of the experimentation. Here 

the aim is: 

to screen the level of significance of process parameters against layer dimensions, developing 

an empirical model and establish a framework to perform further optimizations regarding 

minimizing dimensional inaccuracy.  

As a result, the method should be able to provide good precision in prediction, allowing 

investigating the interaction among process parameters, and providing the possibility of 

incorporating non-linearity of the relation among layer dimensions and process parameters. 

RSM is strong in identifying the critical parameters, the main and interaction effects of 

parameters which provide enough information for experimental studies(Montgomery, 2012). 

Furthermore, the significance of interactions and square terms of variables are more clearly 

predicted in RSM(Mohamed et al., 2015). Also, the prediction accuracy is high, a provide a 

graphical representation of responses and parameters and their interaction. It can be noted 

that RSM is a powerful optimization design allowing multi-objective optimization in cases that 

are required to optimize more than one response. 
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In the case of dDSS, the number of parameters k under investigation is minimum (2 

parameters in two parallel models, see section 5.4.2 ), thus the N number of experimentations 

would not be an important limiting criterion to select DoE technique. But for the cases with k 

more than 2, it is important to take into account N. Because it is directly  affecting the 

resources and time needed to generate and analyse experiments. The graph below shows 

required number of an experiment by a specific technique.  

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen 

that by increasing k, required N is exponentially growing in most cases. Note that central 

composite and Box-Behnken mentioned in the graph, are two design in RSM method which 

will be elaborated in the next chapter. 

5.4.2. Response Surface Methodology (RSM) 
Response surface methodology(RSM), is a collection of methods in mathematics and statistics, 

contributing to the modelling and analysis of problems. The target or response variable is 

dependent on numbers of variable and the ultimate goal of RSM is to optimize the response 

and find the best combination of parameters’ settings to achieve such an optimum. 

For the case of dimensional Decision Support System (dDSS) it is important to draw a 

relationship between process parameters in two models, to predict the single layer 

dimensions.  

Figure 30: Required number of experiments for different DoE methods 

(Ralston, 2003) 
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Figure 31: dDSS models 

As a result, here there are three models, creating functions to link Print speed (Pr) and Pump 

degree(Pu) to layer height(h), top width(t) and bottom width(b). The dimensions are functions 

of Pr and Pu: 

ℎ𝑒𝑖𝑔ℎ𝑡 (ℎ) = 𝑓(𝑃𝑟, 𝑃𝑢) +  ԑ 

𝑡𝑜𝑝 𝑤𝑖𝑑𝑡ℎ (𝑡) = 𝑔(𝑃𝑟, 𝑃𝑢) +  ԑ 

𝑏𝑜𝑡𝑡𝑜𝑚 𝑤𝑖𝑑𝑡ℎ (𝑏) = 𝑞(𝑃𝑟, 𝑃𝑢) +  ԑ 

Where ԑ represent the noise or observed error in the response variables (h, t, and b). 

RSM is used to represent the expected response for h, t and b, which is called response 

surface: 

 

Expected response of height (h)      E(h)= 𝑓(𝑃𝑟, 𝑃𝑢) 

Expected response of top width (t)     E(t)= 𝑓(𝑃𝑟, 𝑃𝑢) 

Expected response of bottom width (b)    E(b)= 𝑔(𝑃𝑟, 𝑃𝑢) 

 

In addition to deriving expected responses via RSM, such response surfaces are represented 

graphically in 3D versus the levels of Pr and Pu, for a better visualisation and understanding 

their shapes. In addition to 3D response surface graphs, the contours of such graphs are 

plotted, in which lines of constant response are drawn in Pr and Pu plane. Each contour 

corresponds to a particular expected values.  

Such response surfaces of E(h), E(t) and E(b) are unknown, Thus, the first step in RSM is to find 

a proper model for the relationship between response variables and the set of independent 
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variables. Here, response variables are height (h), top width(t) and bottom width (b), and 

independent variables are process parameters of Print speed (Pr) and Pump degree(Pu). 

RSM is a stepwise approach, tries to find the relationships from the simplest explanation and 

enhance the model if needed by adding more terms to explain the relationships. 

Usually, a low-order polynomial in some region of the independent variables is employed. If 

the response is well modelled by a linear function of the independent variables, then the 

approximating function is the first-order model (Montgomery, 2012): 

𝑦 =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

 +  ԑ 

Where 𝑥𝑖  are independent variables (i=1,2,…k) involved in modelling response variable of y. 

This model is also called pure linear function, as the interaction among the independent 

variables are not considered. In such a model investigates the main effects of independent 

variable or process parameters in the case of dDSS. 

Two variables have interaction on response variable y when the effect of each variable on y is 

not the same, for different values of the other variable. Another step in RSM is to incorporate 

the effect of interaction between process parameters under investigation. This step helps to 

shed light on the manner which parameters are interacting to influence on response variables 

which are layer dimensions in dDSS. 

This effect is studied by adding the term of cross-product 𝑥1𝑥2 representing the two-factor 

interaction between the design factors. Because interactions between factors is relatively 

common, the first order model with interaction is widely used (Montgomery, 2012). Higher-

order interactions can also be included which is not the case for dDSS, as there are only two 

process parameters under study. Such a model is called linear interactive model in this 

research, as it contains the interaction effect, in a linear relationship. 

𝑦 =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑖<𝑗

+  ԑ 

The next step seeks to explain the possible curvatures in the system by polynomial higher 

degree. RSM conduct such an investigation by fitting the model with full quadratic model, a 

second-order function for response variable y: 

𝑦 =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑖<𝑗

+ ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

 +  ԑ 

Usually by couscous implementation of tools and techniques (transformations of responses 

and factors, for example) in fitting processes, finding an industrial process that requires a 

third-order model is highly unusual. Therefore, the focus is on designs that are useful for fitting 

quadratic models. As we will see, these designs often provide a lack of fit detection that will 

help determine when a higher-order model is needed (Croarkin & Tobias, 2003). 
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Obviously, it is probable that a polynomial model will not be a reasonable approximation of 

the true functional relationship over the entire space of the independent variables, while for 

the limited region of interest they usually work quite well. 

The method of least squares is used to estimate the parameters in the polynomials 

approximation. The response surface analysis is then performed using the fitted surface. in 

the case that the fitted surface is an adequate approximation of the actual response, then 

analysis of the fitted surface will be approximately equivalent to analysis of the actual system. 

The model parameters can be estimated most effectively if proper experimental designs are 

used to collect the data. Designs for fitting response surfaces are called response surface 

designs (Montgomery, 2012). 

By the sequential procedure, after suggesting the proper approximation of response variable,  

RSM follows the objective of finding the optimum response, by lead the experimenter in an 

efficient manner toward the general vicinity of the optimum.  

This sequential procedure also starts to form the first order model, if there are small curvature 

in the model. Once the region of optimum was detected, an elaborated model such as linear 

interactive or second order model is needed, because usually lack fit of a first-order model is 

indicated (Montgomery, 2012). At that time, additional experiments are conducted to obtain 

a more precise analysis, and thus, reach the location of the optimum.  

The ultimate goal of the RSM is to determine the optimum value of response variable, which 

in the scope of dDSS is not the objective. In addition to the time limitations due to the scope 

of graduation projects, there is a main practical reason, skipping the optimization step. 

It is preferable to minimize dimensional deformations, in order to reach the expected final 

height and increase dimensional accuracy. There are more several parameters affecting 

dimensional deformation which are not considered in the models created as the core of dDSS. 

Hence, optimizing the dimensional accuracy of these models will not lead us to the optimum 

responses for dimensions. Moreover, since there is limited control over the process itself, the 

concrete printer operator (researcher) should be in full control of the process. He or she 

control process parameters including Print speed and Pump degree, in relation to several 

factors which dimensional accuracy is one. So optimizing the dimensional deformation and 

derive proper setting will not necessarily lead us using derived process parameters.  

For the sake of providing a framework suitable for further developments, to create DSS which 

contains optimizations, RSM is proposed. The method is also able to handle multiple response 

optimizations which give more strength to DSS, as multiple important response variables are 

considered.  

RSM may seem to be a like a regression problem, however, there are several intricacies in this 

analysis and in how it is commonly used that are enough different from routine regression 

problems. These intricacies include the common use (and importance) of coded predictor 

variables; the assessment of the fit; the different follow-up analyses that are used depending 

on what type of model is fitted, as well as the outcome of the analysis; and the importance of 

visualisation (Lenth, 2009). 
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According to the need of designer and the expected preciseness of the model, RSM provides 

piece-by-piece, iterative experimentation that evolves the model.  

In the next section, steps used of modelling according to RSM is explained. 

5.4.2.1. RSM design assumptions 
In order to properly fit and analyse response surfaces, certain aspects should be considered 

to come up with the suitable experimental design.  Features which are essential for a proper 

experimental design of RSM are set as criteria to choose the experimental setting and design, 

which will be mentioned in this section. 

 

the Central Composite Design (CCD) is selected as response surface design, which generally, 

contains  2k factorial (or fractional factorial of resolution V) with nF factorial runs, 2k axial or 

star runs, and nC centre runs (Montgomery, 2012). In the case of dimensional Decision Support 

System (dDSS), 4 factorial, 4 axial and 5 centre runs have been assumed. For factorial and axial 

runs the replications are not considered. The figure below shows a design for factorial, axial 

and centre points when k=2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCD is a popular class of experimentation design as it is an efficient approach allowing 

sequential experimentation:  

I. First, a block of designed experiments with the combination of 2k  has been used 

to fit a first-order model. Pure linear model is constructed, if the design does not 

show adequate fitness, cross-production of the independent variables will be 

Figure 32: CCD design points 
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incorporated to seek the effect of parameters interaction on response variables 

and the fitness of such model against the linear interactive model.  

II. The second step is to add axial runs (2k), allowing for a second-order 

approximation, which will be followed by model adequacy check.  

So in order to perform required experimentation step by step, when is needed, they are 

designed in blocks. Blocks control the certain experiments in each block, to be performed in a 

homogeneous  situation. Thus the variation between experimentation conditions minimized. 

However, in response surface, the estimation of the polynomial effects are often influenced 

by the block effect. The desired blocking strategy is to minimize the blocking effect on the 

model coefficients. Orthogonal blocking provides the same estimate of the model coefficients 

as would have been obtained by ignoring the blocks (Wang, Kowalski, & Vining, 2009). It is 

preferable to design orthogonal blocks, as it eliminates the effect of blocking on the nature of 

the response surfaces.  

Now, foundations of CCD design is described. The fundaments of CCD design to determine 

the level of preciseness of prediction in the design region. This is of importance, as the 

behaviour of the region is unknown to us. 

An important aspect of response surface analysis is using an appropriate coding 

transformation of the data. The way the data are coded affects the results of finding the path 

toward the optimum responses in design region. In the other words, it affects the results of 

canonical analysis and steepest-ascent analysis . As optimization is not in the scope of this 

research, for more information about the mentioned analyses, see Montgomery, 2012. Using 

a coding method that makes all coded variables in the experiment vary over the same range 

is a way of giving each predictor an equal share in potentially determining the path, leading to 

the general vicinity of the optimum. Thus, coding is an important step in response surface 

analysis( Lenth, 2009). 

Coding implemented here when there are two natural variables of Ƞ and ɵ. Functions shown 

below transforms the data to ranges [-1, +1] for all variables and creates a coded design 

region.  

𝑥1 =
Ƞ − (

Ƞ𝑚𝑎𝑥 − Ƞ𝑚𝑖𝑛

2 )

(
Ƞ𝑚𝑎𝑥 − Ƞ𝑚𝑖𝑛

2 )
 

𝑥2 =
ɵ − (

ɵ𝑚𝑎𝑥 − ɵ𝑚𝑖𝑛

2 )

(
ɵ𝑚𝑎𝑥 − ɵ𝑚𝑖𝑛

2 )
 

As it has been mentioned before, Randomization is an important concept in DoE methods, as 

well as RSM. Randomization makes sure that the experiments are not under the influence of 

previous or subsequent runs. So, the order and settings of parameters n experiments are 

designed randomly.  
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Another basis for CCD design is rotatability. A design is Rotatable when the variance of the 

predicted values of y is a function of the distance of a point from the centre of the design. 

Before a study begins, little or no knowledge may exist about the region that contains the 

optimum response. Therefore, the experimental design matrix should not bias an 

investigation in any direction (Croarkin & Tobias, 2003). As a result, rotatability is a reasonable 

assumption to base the design.  

On the other hand, the prediction preciseness of response variable y can be a function of 

distance and direction from the centre point.  Such a design which defines Cuboidal Region of 

Interest, locates the axial points on the centres of the faces of the cube, as it is shown for a 

design with 3 factors x1, x2, and x3 (k=3). This variation of the central composite design is also 

sometimes used because it requires only three levels of each factor, and in practice, it is 

frequently difficult to change factor levels. However, note that face-centered central 

composite designs are not rotatable (Montgomery, 2012). 

 

  

 

 

 

 

 

There are two parameters in the design that must be specified: the distance α of the axial 

runs from the design centre and the number of centre points nC: 

I. Runs on centre points are conducted in order to check the curvature of the design 

region. As a result, it is used to check the fitness of both first and second-order. Moreover, 

centre runs are chosen to be used as the estimate of the experimental error. nC between 3 

and 5 within each block (mentioned in sequential experimentation description) would provide 

sufficient runs to investigate the error. 

II. Distance from centre α defines the rotatability of design region. For α=(nF)1/4, rotatable 

CCD  will be achieved, where nF is the number of points used in the factorial portion of the 

design. By defining α = 1, Cuboidal Region of Interest will be defined.  

There are three types of CCD designs, which are defined by the place of star points and 

distance from design centre α. 

I. Circumscribed Central Composite (CCC) designs are the original form of the CCD, in 

which axial points are at some distance α from the centre based on the properties desired for 

the design and the number of factors in the design. The star points to establish new extremes 

for the low and high settings for all factors. These designs are rotatable and require 5 levels 

for each factor. CCC provide high-quality prediction over the whole design region (Croarkin & 

Figure 33: Cuboidal Region of Interest (Montgomery, 2012) 
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Tobias, 2003). In CCC design, orthogonal blocking is possible by selecting the proper α in order 

to set (as traditionally is discussed in literature for a rotatable design) (Wang et al., 2009): 

i. all the sums of products of the independent variables within each block are zero, 

ii. the fraction of the total sum of squares for each variable contributed by each block 

must be proportional to the number of observations in each block. 

Figure below shows CCC design for k=2, which results in 𝛼 = √2, the radius of the circle, 

showing the rotatability of design region .  

 

 

 

 

 

 

 

 

 

 

II. Inscribed Central Composite (CCI) suites for those situations in which the limits 

specified for design region are limited. The CCI design assumes the range of axial points as the 

boundary and defines a factorial or fractional factorial design within the boundary. CCI design 

is a scaled down version of CCC design with 5 levels required for each factor. CCI is rotatable, 

while its quality o prediction is less accurate for the entire design region, compared to CCC 

(Croarkin & Tobias, 2003). CCI provides the possibility of orthogonal blocking, which is 

beneficial to eliminate the blocking effect in modelling. The figure below shows CCI design for 

k=2. 

Figure 34: CCC design region 
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III. Face centred Central Composite (CCF) In this design α = ± 1 which indicates that, the 

axial points are at the centre of each face of the factorial space. CCF requires 3 levels of each 

factor. In CCF, it is not possible to design orthogonal blocks, but it is possible to track the 

blocking effect of gathered data, which will be elaborated on  the method analysis section. 

The figure below shows CCF design for k=2. 

 

 

 

 

 

 

 

 

 

 

 

After elaborating on the assumptions of design experiments, the next section describes the 

analysis details in RSM. 

5.4.2.2. RSM analysis steps and details 

In this section, first steps of RSM design and analysis is elaborated and then details each step 

analysis is described. The first step is DoE (Design of Experiment) which design required 

experimentation as described in the previous section, followed by stepwise data generation 

Figure 35: CCI design region 

Figure 36: CCF design region 
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in order to fit models, relating response variables (printed layer dimensions) and independent 

variables ( process parameters of Pr and Pu). 

Model fitting starts with the simplest relation among response and independent variables and 

moves toward higher orders of approximation in loops, including analysis and adequacy check 

steps. In the following figure, RSM design and analysis are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DoE 

• I. CCD method selection 
• II. Assumptions definition 
• III. DoE 
• IV. Data generation 

Model fitting 

• I. First Order(FO) 
• II. Two Way Interaction(TWI) 
• III. Second Order(SO) 

Analysis 

• I. ANOVA 
• II. Factors’ significance  

Adequacy 
check 

• I. Normality check 
• II. Residual analysis  

Plots 

• I. 3D surface plots 
• II. Contour plots 

Figure 37: RSM steps 
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If the analysis does not satisfy certain expectations, higher order model will be  

constructed.  On the other hand, if analysis shows sufficient performance, adequacy check will 

be performed. In the same scenario, If the model showed adequate performance, the model 

would be considered as acceptable, otherwise, higher order model will be constructed and 

the same process will be repeated again.  

If SO model does not perform adequately  in either step of analysis or adequacy check, 

experimentation should be redesigned. Modifying initial assumptions such as selection of 

process parameters, ranges or levels, will probably lead the experimenter to achieve proper 

model. 

Model is tested to be fitted to data by least squares. Replications on centre point are used to 

calculate the experimental error of the model. Through the Analysis of Variance (ANOVA) 

table, the influences of independent variable through their coefficient and significance level 

is tested. The level of significance is shown by P-value and is tested against confidence interval 

(which is usually 95%). 

Another information which can be derived from ANOVA is a lack of fit of FO, TWI, and Pure 

quadratic models. It states the extent which a model is fitted to data according to the assumed 

order of approximation. Its calculation is based on the single-degree-of-freedom sum of 

squares.  Using lack of fit and significance of models, significant variables and suitable order 

of a model can be understood.  

R-squared is another useful information which can be derived from ANOVA and it measures 

the proportion of total variability explained by the model. A potential problem with this 

statistic is that it always increases as factors are added to the model, even if these factors are 

not significant. The adjusted R-square is adjusted for the “size” of the model, that is, the 

number of factors. The adjusted R- square can actually decrease if nonsignificant terms are 

added to a model. It is a measure of how well the model will predict new data (Montgomery, 

2012). 

Adequacy check consists of two tests of assumptions, Normality assumption, and residual 

analysis. 

I. An extremely useful procedure is to construct a normal probability plot of the 

residuals. A normal probability plot of the raw data is used  to check the assumption of 

normality when using the t-test. In the analysis of variance, it is usually more effective (and 

straightforward) to do this with the residuals. If the underlying error distribution is normal, 

this plot will resemble a straight line. In visualizing the straight line, place more emphasis on 

the central values of the plot than on the extremes (Montgomery, 2012). 

In general, moderate departures from normality are of little concern, while, an error 

distribution that has considerably thicker or thinner tails than the normal is of more concern 

than a skewed distribution. 
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II. Residual analysis is performed by plotting residuals versus fitted values. If the model 

and assumptions are correct, the residuals should be structureless, and a systematic trend 

could not be found in residual versus fitted plot.  

Finally after constructing the mode and conducting required analysis and tests, response 

surfaces is visualised to lead the experimenter and decision maker toward the desired 

response.  

Usually, computer programs and soft wares are used to proceed RSM design and analysis as 

thy increase the speed and visualisation of the results.  Moreover, they contain elements of 

sequential steps all in a package. By such integration, performing RSM design and analysis has 

been improved.  

As it is explained in section 5.4.2, R programming language has been employed in order to 

conduct RSM design and analysis. 

5.5. Sampling Procedures  
In this section the data used, RSM assumptions and details used  to build models in the MMS 

of dDSS are elaborated: 

I.  “PuPr”: considering Print speed (Pr) and Pump degree (Pu) as process parameters 

to affect layer dimensions. 

II. “NdPr”: considering Print speed (Pr) and Pump degree (Pu) as process parameters 

to affect layer dimensions. 

In this section, assumptions and details are described for the both models. 

Design region for two process parameters of Print speed and Pump degree is shown in the 

figure below (see 4.4.2 for elaboration). 

For PuPr model, transformed variables of Pr and Pu are needed in order to be used in RSM 

design and analysis. Functions below transform Print speed and Pump degree, where min and 

max values of them represent the lower and higher values of the range mentioned above the 

result of such transformations are coded in the range of [-1,+1]. 

a b 

Figure 38: Design regions, a) PuPr, b)NdPr 
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𝑃𝑟 =
Print speed − (

Print speed𝑚𝑎𝑥 − Print speed𝑚𝑖𝑛

2
)

(
Print speed𝑚𝑎𝑥 − Print speed𝑚𝑖𝑛

2 )
 

 

𝑃𝑢 =
Pump degree − (

Pump degree𝑚𝑎𝑥 − Pump degree𝑚𝑖𝑛

2 )

(
Pump degree𝑚𝑎𝑥 − Pump degree𝑚𝑖𝑛

2 )
 

In order to perform RSM design of the experiment, data which was produced previously and 

covers the design range of the current graduation research and development project. Print 

speed(mm/min) in the data set is in the range of [7200,10400], where the common speed is 

8800 mm/min (mid-level)and Pump degree (Hz) [27,33] with the common pump of 30 Hz (mid-

level). Both process parameters were varied in three levels of min, mid and max.  

For NdPr model, transformed variables of Nd and Pr are defined as follows: 

𝑁𝑑 =
Nozzle distance − (

Nozzle distance𝑚𝑎𝑥 − Nozzle distance𝑚𝑖𝑛

2 )

(
Nozzle distance𝑚𝑎𝑥 − Nozzle distance𝑚𝑖𝑛

2 )
 

𝑃𝑢 =
Pump degree − (

Pump degree𝑚𝑎𝑥 − Pump degree𝑚𝑖𝑛

2 )

(
Pump degree𝑚𝑎𝑥 − Pump degree𝑚𝑖𝑛

2 )
 

 

The range of Nozzle distance(mm) is defined [25,55] when its mid-level is 40 mm, and the 

range for Print speed is the same with PuPr model. 

Below the transformed design region of the data is illustrated.  
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Previously printed data in the database was used for RSM models. In Appendix 1 the printed 

setup for previous data generation is shown. As there are 3 levels of variation for process 

parameters, the CCI design described in 5.4.2.1 was chosen. As a result 2k factorial, 2×k axial 

point runs is needed without considering the replications.  Moreover for model error 

estimation, 3 to 5 runs are needed on centre points. Factorial points are those with all 

combinations on min and max level of variables. Axial points are a combination of mid for one 

variable and min and max for the other variable. 

 The following assumptions have been considered for RSM design and analysis, match the 

requirements of CCF design and available data. 

 

Table 3: PuPr design specifications 

Model PuPr 

Number of process parameters 2 

Process parameters Pu*, Pr* 

Number of factorial points (k) 4 

Number of axial points 4 

Number centre points  5 

Replications of factorial point 2 

Replications of axial point 2 

Replications on centre points 1 

Number of blocks 2 

* Pu and Pr stand for Pump degree and Print 

speed  

 

a b 

Figure 39: Coded design regions, a)PuPr , b)NdPr 
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Table 4: NdPr design specifications 

 

 

 

 

 

 

 

 

Dataset used to build the stepwise approximation is shown in Appendix 2, which is printed 

prepared and measured as following.

Model NdPr 

Number of process parameters 2 

Process parameters Nd*, Pr 

Number of factorial points (k) 4 

Number of axial points 4 

Number centre points  3 

Replications of factorial point 1 

Replications of axial point 1 

Replications on centre points 1 

Number of blocks 2 

* Nd stands for Nozzle distance 
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Figure 40: Printing tool path 

Figure 43: Overall Printing line numbering  

Figure 41: Printing path numbering, different Nd & Pr 

Figure 42: Printing path numbering, different Pu & Pr 



88 

 

 

Figure 46: Preparing samples to be cut 

Figure 44: Overview of samples with same Pu 

Figure 45: Cutting samples 

Figure 47: Samples to be measured 
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5.6. Data pre-processing 
Before conducting the main analysis according to the design proposed in section 5.5, it is 

important to perform pre-processing. 

For models under investigation, data measured for each setting of process parameters in two 

models of PuPr(considering Print speed and Pump degree as process parameters-see 5.4.2) 

and NdPr (considering Nozzle distance and Print speed as process parameters-see 5.4.2), has 

been plotted to check the extent which measurements of layer dimension (height, top and 

bottom width) are scattered comparing to each other, in a specific setting.  

As a result, an initial idea of data fluctuations would be derived. Data were generated in 

replications, and under fixed process conditions(when process parameters kept constant). 

They have been produced under constant process parameters, which were assumed in this 

research, but there may be more variables which are out of the boundary of investigation and 

have an influential impact on layer dimensions(response variables of this research). As a 

result, by initial pre-processing, a better idea about the possibility of missing variable(s) is 

reached. 

5.6.1. PuPr model 
Results of comparing data between each replication of a specific process setting showed that 

the noise can be ignored. Hence, the effect of unconsidered process variables (parameters) is 

neglected able. 

As a result, the range of dimension variation is clarified and a reasonable tolerance of 1 mm 

(4%) for height and top width, and 2 mm for bottom width(8%) has been shown to be 

reasonable. So values in the range of the tolerance are assumed to be acceptable both for 

prediction derived and measurements performed.  

In the pre-processing, for each setting(with specific Pu and Pr), outliers which do not lay in the 

range of tolerance have been ignored. In most cases, there were no outliers, while in some 

cases there was maximum of 3 points out of the tolerance, between 10 measured point for 

each setting. Then the representative point is the average, for each printing setting, with 

specific levels of process parameters. Representative point is used for RSM design and analysis 

of PuPr model. 

In Appendix 3 pre-processing done for PuPr has been shown, in which data are processed in 

the same sequences as they were printed. Graphs show the fluctuations of the points in a 

setting with specific pump degree and print speed.  

Another pre-processing analysis studied the correlation between response variables of layer 

Height, Top width, and Bottom width. The correlation between layer dimensional 

deformations has been investigated, As it is presented for some analysing three printed lines 

with specific settings for process parameter in Appendix 4, there seems to be not noticeable 

correlation among layer dimensional deformation. 

As a result, the assumption of independent response variables, used for RSM design and 

analysis of experimental design seems to be reasonable. However, more investigations should 
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be performed to investigate the correlation, as physical law suggest such correlations, 

especially between top width and bottom with, as decreasing in one, results increasing in 

another.  

Moreover, in the case of sequential estimation of layer dimensions, in a research done by the 

author before, it can be seen that after estimation of Height in the first step, the Top bottom 

is estimated using Height estimated in the first step of the approximations. Both Height and 

Top with shown to be significant in determining the bottom width of a printed layer.  

5.6.2. NdPr model 
Data available for NdPr, which enables different variation of Nd (Nozzle distance) and Pr (Print 

speed), contains 1 replication of a specific process setting, except for the case mentioned 

below. A number of replications are 2 and details are shown in Appendix 5. 

I.  Nd=25 mm (min level in design range) and Pr=7200 mm/min (min level in design 

range),samples 1 and 5 

II. Nd=25 mm and Pr= 8800 mm/min, samples 2 and 9. 

Hence, These 2 process setting were analysed to track the effect of the possible missing 

variable(s). 

As it can be seen In data presented at Appendix 5, the deviation between two sets of each 

process setting is noticeable. Tolerance of 1mm to 1.5 mm for Height and Top width, and 2 

mm to 2.5 mm seems to be reasonable, but as it can be seen in graphs bellow, the deviations 

are more than the tolerance. Graphs below show only one comparison for each setting, and  

the other layer dimensions show the same behaviour.  

 

Figure 48: Output discrepency in two replications of a single setting 
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Figure 49: Output discrepancy in two replications of a single setting 

One of the possibilities is the presence of “lurking” nuisance factor(s), which are unknown 

and uncontrollable. 

Another possibility is that the source of nuisance is a factor(s) is known but uncontrollable. 

Such a factor, in this case, may be temperature fluctuations of material which is influenced by 

the constant pump operation. The pump was kept at a constant level (mid-level), and pump 

usually shows oscillations in its temperature and pressure, affecting material characteristics. 

Such effects on material characteristics can result in showing different viscose behaviour 

under constant process setting of this research. 

Another reason may be because of the levelling imperfection in the print surface, which 

results in variation of Nozzle distance, in addition to what it has been planned and assumed. 

Hence, at a certain Nozzle distance, actual Nozzle distance is different as printing tool path is 

not levelled perfectly.  

Because of such a fluctuation between two replications of the same process setting, it is more 

logical to focus on repeating the data generation, by trying to put control as much as it is 

possible on levelling of the printing tool path, or making the design of experiment robust 

against lurking variable.  

Because of the scope of this research, new design for NdPr is skipped and the focus is laid on 

PuPr model. 

In the following section, RSM analysis is performed and elaborated.  

5.7. Results and adequacy check 

 
AS it is mentioned in section 5.5, RSM analysis is a stepwise approximation, which requires 

validations and adequacy  

RSM analysis is performed in R statistics,  according to CCI design of the experiment, with the 

data shown in Appendix 2. PuPr model is approximated stepwise as follows: 
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I. First order approximation for Height, Top and Bottom width, only main effects 

II. First order approximation Height, Top and Bottom width, main effects and interactions 

III. Full second order  approximation Height, Top and Bottom width 

In the same manner, the analysis is performed stepwise, reviewing the following elements 

within each model (approximation): 

I. Lack  of fit 

II. Factor significance 

III. Adjusted R-squared  

After studying the abovementioned elements, adequacy checking containing the following 

analysis have been tested: 

I. Normality check: to test the normality assumption 

II. Residuals analysis: to examine the deviation of predicted data from the actual 

measured values, implemented in RSM model approximation.  

The analysis and adequacy check steps are done in a loop, for each type of approximations 

mention above. When the criteria are met, the effort of design and analysis of the higher order 

approximation is stopped, and model derived should be verified by generating verification 

data and analysis (section 5.8).  

In this research and development project of dDSS, previous data is used, hence, the benefits 

of stepwise data generation and analysis are not applicable. On the other hand, there is the 

opportunity to construct all types of approximations, compare them and reach the most 

suitable model according to the data in hand.  

As data used for the approximations are limited in numbers, more reliable conclusions are 

made in the validation phase, where more data points are used to test the adequacy and the 

precision of models’ predictions. 

5.7.1. First order, main effects approximation 
Factorial points along with centre points, as the initial block is used to fit the first order model, 

investigating the influence of main effects on response variables in PuPr model. Linear model 

fit is done in R statistics and the first table as an output is ANOVA table, showing the least 

squares estimate of the coefficients of coded factors described in the previous section, along 

with their errors, t-values, and P-values (Lawson, 2015). From this table, significant terms of 

the models are clarified.  

The second table shows the ANOVA table from the fit, for the first order main effects model. 

F-test is performed to check the adequacy of the approximation and “Lack of fit”. If there is a 

significant lack of fit (P-value< 0.05), it will be inferred that the model is not adequate for 

prediction.  
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I. Below output for Height is shown: 

 

 

From the first ANOVA table, I can be seen that both Pr and Pu which indicate the main effects 

of the process parameters are significant, as P-value is smaller than 0.05. This can also be 

confirmed through the second ANOVA table where first order model is showed to be 

significant ( FO(Pu,Pr) ). 

F-test for model fit indicates that the model has not significant lack of fit (P-value>0.05) which 

means that the model has shown enough adequacy. Hence, the prediction from the model 

can be considered as accurate as running additional experiments, as long as no lurking 

variables or process parameters change before additional experiments can be run (Lawson, 

2015).  Adjusted R-squared is close to 1which show the high precision in the approximation. 

Adequacy checks step (see section 5.5) is elaborated by conducting normality check and 

residual analysis. As shown below, data approximately lay on the straight line indicating the 

acceptable level of normality. So the assumption of the normality is approved. 

* Pu and Pr stand for Pump degree and Print speed  

 Figure 50: First order approximation ANOVA 



94 

 

 

Figure 51: First order Q-Q plot 

Quantiles are cut points dividing the range of a probability distribution (here normal 

distribution) into contiguous intervals with equal probabilities, or dividing the observations in 

a sample in the same way. 

The graph below shows residual; analysis of residuals (mm) versus fitted values (mm). As it 

can be seen in the plot below, the min and max range of residuals are 0.5 mm (2%) which is 

under the tolerance rate derived in pre-processing phase mentioned in section 5.6.  

On the other hand, it can be seen that there is  a systematic trend in scattered residuals, 

indicating the need of higher order approximation for the model. Although the imprecision is 

neglect able (2%), more terms are added to an approximation to reach the most suitable 

model.  
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Figure 52: First order residual plot 

II. Top width approximation results in the following output: 

Figure 53: First order approximation ANOVA 
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All main effects are shown to be significant, with considerably good prediction precision 

(adjusted R-squared), while there is a slightly significant lack of fit for the proposed model, as 

it is 0.0421, close to the limit of 0.05. It can be suggested that such lack of fit be considered as 

neglectable, after performing residual analysis and seek to possibility and the extent of 

systematic higher order trend. 

 

Figure 54: First order residual plot 

Moreover, according to the plot presented below,  

Although the deviations of the residuals are within the defined tolerance of 1 mm (4%), but 

the second order trend can be seen in the analysis. Hence, the approximation continues to 

incorporate additional terms of process parameters.  

Normality check seems to be violated especially as it may have a systematic trend showed 

below, which probably indicates the skewness of data to the right of the normal distribution 

bell shape curve. 
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Figure 55: First order Q-Q plot 

III. Bottom width showed the following behaviour in analysis: 

Figure 56: First order approximation ANOVA 
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First order showed a significant level of process parameters, preciseness and insignificant lack 

of fit. TH analysis is followed by adequacy check. 

In the normality plot, it can be seen that the data seems to violate the normality assumption, 

as , in the tales of data, deviations become considerably bigger. This effect is known as fat tale 

effect. One remedy is transforming the data, but first, here higher order approximately will be 

performed, by adding extra terms of a process parameter in approximation model. 

 

Figure 57: First order Q-Q plot 

The residual analysis shown below, however, seems to be randomly scattered around the 

baseline, which is preferable as it is trendless. All residual points are scattered in the defined 

range of tolerance which is 2 mm (8%). 
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Figure 58: First order residual plot 

5.7.2. First order approximation, main and interaction effects 
I. Approximation output shown below states the fact that interaction of Pu and Pr, is not 

statistically significant in approximation. It can be approved by P-value for two-way 

interaction as well.  

By including the interaction factor, the model still shows an insignificant lack of fit, however, 

the prediction precision has been decreased as R-squared dropped from 0.97 in the first order 

main effect model to 0.934 in this model. 

Main and more important improvement has been seen in adequacy check. While the 

normality check is passed, as shown in the Q-Q plot below, the systematic trend observed in 

Figure 59: First order approximation with interaction ANOVA 
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the first order main effect, has been smoothened. Although there is still slightly systematic 

trend. Such a trend should be tried to get eliminated in full quadratic approximation.  

 

Figure 60: First order approximation with interaction Q-Q plot 

 

Figure 61: First order approximation with interaction residual plot 

 

II. For Top width approximation, from both ANOVA tables, a fact can be inferred that the 

interaction between Pu and Pr is statistically significant. In the other words, in print speed and 
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pump degree has a different effect on the value of the Top width of a printed layer, when one 

variable is constant and the other variable is being changed.  

 

Figure 62: First order approximation with interaction ANOVA 

There is of lack of fit, indicating that the prediction is almost as precise as generating more 

data and perform prediction. Moreover, the precision of Top width prediction has been 

improved as adjusted R-squared is improved from 0.96 in the first order main effect model to 

0.95. 

Normality check is approved as the scattered data in Q-Q model, almost lays on a straight line 

of normality. 
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Figure 63: First order approximation with interaction Q-Q plot 

It seems that the curvature suggested to response surface of Top width prediction, 

smoothened the systematic trend of the linear main effect model. Residuals are scattered 

almost symmetric relative to the baseline.  

 

Figure 64: First order approximation with interaction residual plot 

Although this model seems to show reasonable performance, while its adequacy has been 

met, but since there is data available to perform the second order approximation, a  full 

quadratic model is constructed. Moreover, as it is mentioned at the beginning of the section, 
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final judgment is made after validation phase, as makes more data available to judge the 

fitness and adequacy of the prediction.  

III. Adding interaction effect of pump degree and print speed is shown to not be 

significant, while the prediction precision has been dropped slightly around 0.02 of adjusted 

R-squared. 

 

Figure 65: First order approximation with interaction ANOVA 

Normality check has been improved as there is no trace of fat tale effect comparing to linear 

main effect model. 

 

Figure 66: First order approximation with interaction Q-Q plot 

Prediction performed by first order model with interaction is reasonably adequate, as residual 

analysis shows the random scattering of data around baseline.  
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Figure 67: First order approximation with interaction residual plot 

On the basis of the same reasoning mentioned for linear interaction model of Top width, 

higher order approximation is performed and final judgement is awaiting the validation 

section. 

5.7.3. Second order approximation, PuPr model 
I. Second order approximation is performed by adding the quadratic main effects of 

variable which are print speed and pump degree.  

From the second table of ANOVA it can be concluded that Pure quadratic (PQ) terms of Pu and 

Pr, have not significant effect of model precision, because the P0-value is calculated 0.1548, 

which is far bigger than the limit of 0.05. But closer look through the first ANOVA table, it 

seems that the quadratic main effect of pump degree has slightly significant effect on Height 
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prediction of a printed layer, as P-value is close of 0.05, while showing insignificant lack of fit. 

 

Figure 68: Second order approximation ANOVA 

Deviations from the normal straight line can be acceptable from the range close to  than ±2. 

But normality assumption seems to be violated as there is the effect of fat tails, in the range 

quintile range close to the mean 0 (w axis of Q-Q plot).  

 

Figure 69: Second order approximation Q-Q plot 

On the other hand, residual analysis shows random scatterings of data around baseline, which 

indicates that the second order approximation is an adequate estimation. Such an 

approximation cannot be reliable as the normality check has been rejected. Further 
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discussions on the most suitable approximation on Height is elaborated in discussion, 

according to the results shown in this section and validation phase. 

 

Figure 70: Second order approximation residual plot 

II. For Top width prediction adding quadratic main effects has shown the point that Top 

width prediction is significantly influenced by the quadratic effect of print speed. There is no 

lack of fit in second order model, while showing precise prediction as adjusted R-squared 

suggests.  

 

Figure 71: Second order approximation ANOVA 
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Normality check is shown that the data can be assumed to be distributed normally distributed. 

The data showed to be plotted on the straight line of normality, with a better preciseness, 

comparing to first order interaction model of Top width.  

 

Figure 72: Second order approximation Q-Q plot 

Residual analysis shows improvement in adequacy of the prediction, as there is no more 

systematic trend and data seems to be scattered more randomly around the baseline. 

 

Figure 73: Second order approximation residual plot 

III. Approximation output for Bottom width prediction has shown that adding quadratic 

effect of pump degree has not significant influence on value of Bottom width. On the other 
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hand, quadratic term of print speed has significant effect on the model, suggesting the pretty 

much reasonable prediction precision of adjusted R-squared of 0.975 and not suggesting any 

lack of fit. 

 

Figure 74: Second order approximation ANOVA 

Normality check however, shows some deviation from +1 quantile of the mean value 0, with 

normal distribution, containing the standard deviation of 1.  This deviation seems to be 

increase in quantiles closer to +2. 

 

Figure 75: Second order approximation Q-Q plot 
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Residual analysis however, shows randomness adequacy of the prediction, but since the 

normality assumption seems to be violated, this model is not the adequate representative of 

an approximation. 

 

Figure 76: Second order approximation residual plot 

5.8. Validation 

5.8.1. Initial validation 
The validation phase is important as it finalized the model selection, by examining proposed 

models in previous chapter. In this section, residual analysis has been performed for models 

which showed good performance, adequacy, and while do not violating the normality 

assumption.  

Dataset shown in Appendix 6, which was previously produced has been used for validation 

response surfaces proposed for PuPr model, as the core of dDSS, linking single printed layer 

dimensions to process parameters of Pump degree (Pu) and Print speed(Pr).  

50% of the total data is used for validation, in which there are three ranges of data, for process 

parameters settings. “Inside the range” contains data which their level of Pr (range of 

[7200,10400] mm/min) and Pu( range of [27, 33] Hz) are varied in the design region (see 

section 5.4.2). “Pr outside the range” is consisted of data which value of print speed has been 

exceeded (range of [10800,11600] mm/min), to check the extendibility of models. For the 

same reason “Pu outside the range” seeks the preciseness and adequacy of the models by 

investigating pump degree values out of the design region (range of [24,39] Hz).  

According to the output analysis and adequacy checks performed in section 5.8, Following 

models were able to pass tests and have been chosen for further analysis by performing 

residual analysis of the validation data shown in Appendix 6.: 

I. Height approximation: 
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i. First order, main effects 

ii. First order , main effects and interaction 

II. Top width approximation: 

i. First order , main effects and interaction 

ii. Quadratic 

III. Bottom width approximation: 

i. First order , main effects and interaction 

 

I. For layer height approximation, adding interaction term do not improve the residual 

analysis (See Appendix 6). It can be inferred that the interaction between print speed and 

pump degree has not significant effect on layer height. In the other word, by varying one 

variable of Pr or Pu, layer height is not affected, while the other variable is kept constant.   

For data inside the range, the range of variation in ±1.5 mm (6%), which is exceeding the 

tolerance is assumed. Looking more closely to data deviations reveals that 90% of the 

validation data used in the range is deviating ±4%, which is the assumed tolerance. For the 

other 10% of validation data, such a deviation from initial tolerance is neglectable (± 0.5), 

hence the deviation from the baseline of residual analysis is acceptable.  

However, it can be seen for the data inside the range, that there is a slightly systematic trend 

in data deviation, which seems to suggest higher order approximation. With the current data, 

the quadratic model estimated in section 5.8.3 is violating normality assumption, hence, if a 

higher order approximation is needed, data should be transformed to meet the normality 

assumption. Since the deviation from the baseline is acceptable, First order approximation is 

assumed to be a reliable model.  

First order approximation of layer height, also shows reasonable estimation for print speed 

and pump degree outside the design region. Outside the range, estimations are in the 

reasonable variation of 6%. It means that such a model can be used to give a fair idea about 

layer height in the mentioned range. 

By closely observing the trend, it can be inferred that for the data set of Pr outside the range, 

the “heteroscedasticity” is exhibited meaning that the residuals get larger as the prediction 

moves from small to large, which inherently create no problem, but it’s suggested to be an 

indicator of model improvement.  

II. In Appendix 6 residual analysis of first order approximation with interaction and 

quadratic approximation of a layer bottom width is shown. The quadratic model seems to 

improve the interaction model, as it eliminates the systematic trend which can be noticed in 

interaction model.  

For data inside the range, 82% of the data is deviating from an actual measured value within 

the assumed tolerance of ±1mm (4%), and 95% of the data is in the acceptable deviation range 

from the actual top width of ±1.5 mm (6%). For the data inside the range, the quadratic model 

in most cases, slightly improved the approximation, while the difference is not noticeable.  



111 

 

Most improvement occurs in estimating data when Pr is outside the range of the RSM design. 

For this data set, points are scattered better on two sides of the baseline, showing the fact 

that the model performs a better approximation. In interaction model, 40% of the data lay in 

the deviation range of 4%(tolerance), from the actual value, while such deviation has been 

improved to 84%  by quadratic model. Moreover, 90% of the data lay in the acceptable 

deviation range of 6%, from the actual top width. 

Both models show same performance for Top width estimation when pump degrees are 

outside the design region. 70% of data are in the deviation range of 4%(tolerance), from the 

actual value. But the range of deviation for the quadratic model is smaller, and data is 

scattered closer to the baseline, indicating the better prediction. 

III. In Appendix 6 residual analysis of the first order approximation with interaction, for a 

layer Bottom width is shown. Data is scattered is to a reasonable extent, on both sides of the 

baseline, while there is almost no systematic trend noticeable in the residual plot. 

For Bottom width, the tolerance of ±2mm or 8% (deviation from the actual value)was 

assumed, according to the distribution of data in a certain setting of process parameters. 

According to the validation data inside the design range, 98% of data lay inside the tolerance 

range.  

For the data set with the levels of print speed outside the design range, 70% of the data lays 

in the 8% tolerance range, while because of them the heteroscedasticity effect can be noticed, 

indicating the possibility that the model can be improved for that range. It also can suggest a 

higher order approximation considering the full range [7200, 11600] mm/min, as there can be 

seen a second order systematic trend in the residual plot. 

On the other hand, when pump degree is out of the design range, the model do not perform 

acceptable, as only 13% of the data fall within the tolerance range.  

5.8.2. Supplementary validation 
Initial validation performed in the previous section, used same data set, 3D printed in the 

same condition in terms of laboratory temperature, humidity, and homogeneity of material 

batches. As a result, results of suggested model were tested against homogeneous conditions 

of data generation. It is important to test the generality of the suggested models, against 

defined tolerances. So supplementary validation is important to test the models for a different 

set of printing, especially when different batches of material will be used. Hence, the extent 

which model can tolerate different printing settings, which are not considered in design and 

analysis are tested. 

In designed setting for validation data, new CCI design is considered (sets A and B), to 

incorporate design and centre points replication and randomness in data generation 

sequences, in order to construct new PuPr model. As a result, the effect of randomness and 

more dataset replications can be compared with the current model, with fewer replications 

and not considering randomness. RSM design of experiment has been conducted in R 

statistics. In graph bellow, Start and End refer to the starting point and ending point of the 

nozzle head, stating the sequence of printing.  
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Moreover, it is necessary to check the response of a printed layer dimensional approximation 

in the design region, as the initial validation covers data inside the region which are located 

on the boundaries and on axes of design region (see  4.5.2.2 for more information on design 

region of PuPr model). As a result, the following data setting has been proposed to generate 

new data for Supplementary validation of inner design region. These points are shown in set 

C and D. 

 

Figure 78: Supplementary validation inside the design region 

a b 



113 

 

 Set E investigates the extendibility of the model in the range out of the design region, when 

print speed is exceeding from 10400 mm/min to 11200 mm/min and decreased from 7200 

mm/min to 6400 mm/min. 

 

 

 

 

 

 

 

 

 

 

Pump degree is not exceeded the design region, as it imposes extra pressure on 3D printer 

when exceeding the pressure from 33 Hz. Moreover, it increases the chance for material to 

get stocked in the mixer and 3D printer hose. On top of that, pump degree is not varied in 

practice beyond the defined design region.  

The following graph shows the integrated design boundary for supplementary design and 

validation. 

 

 

 

 

 

 

 

 

 

 

 

In Appendix 7, printing tool path for the proposed design of validation data is presented. 

Figure 79: Extending the design region 

Figure 80: Overall supplementary validation points 
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Although supplementary validation was planned, it has not been conducted due to unforeseen 

situations occurred for the quality of the material and performance of the pump. Due to time 

limitations of the graduation project, there were not enough time to conduct the 

supplementary validation, after fixing the problem. As a result, this supplementary step is 

suggested to be done to have a better overview on the generality of the models, and also their 

tolerance against variation in material properties and process settings.  

5.9. Discussion 
At the core of the dimensional Decision Support System(dDSS), and in the Model Management 

System (MMS), models has been created to link printed layer dimensions and Print speed (Pr), 

Pump degree (Pu) and Nozzle distance(Nd) as process parameters. Response Surface 

Methodology (RSM) has been conducted to map the relationship among layer dimensions 

(response variable) and process parameters and derive empirical models. As a result, the path 

to maximizing dimensional accuracy and minimizing layer deformation is paved. This is the 

final goal of RSM method. At this step, optimization step seems to be not necessary, because 

there are numerous factors and parameters which affect the printing process. So choosing 

process setting requires considering numerous criteria and satisfy dependencies which also 

needs the experience of the researcher and operator. By optimizing mentioned process 

parameters, the focus will be narrowed down to satisfy dimensional constraints, and other 

important process targets may be ignored.  

In the following sub-chapters, For two models of PuPr and NdPr, RSM design and analysis, 

empirical models and influences of process parameters have been discussed. 

 

 

 

 

 

 

 

 

 

Figure 81: Pump degree-Print speed RSM model 
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Figure 82: Nozzle distance-Print speed RSM model 

 

5.9.1. NdPr model 
In the data pre-processing phase, three aims were followed, (i) test the variation of data within 

a certain setting of process parameters, (ii) test the variation of data among replications of 

certain setting of process parameters, and if the other two tests response reasonable, (iii) test 

the correlation of layer dimensions.  

For NdPr model, data variation among two replications with the same setting was noticeably 

high, indicating the point that there may be other variables influencing layer dimensions, 

which is not considered. 

One reason may be the existence of the variables which are known and uncontrollable. 

Fluctuations of pump  pressure and temperature when is set at a certain level, affect the 

viscosity of concrete. Hence, concrete layer deforms differently when time is passed, as the 

temperature of the pump keeps increasing.  

Another possible reason is because of the fact that the printing area is not levelled perfectly. 

Hence, there are differences in the height of the printing surface, affecting the actual Nozzle 

distance. Such fluctuations in Nozzle distances place concrete layer differently on the surface, 

results in different layer deformation. 

In order to eliminate such natural variations and increase the sensitivity of experiment, it is 

suggested to employ experiments units for a study to be as homogenous as it is possible. As a 

result, variance σ2 of experimental error . Moreover, by using heterogeneous groups of 

experimental, generalization of conclusions will be derived. These heterogenous experimental 

units are grouped into homogenous sub-grouping. Randomized Blocking is a useful method to 

minimize the uncontrollable factors in the experiments (Lawson, 2015). 
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A method should provide the experimenter the possibility to determine levels of process 

parameters (Nozzle distance and Print speed) to reach the desired response variables(layer 

dimensions), and more simultaneously minimize the variations of response variables. Taguchi 

Method developed in by a Japanese engineer, employing quality control concepts in the 

design phase. It is also referred as the off-line quality control and aims to utilize experimental 

design techniques to find nominal settings of system parameters that will make the products 

robust to noise encountered in the system operation process and the use environment. This 

method, however, is criticized for being inefficient and suggestions have been made for 

simpler, more efficient alternatives to implement some Taguchi ideas (Lawson, 2015).  

5.9.2. PuPr model 
Pre-processing phase reveals that both variations in a printed layer dimensions are reasonable 

both for a certain setting of parameters and among replications of a certain parameter setting. 

The variation for Height and Top width is ±1mm (4%) and for Bottom width is ±2mm (8%). 

These are assumed as tolerances acceptable for the precision of the empirical models. 

Another suggestion to define the tolerance is to consider the size of fine aggregates in the 

concrete mix which is 2mm or 8%. Because of the random placement of the aggregates in the 

layers, one aggregate can be missed in a measuring point while at the other measurement 

point the presence of an aggregate increases the measurement.  

RSM design and analysis have been performed and followed by adequacy check, testing the 

preciseness, fitness, and adequacy of stepwise created models. For each layer dimension, 

three models were created and tested to derive the best model, depicting the relation 

between layer dimensions and process parameters. These three models are (i) Firs order, with 

main effects, (ii) First order, with main effects and their interaction, and (iii) quadratic model. 

For printed layer Height, First order approximation with main effects performed adequately, 

while passing normality check and residual analysis: 

𝐻𝑒𝑖𝑔ℎ𝑡 = 24.06 + 0.46 × 𝑃𝑢 − 1.65 × 𝑃𝑟 

Here Height is in mm and Pu and Pr coded variables, while the units of the coefficients are 

mm. The relationship between natural (without coding) variables and Height can be derived  

by decoding variables as mentioned in section 5.5.2.1. Here, in order to provide the possibility 

to compare the effect of process parameters, the only coded relationship is considered. 

Design region is  bounded to the range of [-1, 1]. So the proposed model should be as precise 

as it is possible for this range. 

It can be noticed that the constant coefficient, has the biggest value among other coefficients, 

stating the fact that initial conditions of the process have the biggest influence. Initial 

condition refers to nozzle type, which is square with the dimensions of 25mm×25mm. Pu has 

a direct effect on the height of a layer, because in the higher values for pump degree, the 

amount of the material which is extruded is higher, resulting in the higher number of height 

values. On the other hand, print speed has the reverse effect on height, as an increase in print 

speed results in a decrease of height. The reason is that the printer has less time to deposited 

material at a certain point when print speed is increased. Moreover, the interaction between 



117 

 

print speed and pump degree has no effect on the height of a layer. It means that in a constant 

level of one variable, changing the value of the other variable has no effect on layer height. 

It can be noticed that the absolute effect of print speed is almost more than three times bigger 

than the effect of pump  degree.  IT is because of the fact that print speed is easily changed 

by G-code, and there is no mediator physical component, which affects the Print speed 

variation. On the other hand, by changing pump degree there are several obstacles decreasing 

the pump pressure on its way to the head of the nozzle. The flow of material to be extruded 

from the nozzle is reduced because of friction, turns, and corners of the connection between 

pump and hose and also the length of the hose. As a result, one unit change in print speed 

and pump degree has no the same effect on Height of a layer.  

This model performed quite acceptable for the validation data inside the design region. In 

such a way that 90% of data fell in the range of 4% tolerance.  

For print speed varied between 10400 and 11600 mm/min, 87% data  fall into the  4% 

tolerance which provides the ability to get a good idea about the variation of data outside the 

range which the model is designed for.  

On the other hand, when pump degree is decreased to the levels below 27 Hz to 24 Hz and 

increased to 39 Hz, only 60 % of the data were validated and placed in the range of 4% 

tolerance. From the practical point of view, pump degree is hardly varied above the defined 

range, hence it is not suggested to perform extra design of experiment for to extend the pump 

degree range, as it imposes pressure to 3D printer in higher pump degrees, and increase the 

chance of blockage at lower pump degrees. 

For the data set of print seed outside the range, the “heteroscedasticity” is exhibited meaning 

that the model can be improved. The most common way of improvement is data 

transformation, and here it is suggested to define separate design range for print speed bigger 

than 10400 mm/min (the maximum value of the design range of this research). As a result, 

the region beyond the region used here would be studied more thoroughly. 

Moreover, there are trends in data deviation from the baseline of residual analysis, suggesting 

the suitability of higher order model approximation. That can also be investigated in a 

separate design region, for a better approximation. 

Top width of a printed layer is estimated by quadratic approximation, which the coded 

relationship is shown as follows: 

𝑇𝑜𝑝 𝑤𝑖𝑑𝑡ℎ = 21.82 + 0.59 × 𝑃𝑢 − 1.6 × 𝑃𝑟 − 0.28 × 𝑃𝑟 × 𝑃𝑢 − 0.2 × 𝑃𝑢2 + 0.39 × 𝑃𝑟2 

Here Top width is in mm and Pu and Pr coded variables, while the units of the coefficients are 

mm. 

Same as Height, it can be seen from constant coefficient, nozzle dimensions have the biggest 

effect. Because of the reasons mentioned for Height estimation, first order print speed has 

the highest effect on estimation, in a reverse manner. Pump degree has  also a significant 

influence on top width estimation. By increasing pumping degree, the material can flow in 
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width as the layer is confined in height. Hence pumping degree should affect top width 

influentially, which is proved by showing to be statistically significant in the analysis.  

Quadratic term of print speed has a significant influence on Top width estimation , in a way 

that its effect is direct, meanings that with increasing speed, the top with will decrease in total. 

But the rate of decrease is less than the rate of top width decrease in the case of the linear 

model. 

The interaction of print speed and pump degree also has a significant reverse effect on Top 

width estimation. Assume that first the print speed in kept constant, by increasing Pump 

degree, in total, the top layer is increased because more material is deposited (effect of Pu 

main effect). On the other hand, deposited material deforms due to its own weight. Hence, in 

a certain speed, more pump degree results in more material placement, which increases the 

deformation of layer top width because of its own weight. Such a situation decreases the top 

width, the material is not zero slump and shows deformation due to its own weight. Such 

deformation is occurred by sliding the material on the edges of the cross section, resulting in 

decreasing the Top width.  

So in constant print speed, by increasing the pump degree, the rate of increase in top width is 

decreased, as the effect of deformation due to more material deposition increases. Such an 

effect implies the significance of the interaction between print speed and pump degree.  

Quadratic model for Top width estimation, response quite good when print speed varies in 

design range and 84% of data are placed in 4% tolerance. While 70% of data placed in 4% 

tolerance range, when Print speed exceed the range. If 8% tolerance (set aggregate size as 

tolerance) more than 92% of the whole data both for inside and outside of the range lays in 

the tolerance rate. So quadratic model gives precise responses, to an acceptable extent., while 

covers a large region of data both for print speed and pump degree. 

For the case of Bottom width approximation, the model proposed to relate print speed and 

pump degree is first order model, with main effects and their interaction: 

𝐵𝑜𝑡𝑡𝑜𝑚 𝑤𝑖𝑑𝑡ℎ = 29.43 + 1.85 × 𝑃𝑢 − 4.21 × 𝑃𝑟 − 0.35 × 𝑃𝑟 × 𝑃𝑢 

Here Bottom width is in mm and Pu and Pr coded variables, while the units of the coefficients 

are mm. 

constant coefficient, nozzle dimensions has the biggest effect, as it can be traced by its value. 

First order main effect of print speed has the highest effect on estimation, in a reverse manner, 

as it defines the amount of material deposited at a specific point in the specific time span. So 

by increasing the speed, in constant pump degree, there is less time to place material at the 

certain printing path. There is less material, and hence less bottom width. Deformation in layer 

dimensions results in an increase of the bottom width, because of the flow of material. The 

flow of material is in the width direction and toward the bottom of the layer. This is because 

of the reason that printed layer is confined in height. 

Another reason that increasing print speed decreases dimensions of the layer, especially in 

bottom width, is because the increase in print speed, increase the tendency of extruded 
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material to flow in length (print path) direction, and the flow of material toward the bottom 

is decreased. 

Pump degree has  also a significant influence on bottom width. By increasing pumping degree, 

more material can flow in width, and toward the bottom. Hence, pump degree has an effect 

on Bottom width approximation. 

On the other hand, at the certain print speed, by increasing the pump degree, the dimension 

of Bottom width is increased because: (i) more material is deposited. (ii) At the same time, 

deformation of the layer in its cross section is increased because more material is deposited, 

and this deformation slides the material toward bottom width. So Bottom width is increased. 

But the rate of the increase is not constant, and it decreases. Because the rate of deformation 

occurred due to layer weight decreases. This is because of the elastic behaviour of the 

material. So, the increase rate of width decreases when print speed kept constant. Such an 

effect implies the existence of interaction effect on Bottom width estimation. 

The model showed very precise estimation as 98% of the validation data fall inside the 8% 

tolerance (assumed for Bottom width by two different approaches). 

For exceeded print speed, 70% of  data lay in the tolerance. The model can be used to give an 

initial  idea about the Bottom width value, but since the heteroscedasticity effect can be seen, 

the model should be improved to incorporate a bigger design range.  

Only 13% of the validation data lays in the tolerance range when pump degree is extended, 

which suggests a separate design of experiment for such a range. But because of the practical 

reasons mentioned above, such experiment seems to be excessive.  
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6. dimensional Decision Support System Employment  
In this chapter, applications of developed dimensional Decision Support System (dDSS) is 

explained. dDSS is developed to be employed in two different stages of 3D concrete printing: 

(i) Design-Production (DP) intersection, (ii) Post-Processing. In this sense, dDSS is categorised 

as “FIRST GENERATION OF DECISION SUPPORT SYSTEM(DSS)”. 

As the first generation of DSS, the model-based system consists of an offline models, which 

are developed by stored data. Model is not developed further when receiving new data during 

the process. In the other word, dDSS does not contain  a self-learning model, which is used 

during the printing process, is being fed by process data, and develop itself during the printing 

process. Asa result dDSS is used in the scope of the process parameters defined, giving both 

overall and specific overview of relations between process parameters and layer dimensions 

of a printed layer. Moreover, first generations of DSS, are not designed to directly a response 

to dynamics of the process, in the sense that the be used to derive decision to leverage process 

parameters to cope with process situation in time, and level the response variable to the what 

is assumed desire.  

dDSS provide the possibility to step further toward the “SECOND GENERATION OF DSS”, in 

which the system consists of an offline core model, but is used in the process dynamically to 

responses during concrete printing, leveraging process parameters, to obtain desired layer 

dimensions. This type of DSS is elaborated in chapter 7,  section 6.In the following sections, 

employments of dDSS is explained. 

 

 

 

 

 

 

 

 

 

6.1. dDSS: First generation of Decision Support Systems 
dDSS is used to derive the following knowledge and be used in different stages of design and 

production of 3D concrete printing. 

dDSS

1st Generation

DP interface
Post-

Processing

2nd 
Generation

In time response

Figure 83: dDSS employments overview 
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Figure 84: First generation dDSS employments 

6.1.1. Overall insight 

6.1.1.1. Case 0: Zero input 
One of the main current problem in concrete printing process is the unknown relationship 

among process parameters and printed layer dimensions. dDSS established a relationship 

among print speed, pump degree and layer dimensions. As a result, the influence of process 

parameters can be tracked on dimensions, printed under different process settings. 

Moreover, 3d response surfaces gives overall insight about the decision parameters and final 

dimensions of a layer. As a result, the user has a better understanding of the effects of 

different process parameters. 

Contour graphs, adds more elaborated details about reachable maximum and a minimum of 

height, top and bottom width of a layer. Moreover, the desired range of process setting can 

be derived in more details, as contour graphs present process parameters and one of the 

layer dimensions, in addition to representing values. In contour and 3D response plots, 

coded Pump degree and Print speed are considered and presented, while the unit for height, 

top width and bottom width is mm. 

Through the user interface shown in figure 85 user can interact with the system to gain 

preferred knowledge. In order to gain overall insights, 3D response surfaces and contour 

graphs should be generated. In “Plot Output” checkbox, by selecting “3D Response Surface” 

or “Contour plot”, the user can derive preferred output. 

Post-processing

DP intersection

Overall insight

• Local dimensional 
requirments 
satisfaction

• Process setting 
decisions

• Global dimensional 
requirements 
satisfaction

• Resousources 
adjustment and 
management

• Trace underlaying 
relations

• Trace effect of 
decisions

FIRST GENERATION dDSS 
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 Figure 85: User interface  

Blow response surfaces for Height, top, and Bottom width is presented. In figure 86 first order 

response surface is shown for height. With increasing pump degree, height is increased, while 

decreasing print speed have the same effect.  

 

 

 

 

 

 

 

 

 

 

In figure 87, second order response surface is shown for To width of a printed layer. Print 

speed and Pump degree are shown as coded, to derive the actual values, coded values can 

be converted by dDSS. As it can be seen, by differing the values of process parameters, while 

other is constant, height is affected in the same manner. In Top width response surface 

shown in figure 87, Print speed and Pump degree show quadratic effect.  

Figure 86: 3D response surface for Height 

Height range in mm 
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In the Bottom width response surface, the slight curve is noticeable, which is because of the 

fact that there is an interaction between Print speed and Pump degree, while their main 

effects are related to bottom with linearly.  

 

 

 

 

 

 

 

 

 

 

 

 

In Height contour graph, it can be noticed that the effect of varying Pump degree is less than 

Print speed, because of pressure dissipations occurred in the way of extruding concrete. The 

point which is noticeable in the Top width contour graph, is the point that at a constant level 

of speed, by increasing pump degree, the effect of pump degree on increasing Top width is 

decreasing, till it reaches to a point (Stabilizing Point) in pump degree level which Top width 

remains constant by increasing pump degree. 

 

Figure 87: 3D response surface for Top Width 

Top Width range in mm 

Bottom Width range in mm 

Figure 88: 3D response surface for Bottom Width 
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The top layer is increased as more material is deposited due to higher Pump degree. While, 

deposited material deforms due to its own weight, flow toward bottom layer, and decrease 

the Top width. The reason is because of the fact that at Stabilizing Point, the effect of width 

increase by placing more material, is equal to the effect of width decrease because of 

deposition weight.  

By increasing Print speed, Stabilizing Point is reached at lower levels of Pump degree. In the 

other word the effect of the flow of material toward bottom is getting more dominant and 

finally reaches the point where has the same reversed effect with width increase due to 

material deposition. This is because of the fact that less material is deposited at the certain 

time at the certain point, hence less material is needed to be deformed toward bottom  and 

the Top layer is stabilized at the lower pumps with depositing lower amount of material. as in 

low print speeds, more material is deposited, and material has more time to decrease Top 

width by flowing toward Bottom layer.  

  

 

 

 

 

 

 

 

 

 

 

Height range in mm 

Figure 89: Height contour plot 

Figure 90: Top Width contour plot 

Top Width range in mm 
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In Bottom width contour plot, the slight curvature is noticed, which is because of the 

interaction between Print speed and Pump degree on Bottom width. Increase rate of Bottom 

width is decreased at lower Print speeds, because, of the behaviour of the material under 

deformation, which its deformation rate decreases when more material is deposited. 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.1.2. Case 1: One input 
If more one of the Pump degree or Print speed is known, and the effect of varying other 

parameter is needed, the user can input value of the parameter, by pressing Convert and 

Analyse in dDSS, the effects can be traced. 

 

 

 

 

 

 

 

 

 

 

 

Figure 91: Bottom Width contour plot 

Bottom Width range in mm 

Figure 92: User interface One input case 
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This situation is used by 3D concrete operator or researcher when it is preferred to use a 

constant parameter during a special case of printing. Another situation is the case which one 

parameter is assumed to have a usual value. Pump degree value selection can face such 

situations, because pump degree modifications change material characteristics, as such a 

change affect material temperature and, viscosity. Hence in order to be able to print with the 

same quality in different Pump degrees, material related parameters such as water to cement 

ratio should also be adjusted. 

The graph below shows the effect of different Print speed on Height as an example, when 

Pump degree is assumed to be chosen by decision maker at usual values of 30 Hz.  
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Layer dimensions(mm) 

Figure 93: results of one process parameter  input 
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In this case, from the plot in which all dimensions are represented, (below right), it can be 

seen that since there is no intersection between lines, there is not a Print speed value results 

in same height and top and bottom width. By increasing the Print speed, the difference 

between dimensions are decreased, and printed layer cross section is closer to the ideal 

square shape. On the other hand, BY increasing Print speed, deformation in Height is 

increased, and in order to reach desired final element height, more layers are needed, which 

means more time and resources are needed for the printing process. As a result decision 

maker is facing support in two levels: Managerial, when time, costs and arrangement of 

resources are needed to prolong 3D concrete process, and, Technical when it is needed to 

derive decision regarding process parameters, affecting final dimensions of a layer.  

Another situation is the case that decision maker has a specific dimension known and 

introduce it as an input into dDSS. One of the most common situations is the case that decision 

maker want to reach the final element layer height in minimum possible numbers of layers. 

So the layer Height should be maximum, to reduce required number of layers to reach a 

specific element height. By getting overall insight about the possible values which printed 

layer Height can get, maximum layer Height is something around 26 mm (see Contour plot 

and 3D response surface for height). So decision maker suggests 26 mm as an input, to gain 

required process parameters needed to reach desired layer Height.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Retrieved knowledge from dDSS indicates the fact that such desired Height of 26 mm can be 

reached in a limited range when Pump degree is between 32 and 33 Hz, and Print speed is 

varying between 7200 and 7500 mm/min, which are located far from the usual values of both. 

Such a setting will impose extra pressure to concrete printer, which is not suggested for 

Figure 94: Height as an  input 
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printing large scale elements. However, for limited purposes, it can be applicable. In that case, 

decision maker, select specific Print speed and Pump degree and then in the first and second 

contour plots, he/she can see the effects of such a choice on the Top width and Bottom width. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.1.3. Case 2: Two inputs 
In case 2, two inputs are introduced to dDSS which one of the parameters is from process 

parameters and the other is whether from other process parameter or a required dimension.  

There is cases where the open time between layers are important, or I the situation where 

total time of construction is an issue, then decision maker already sets Print speed and Pump 

degree to such priorities. The open time of the layers is important in defining the bond 

strength of the layers in printed elements. Such a property is the most critical mechanical 

property in concrete printing, which is affected by cohesion of layers, which is a function of 

time between extrusions (T. T. Le et al., 2012).  

Print speed also affects the strength development of the structural element as a faster print 

result in imposing loads, under earlier stages of material maturity, a man-made parameters 

indicates the strength development. It is normally defined as the product of time and 

temperature of concrete. Hence, strength development is at tits earlier stages when loads are 

introduced to the element.  

Bottom Width range in mm 
Top Width range in mm 

Figure 95: Output for having Height as the only input 

mm 
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As a result, it is a common case as well, in which decision maker sets parameters according to 

primary criteria, and at the next step, wants to track the effect of such process setting on 

dimensional accuracy of printed layer, or deformation in Height, Top, and Bottom width. As a 

result, user input values selected for process parameters, and derive a dimensional prediction 

for a single printed layer, with a visualisation o the possible cross section, to give a better 

overview of the final results and outputs.  

Figure 96: Cross section prediction 
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In the situation below, decision maker made the choice for Print speed in relation with 

satisfying desired bond strength and chose Pump degree as a result of total material 

consumption for printing the whole elements. 

In case 2, there is another situation which decision maker sets dimensional accuracy in the 

priority level by which made the choice of one process parameter. For instance, assume that 

reaching a specific bond strength is the first important criterion to be met, and in a sequential 

decision making, layer dimensions should fulfil certain height to minimise the final 

deformation of the final object. So chosen Print speed and required layer height are 

introduced to dDSS as inputs, and required Pump degree and other dimension predictions will 

be calculated through the system. 

 

 

Overall insight can be given by using dDSS over the interrelation of Print speed, Pump 

degree, and layer dimensions. Through 3D response surface or contour plots, layer 

dimension ranges can be derived. 

 Moreover, underlying relationships can be used to trace the effect of decision variable on 

other process and dimensional parameters.  

Finally, parameter prediction can help decision maker to reach the exact dimensional 

performance, while suggesting the values that correspond with the desired setting. 

The graph below summarise the application of dDSS to derive overall insight over the 

printing process and setting selection. 

Figure 97: Outputs for Height and Print speed as inputs 
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Figure 98: Application of dDSS to give overall insight on the process 

6.1.2. Design- Production (DP) intersection 
One of the main motivations of developing dDSS is bridging the gap between the design and 

production phase. As a result, assumptions are taken in design phase should encounter 

realities in concrete printing process, introduced by the interaction of interrelated process 

parameters with target properties of printed elements. dDSS is applied to encounter the 

constraints and requirements of the final printed elements dimensional deformations. Hence, 

the influence of concrete printing process setting, on dimensional constraints is traced.  As a 

result, the effect of the process parameters is considered to meet dimensional constraints in 

the design phase, where, design decisions are made to fulfil product properties, such as 

dimensional constraints. This employment acts as an intersection between  design and 

production phase, which bridge te gap between what is planned to be printed and what will 

be printed  

One of the main applications to meet dimensional constraints is considering layer 

deformations of concrete process and find the corrections to meet the final element height.  

During the design phase, after selection design parameters (see chapter 4), 3D model is sliced 

in layers to define printing tool path. According to the nozzle type and thus ideal layer 

thickness (nozzle height) chosen for printing the element, printing element is divided into a 

number of layers. So the total time of printing is calculated by the time of printing the sliced 

printing tool path and- calculated by Print speed and length of the printing tool path, and a 

number of printing layers. In this phase, the effect of deformation of the layer due to printing 

setting should be considered, as the main constraint is to meet the final height of the final 

product, and if it is applicable keep printing time at the designed level. 
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Deformations during printing process occur because of the weight of the layer itself and also 

the weight of the upper layers above. dDSS has investigated deformation of a single printed 

layer, hence it does not take the weight of the upper layers into consideration. But, it still 

provides wider understanding from layers deformation in concrete printing process. 

Moreover, the methodology and concept used in developing dDSS can be used and the effect 

of deformation in numerous layers get investigated. So, here dDSS also acts as a proof of 

concept to tackle constraints and requirements in the intersection of design and production 

phases. 

Thus, here dDSS is used to show its application in predicting the final deformation of concrete 

printing element. Moreover, adjustments in time and cost estimation in the design phase will 

be another outcome of dDSS as number of extra layers are calculated. Hence: 

I. Technical level of decisions is supported in DP, containing design and process 

related decision. 

II. Managerial level decisions are adjusted and matched the reality of the 3D concrete 

printing. 

IFC file of 3D model of the  priming element is imported into the tool. The Industry Foundation 

Classes (IFC) model is aimed to contain Building Information Modelling data. Trough IFC file, 

dDSS extracts element to which the material of concrete is assigned, retrieve final height. Then 

in parallel, system inquires the setting to predict a layer Height for Three options:  

I. First, layer height printed more than expected layer height (25 mm, equals to 

nozzle height, see section 5.2.2.), 

II. Secondly, printed layer equal to the ideal layer height 

III. And Finally, minimize the difference between printed and ideal layer height.  

By option I, printed layers are higher than expected layers, which results in a decrease in a 

total number of layers, to reach a specific final height. Thus, the total time of production will 

be reduced, and costs will consequently be decreased. 

If option II is applicable, initial design assumptions will hold no correction will be needed. And 

finally, option II seeks the best process setting to minimise the printed layer height, to reduce 

the corrections in excessive number of layers, printing time, and cost.  

These options are tested against the selection of process parameters by which, the selection 

range lay in a reasonable distance from the mean values. As a result excessive pressure- 

especially imposed by Pump degree, is not introduced to the printer. Moreover, as the result 

the prediction of system’s behaviour is more reliable, as it is closer to the centre of the design 

region, centres which were used to construct the model, relating process parameters to layer 

Height. Finally, selecting process parameters close to the usual values(means) provide the 

possibility to be flexible in leveraging them in the process, due to other considerations. For 

instance, of high print speeds with very low Pump degrees get selected, it is not possible to 

increase the speed or decrease the amount of extruding material, in the process. This may be 

required in corners, to have sharper corners, as the printer slows down at corners(regardless 

of the introduced printing speed and because of operational delays). 
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Selection of the reasonable range is to a large extent related to the case of the printing and 

its scale. If the scale is small, Printing speed is more limited to be increased, as the next layer 

should be placed on top of a layer which is not able to carry the weight of the coming layer. 

On the other hand, in a large- scale element, Print speed is sensible to the lower values of 

speed, as the open time of a layer affects the bond strength and also the development of 

strength in the whole element. 

In another example, if the final element contains sharp corner, Pump degree should be limited 

in a range as it minimizes the excessive deformations in corners, due to operational delays of 

the printer.  

 

As it can be seen, selection of a reasonable range for Print speed and Pump degree depends 

on the case of printing and also other considerations and constraints involved in 3D concrete 

printing process. Here, according to experience, and for the means of generalisation, half of 

the design region is considered as reasonable which means the following range: 

 28.5 Hz<Pump degree<31.5 and 8000 mm/min<Print speed<9600 mm/min 

As a result, the result the highest possible layer Height is 25.11 mm when Pump degree is 28.5 

Hz and Print speed is 9600 mm/min. Hence, for an element with the height of 4 meters, one 

layer would be printed less and time ad money is saved, which its magnitude is dependent on 

the complexity of printing tool path. 

Bellow a case is schematically shown when there will be deformation of each layer relative to 

ideal layer Height, and hence there will be a total deformation in element final Height. This 

will be the case when  Print speed and pump degree are in the reasonable range, and the 

range is assumed to be limited than mentioned above. So more layers are needed to be 

printed to reach the planned final height. dDSS finds the number of needed layers to fulfil 

height constraints. Moreover, added time of production and costs, due to excessive material 

and resources use can be calculated, by deriving Print speed suggested by dDSS and printing 

length of the element.  

 

Figure 99: Steps of adjusting number of layer, time and cost adjustment 
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6.1.3. Post-processing reduction 
One of the main characteristics of 3D concrete printing is ribbed finishing, due to layerwise 

construction and deformations in each layer. Different dimensional deformations in Top width 

and Bottom width of a printed layer, transforms expected square layer cross section to almost 

symmetric trapezoid. As a result, the ribbed final surface of the printed element is resulted. 

During printing, such a trapezoid cross section result in destabilization, when the other layers 

are being placed on top. So it is important to reduce this effect to be able to reach higher 

levels. Moreover, the ribbed properties of the will affect the functionality of the printed 

element which can limit its applications.   

 

Figure 100: Ribbed finished surface of an end product 

Post-processing is required to reduce or eliminate the uneven deformations in Top and 

Bottom width. By implementing dDSS, the need for post-processing is diminished and layers 

are closer to square shapes. 

In order to reach the most square cross section of printed layers, the difference between 

deformations in Top and Bottom width should be minimum. As a result, the trapezoid shape 

is closer to square and instabilities and limitations due to the ribbed  quality of surface 

finishing are reduced. Hence, decision maker introduces Top and Bottom width as inputs to 

dDSS which have minimum possible differences. If there are limitations in acceptance range 

of Print speed and Pump degree, the decision maker should consider them and seek the 

closest values for widths in that range. 
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It is a general rule, derived from the model discussed in chapter 5, which Bottom width hold 

low values at low Pump degrees and high Print speeds. This is same for Top width, in addition 

to the fact that Top width is varying between 20.1 and 24 mm, while Bottom width variation 

range is much bigger and between 24 and 36 mm. So, Bottom width should vary at its 

minimum levels, in order to have the minimum difference between widths. Because the whole 

range of Top width variation is closest to the minimum levels of Bottom width. So according 

to the defined acceptance range of process parameters, minimum levels of Bottom width is 

found,  which is corresponding to minimum levels of Top width. Because both values are being 

changed in the same direction but with different magnitudes when are related to process 

setting. Here, specific range is not assumed, hence, First minimum Bottom width is selected 

as it is more sensitive to change in process setting.  Then Top width is selected, which should 

be close to its minimum value as Bottom width is at its minimum value. By few try and errors, 

Top width in minimum distance from Bottom width is selected. 

In graph below, it can be seen that at Pump degree = 27.5 Hz and Print speed = 7200 mm/min, 

the cross section is the most square cross section. However, due to far distance of process 

setting from their mean value, this setting is not recommended for a long process. 

 

Figure 102: Instability occurred by trapezoidal cross section 

mm mm 

Height range in mm 

Figure 101: Analyzing dimensions for the most square cross section 
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7. Conclusion 
In this chapter, conclusions derived from development and application of dimensional 

Decision Support System (dDSS) are presented. First, the extent of answering and meeting the 

research questions and objectives should be investigated. Then research scientific and social 

relevance is described to examine added values and limitations of the developed Decision 

Support System. At the end of this section, the limitations of this research and development 

graduation project are  mentioned and recommendations are suggested to improve the 

models and framework,   

7.1. Research objectives 
This research and development graduation project aimed at increasing the knowledge and 

awareness of the complex process of 3D concrete printing, as a cutting-edge technology in the 

construction industry. The main motivation was to reduce the time and resource consuming 

trial and error efforts to reach proper configurations along with the respective machine 

settings in concrete printing processes. As a result, conscious choices can be made with the 

minimum effort and the results of decisions can be traced before the physical production 

(construction) process and, thus, decision makers can gain a better overview over their 

decisions.  

The main goal of the research is : 

PRODUCT AND PROCESS IMPROVEMENT OF 3D CONCRETE PRINTING. 

In order to reach the aimed improvement in both product and process of 3D concrete printing, 

this project focuses in the current limitation of the technique on setting the process in a way 

which leads to the desired product. Numerous experiments are being done to conduct 

concrete printing and finding the most suitable process parameters. 

Moreover, The quality of the final product is determined to a large extent by the process 

settings and in the current manner, there is not enough knowledge about quantitative 

relationships between such interrelations. More importantly, it is necessary to investigate the 

parameters which have the most significant effect on certain properties of the final product. 

It is also important to specify the levels of significance of influential parameters to narrow 

down the involved variables in the process in order to reach the required outcomes of the 

product. 

Here, a methodology is investigated and implemented using the Response Surface 

Methodology (RSM), a type of experimental design, to efficiently generate required 

experiments, to detect significant parameters, specify the significance level and finally 

construct the empirical model. This is done in order to better understand the effects of process 

parameters on targets, defined for the final product. Moreover, in the case in which a specific 

value of a requirement is needed, process settings needed to meet desired values can be 

suggested through the developed Decision Support System. Such a system assist decision 

makers, researchers and 3D concrete printer operators to derive decisions about the printing 

process which lead to meet the expected quality of the final product. In the other words, a 
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Decision Support System provides the means to improve the quality of the product by 

suggesting the best possible process decisions, in a defined range of the design.  

A “dimensional Decision Support System (dDSS)” is developed as a proof of concept, to show 

the methodology and construct the framework of a Decision Support System. Moreover, a 

current challenge is tackled by the implemented methodology and the developed prototype 

of a Decision Support System. The proposed dDSS supports process decisions to meet 

dimensional requirements of a printed layer within the context of the overall building 

element. The involved process parameters in dDSS are “Print speed” and “Pump degree”.  

By developing explainable models in the core of dDSS, the level of significance of process 

parameters are detected, the empirical models are constructed and the relationships can be 

better understood by stakeholders. The user can visually gain knowledge with respect to 

different applications and dimensional requirements. The methodology employed in dDSS 

provide the opportunity for optimization of a target variable (dimensional requirements).  

The dDSS improves the 3D concrete printing process by providing an interface which allows 

virtually and visually to trace the effect of process decisions, and required settings are derived 

in an efficient manner. Moreover, with a good precision, dimensional targets and 

requirements are met using the dDSS. Required dimensional values can be met and this 

improves the quality of the product comparing to the cases in which no Decision Support 

System is used.  

By: 

I. Investigating and implementing a methodology for visual simulation and analysis 

and, 

II. Supporting the process decisions by tracing the trade-offs among process 

parameters and targets. 

Both product and process of 3D concrete printing are improved and objectives of the research 

and development graduation project are met. 

The prototype system developed provides the basis to improve different product 

characteristics, such as bonding strength and other mechanical properties. Influential 

parameters with the level of significance are detected by an efficient number of experiments, 

an empirical model is developed and used in a framework to derive knowledge and support 

decision makers in 3D concrete printing process.  

 

7.2. Research questions 
In order to reach the main objective and motivation of the research and development in the 

context of this graduation project, the main research question is: 

I. HOW CAN THE CONCRETE PRINTING PROCESS BE IMPROVED IN A MANNER WHICH 

IMPROVES THE PROPERTIES OF THE FINAL PRODUCT IN THE PRINTING PROCESS? 



139 

 

One of the main challenges in the process is the lack of knowledge about the underlying 

relationships and effects of different domains of parameters. Tedious experiments are being 

done to reach the  targeted properties of the printed building element and the necessary 

process parameters to achieve it.  

The developed Decision Support System prototype improves the 3D concrete printing process 

by bringing the opportunity to reach process decisions and target properties of the building 

elements, and the number of necessary experiments can be reduced, so time and resources 

are saved. 

The dDSS improves the process of concrete printing by allowing the user to virtually and 

visually track the process decisions. The user is enabled to make informed decisions according 

to the defined criteria and consciously make decisions regarding the process settings, which 

leads to meet the product requirements. As a result, the final outcome of the process is 

aligned with expectations to an acceptable range, while the process of reaching to a high-

quality product is facilitated, and made more controllable and efficient.  

In this graduation project, the 3D concrete printing is seen as a process which intersects 

different stages of construction and design. The dDSS provided a platform where process 

decisions are linked to design stage parameters and the effect of leveraging the mutual effects 

of process parameters and target properties can be simulated and visualized next to each 

other. 

Design decisions about deformations of a printed layer are traced by leveraging the process 

parameters. Moreover, proper process settings are chosen to reach the required dimensional 

targets by using dDSS. Hence, design and production are bridged by the dDSS and the question 

mentioned bellow is answered. 

II.  HOW IS IT POSSIBLE TO BRIDGE THE DESIGN AND PRODUCTION PHASE IN 3D 

CONCRETE PRINTING PROCESS? 
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Figure 103: Process improvement by bridging design and production and reducing post processing 
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The following sub-questions are investigated to be able to bridge the design and construction 

stage by developing dDSS: 

i. Which levels of decisions in design and production phase would be necessary 

at the current stage, to be focused? 

Decisions in both technical and managerial level can be linked by dDSS. The technical level of 

decisions in dDSS is corresponding to selection the process setting of Print speed and Pump 

degree, in order to satisfy certain dimensional requirements of a single printed layer. 

Therefore, the user in the design phase can adjust certain decisions such as a number of 

printable layers, according to the suggested process setting, aligned with the defined 

dimensional requirements.  

The managerial level of decisions is concerning about time and costs of the overall concrete 

printing process. By getting insight over the overall deformation or expansion of printed 

element, and adjusting a number of printing layers in design, the decision maker can predict 

the differences between as planned process and the reality of concrete printing. Hence he/she 

can adjust the time of the printing process, the material is needed and the planning for the 

project. 

Moreover, a proper layer cross section can be reached aligned to the needs of the project, like 

the smooth surface of the final product. Hence the efforts for post-processing is reduced and 

resources can be  reallocated by the decision maker. 

Thus a system is developed to assist decision makers with decisions affecting the design , 

concrete printing, and post processing. The main point here is the fact that the system is not 

deciding for given situations but support decisions by presenting consequences of decision 

scenarios and clarifying the relationships. Decision makers have the main role in decision 

making, because there are still lots of unknown relationships in concrete printing, and here 

only dimensional requirement of a single layer is studied. There are still constraints and 

assumptions made by decision maker aligned with the other criteria such as extrudability of 

the material. The following sub research questions are answered by considering the 

mentioned fact.  

ii. What type of tool or system should be developed to act as the intermediator 

between design and construction? 

iii. What are the components of the system? 

Hence components, types and applications of Decision Support Systems (DSS) studied as 

means of providing decision makers knowledge which leads to more conscious decisions in 3D 

concrete printing. Model-based DSS is used in the context of this research and development 

project, linking dimensional requirements of a printed layer to process settings of Print speed 

and Pump degree and dimensional Decision Support System (dDSS) is shaped. Model 

Management System (MMS) provides the tool and environment to develop, store, and 

manipulate the prediction models, associated with linking dimensions of a printed layer to 

process settings. Problem Process System (PPS) is developed in an environment to flow 

knowledge through dDSS, from and to the user. Moreover, PPS process knowledge using 
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models in MMS, generating or presenting the required knowledge through the user interface. 

Extended view on dDSS is showed as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 104: dDSS extensive 

overview 



143 

 

It should be clarified that: 

iv. Who are the target groups of such Decision Support System? 

dDSS and in general proposed a methodology and developed framework deals with two levels 

of technical and managerial. So the primary target group is researchers and experts defining 

process targets, requirements and final product specifications in both stages of design and 

production. These target groups aims to clarify influential parameters on specific 

characteristics and understand the relationships. These target groups can be structural 

designers and architects, aiming to support their decisions to meet requirements to reach the 

desired form, strength, and dimensions of concrete printing product. 

Moreover, managers can use dDSS and the methodology to virtually and visually track the 

effect of the technical process setting selections in determining the time, cost and material 

usage of the whole project. He/she can experience the trade-offs bounded to the technical 

level criteria of product and find the proper setting to make the project on time, within the 

budget and fulfilling required quality. Of course, 3D concrete printing is not at the stage which 

a large-scale project can be performed, but the tool shows potential to be used in larger scale 

printing processes,  

a. by including more process targets and parameters in the framework of Decision 

Support System, 

b. Incorporating the effect of time as an influential parameter on process 

components such as pump and criteria, such as deformation and bonding strength. 

c. increasing the robustness of material and printer compliment to be able to have a 

more constant performance. 

It is important to elaborate on the core of dDSS, which contains models, shedding light on the 

relationship between the process settings and the layer dimensions.  

III. HOW IS IT POSSIBLE TO ESTABLISH A BETTER UNDERSTANDING OVER THE 3D 

CONCRETE PRINTING PROCESS? 

Which is followed by the following sub-questions: 

i. What are key process decisions in 3D concrete printing? 

ii. How is it possible to identify the significant parameters regarding a specific 

process target? 

iii. What are the criteria for a method to be used in the system, which lead to 

efficient, understandable and explainable predictions of process decisions and 

targets? 

 

Response Surface Methodology (RSM) is implemented as a type of experimentation design 

provides efficient and stepwise experimentation to detect the influential parameters, specify 

their level of significance and develop an empirical model, predicting the dimensions of a 

printed layers according to Print speed and Pump degree. The proposed methodology can 

increase the understanding of 3D concrete process. implementing the methodology which 
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satisfies the following criteria (set according to literature and the context of 3D concrete 

printing), leads to an efficient and clear way of building up experts’ consciousness over 

concrete printing process.  

a. Generate efficient number of concrete printed data as means of interrelation 

studies,   

b. Distinguish influential process parameters after parameter study (parameter 

screening), according to the defined target of 3D concrete printing, 

c. Specify the level of influence of the process parameters (significance study), 

d. Establishing a relationship among the process parameters and the targets 

(empirical model). 

e. Incorporate possible on-linearity in the models and study interaction among the 

parameters, 

f. Provide precise prediction of the process and the target parameters, 

g. Visualize the results for a better and clearer understanding, 

h. Pave the way of analysis toward the process optimization. 

Concrete printing experiments are encountered as data to study the process and derive data-

driven models, which are hard to be resulted through mechanistic models. 

It is possible to incorporate a different process target such as hardened properties of the final 

product. Hence, blocks of designed and analysed experiments lead to the clear bridging of the 

process parameters and the targets. Each block contains the most influential parameters 

regarding the specific criterion. By integrating different blocks, the main criteria can be 

considered, while trade-offs within and among the blocks lead to an integrated approach to 

fulfil the most important targets, which improve the product and meet the requirements. Each 

of these designed and analysed blocks of experimentations is called here “Block of knowledge” 

because they discretize knowledge about the related process targets in blocks.  

Key parameters affecting the 3D concrete printing are investigated and categorised in 4 

different categories of Process parameters, design phase parameters, material properties and 

manufacturing constraints. Due to the great impact of the process on the final product quality 

(by shaping complex interrelations), process parameter are chosen to be studied. Because 

they shape complex interrelations and almost nothing is known about their effects on process 

targets. Influential process parameters are then detected and to define the element of the 

model, describing concrete process. 

According to the current need of 3D Concrete printing Team, time and resources limitations, 

dimensional requirements is focused by investigating the Print speed, Pump degree in one 

model, and Nozzle distance and Print speed in the other model.  

The latter case pre-processing showed noticeable randomness in the data, presenting the fact 

that more data with probably different experimentation setting should be generated. But the 

model containing Print speed and Pump degree presented the behaviour in an acceptable 

range of variation and resulted in an explainable model creation.  
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7.3. Scientific relevance 
This research and development graduation project proposes a methodology in which data play 

the centric role in understanding the concrete printing process. Efficient experimentation 

provides the required data to investigate the interrelations of “layer dimensional 

requirements”. Data analysis provides the opportunity to find the circle of significant 

parameters, so non-significant parameters are put aside and the process should be controlled 

in a more narrow manner.  Empirical models are then developed to express the relationship 

between process target (layer dimensions in dDSS case)and process parameters(Print speed 

and Pump degree in dDSS case). Then developed models are integrated, in a Decision Support 

System framework to derive multiple and divers formats of knowledge generation, leading the 

decision maker to make more proper process-related decisions. Such decisions are: 

i. Dimensional prediction of a printed layer under certain process setting (Print 

speed and Pump degree),  

ii. Proper process settings selection to meet a specified layer or the final product 

dimensions,  

As a result, this research contributes to 3D concrete printing research field by increasing the 

understanding of dimensional criteria of printing layer, as a result of dimensional Decision 

Support System (dDSS).  In a broader sense, dDSS proposes a successfully implemented 

methodology to study different process targets and is able to derive the quantitative 

knowledge about the impact of significant process parameters. Such a methodology considers 

data and experimentations as the centric means of knowledge generations and analysis.  dDSS 

can also be further developed by other researchers to make it more relevant to the challenges 

which are being changed due to the dynamic nature of research improvements.  

7.4. Social relevance  
Target groups of dDSS and in general proposed methodology are divided into two levels of 

technical and managerial. Technical decisions correspond to process and design decisions 

which are interesting in dDSS, and what-if scenarios can be traced regarding process 

parameters and targets values selections. 

Managers can also track the influence of technical decision in terms of time, cost and quality 

of the process and product, by leveraging technical level decisions. As an example, the final 

dimensions of a printed element (like height) can be predicted, compared  with the 

requirements and the required adjustments can be traced in terms of time and cost of 

construction, while satisfying dimensional requirements (technical level). 

As a result, collaborations between two technical and managerial level can be improved and 

facilitated. Because from one level, the interactions between decisions and consequences are 

translatable to another level, due to their high interrelations. So a better understanding of the 

dimensional requirements of 3D concrete printing will be gained. 

dDSS shows the potential of the proposed methodology and developed framework and 

enhances the collaborations between the architect, the structural designer and the managers, 

in the future, when more “blocks of knowledge” are developed according to the methodology. 
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In the shadow of a more robust printing process, and by using such blocks of knowledge, the 

complexity of the process is more under control. On the other hand, as more criteria are 

considered, deriving decisions cause contradictory results which should be traceable enough 

for decision makers with different backgrounds and concerns.  

So the methodology implemented in dDSS shows the potential to support decisions in an 

integrated and collaborative approach.  

7.5.  Current research Limitations and recommendations  
Dimensional Decision Support System (dDSS) has some limitations and context-related 

assumptions in: 

I. Involved process parameters, and target 

II. Deign of experiment and data generation, 

III. Method assumptions, and  

IV. Secondary validation.  

The selections of Print speed and Pump degree in one model, and Nozzle distance and Print 

speed in anther model were limited to the availability of changing states of other process 

parameters such as nozzle type. Moreover, the aim is to make the model as simple as possible 

in the terms of involved parameter numbers, while holding the interaction among integrated 

parameters. 

Moreover, it is recommended to try to integrate three parameters of Print speed, Pump 

degree and nozzle distance in a model, while considering room for measuring randomness of 

the experiment, as pre-processing showed that adding nozzle distance increase randomness 

drastically. Then, the complexity of the process is better modelled in an integrated model. And 

the understanding will  improve. 

Now with the possibility of producing different nozzles, different layer heights can be 

investigated to track the effect of layer height on layer deformation. 

Another important parameter which can be used in further investigations is to increase the 

deformation study in more than a printed layer. So the effect of other layers’ weight can be 

investigated on element deformation. Here then the open time between layers which takes 

for another layer to be placed on top of the current layer is another influential parameter. 

Because in time, placed material is setting and may show less deformation. 

Apart from the dimensional study of printed elements, other criteria of a product are 

necessary to be studied, such as hardened properties of printed layer. Realising the concept 

of  “Block of knowledge” to derive the hierarchical structure of process parameters and 

targets involvements. As a result, important criteria such as layers’ dimensions, bonding 

strength,  and compressive strength, are integrated which ca be analysed and investigate 

individually, then be used as a multi-objective process. 

Numerous parameters are placed in blocks leading to criteria, requirements and objectives. 

Then it will be easier to track the changes in other blocks, while the specific block is leveraged. 

Moreover, instead of dealing with several parameters, the focus will be shifted to higher order 
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criteria, in which related parameters are interrelated in known models. As a result, each 

developed block such as layer dimension block can be extended by introducing new process 

parameters and criterion, as a new block. These blocks are interlinked by common process 

parameters and changes in one block result modifications in process parameter and criterion 

values. These interacting, interlinked blocks provide system containing the most critical 

criteria for the final product, in a hierarchical approach. 

In dDSS, already generated data is used as designed experiments, in order to save time and 

resources, and due to the main purpose which is to develop the methodology. Number of 

replications for the same process setting can be increased to gain more information about the 

behaviour of the material, printer components in a longer time, and have a better evaluation 

of data randomness, while increasing the precision of the models.  

One important recommendation is to consider experimentations to design and analyse data 

leading to develop empirical mode, to benefit from efficient and stepwise data generations 

and analysis. Here, previous set off data is used from previous experience, so the stepwise 

experimentations and analysis are not applicable, as all required data is already available.  

Moreover, One big assumption here is to ignore the effect of time on process performance, 

because the limited printing durations in one go. By gradual improvement of the process, 

printing duration is extending, hence it is important to encounter the effect of time on the 

process parameters and target behaviour. Behaviour of material such as deformation changes, 

the way which layers interact in terms of strength development will be varied and pump 

performance effects material due to imperfections and fluctuations in pressure and 

temperature.  

Response Surface Methodology (RSM) is used as a type of experimentation design with 

specific design and analysis assumptions  limited to the in hand data. Design strategy can be 

changed to CCD where more level of data are investigated and a better understanding over 

the design region is established. IN addition, selecting spherical design regions results in more 

homogenous distribution of prediction precision over the design region. Randomizing and 

blocking can also be considered in RSM design to improve the precision and robustness of the 

model. Randomization refers to the order of experiments run, and by including such a 

principle the experiments are not under the influence of previous or subsequent runs. 

Blocking is employed to improve the precision of targets and response parameters, by 

eliminating nuisance factors and increase the robustness of the process.  

Finally, another limitation of developed dDSS is the fact that validation has been only 

performed for the same rounds of printing. So the behaviour of the process in layer 

dimensional performance is validated for the same rounds of concrete printing. It is 

recommended to also validate the models in different rounds of concrete printing to check 

the extent which the models can response to nuisance factors, such as variations in material 

characteristics. Models may not a response to secondary validation  because in the 

assumptions making them robust against nuisance factors is not considered. 

In order to be able to improve the 3D concrete printing, in addition to understanding the effect 

of process parameters on the process, improvements can be conducted in other disciplines 
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such as material research, hardware developments of the printer by creating changeable 

nozzle types, employing pumps with more stable performance. By incorporating a 

comprehensive approach in developing different influential parameters, 3D concrete printing 

process is improved and more robust process leads to more stable and reliable printable 

elements while the scale is enlarged.  

 

7.6. Future research recommendations 
In this section, recommendations are mentioned more for mid and long term strategies to 

develop Decision Support Systems (DSS)  in 3D concrete printing. 

The mid-term strategy recommends to develop the concrete printer by connecting and 

employing sensors to concrete printer and use their data as the means of process 

investigation. As a result data collection and measurements will be an easy task to perform 

and plenty of data will be available to study the specific behaviour of concrete printing.  

 3D concrete printing as a medium to break the boundaries of design and construction needs 

to be investigated, to find its underlying behaviours. The data-driven approach can shed light 

on complex relations and approximates the realities which can be understood by data mining 

techniques. So, the computational process will discover the patterns in data sets, intersecting 

with methods of machine learning, artificial intelligence, and statistics. 

Numerous data can be captured from sensors to gain geometrical information during the 

printing process, also the temperature of the environment, extruding concrete, and water. In 

addition to discovering patterns, those data can be used as inputs to capture the dynamics of 

the process and leverage the decision parameters to reach the desired outcome. 

 

Figure 105: Big data in 3D concrete printing 
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After shaping the database, data mining methods such as Neural Networks, Decision trees, 

Genetic algorithm and rule inductions can be used, to extract possible hidden correlations, 

interrelations, and predictions.  

Different methods of machine learning in the context of concrete printing may lay in the 

following categories: 

I. Classification detects to which category  defined in a printing object fits in. 

II. Regression: Predicting values o process targets, such as layer dimensions, 

bonding strength and etc. The methods range from the ordinary least square 

methods to decision trees and more complex methods.  

III. Clustering: Automatic grouping of printing objects and specifications into sets and 

clusters. This case if useful for the grouping experiments outcome of the printing 

process. 

The important point is, first to detect key process targets which should be clustered, 

classified or predicted. Then incorporating the process parameters which seem to be 

influential and deriving process behaviour using sensor data, according to the defined 

attributes (process parameters levels for instance). Signal processing methods along with 

machine learning techniques, reveals fundamental characteristics of different sensor data 

and performs analysis techniques to classify, predict and recognize underlying patterns. The 

goal may be increasing the number of printable layers in one go, while outputs from 

previous printing experiences are clustered using sensor data and chosen process settings. 

Here, as a long-term recommendation, the concept of the second generation of DSS is 

elaborated and an application example is mentioned. 

Second Generation of Decision Support System (DSS) is defined as a system which is being 

used in real time of the concrete process. In addition to cover applications of a first generation 

DSS, which is used before or after printing process, the second generation of DSS is actively 

implemented to response dynamics of the process, and deriving deformation related 

decisions in real time. The development of such application requires another important 

component next to DSS, which retrieve data of the properties of printing material like 

temperature, and characteristics of the printing process, such as placement of layers. Such a 

component acts as eyes of the integrated system, directing information to be processed by 

dDSS as the brain of the system and be executed by the body, 3D concrete printer. In the 

integrated system of 3D concrete printer, includes the second generation of dDSS, interacting 

with a Sensor System. In general, sensors measure certain characteristics, use important data 

as process input in Decision Support System, selects proper levels for process parameters to 

meet defined targets and constraints. As a result, DSS improve the process by giving in time 

responses to dynamics of concrete printing. This is the essence of the Second Generation of 

DSS.  

There are a number of limitations in implementing the second generation of DSS. They 

perform automated decision derived from meeting specific requirements. Although those 

targets are being met, but leveraged process setting may influence other targets set for the 

product of concrete printing. 
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First, the scope of decisions and parameter leverage limited, in a way that automated 

interventions do not significantly affect the other goals and settings. 

In another step, goals and associated decisions should be prioritised, and constraints be set 

for variation ranges of process parameters. So assume that  the automated decision of DSS 

sets a specific level for a process parameter, which affects another performance criterion. 

Then as a result of the set constraint, process parameter will be varied in the range and does 

not affect the other goals for the printing product. This needs to have a good understanding 

of the relationship between goals and target criteria. 

Below an application of Second Generation of  dDSS is presented. The sensor system is 

containing sensors responsible for retrieving geometrical data of printed layers and their 

placement. The current research in TU/e is investigate incorporating a height reading sensor 

to track the height of the nozzle and dynamically change G-code of the printer to conduct 

synchronised actions. These actions will satisfy some geometrical constraints of the printing 

process, such as nozzle distance from the top layer.  

 

 

 

 

 

 

 

 

 

 

 

It is a common case when there are imbalances in printing tool path, resulting irregular 

corrugation in printed layers. Such a printing process characteristic, affect the stability and 

also functions of the elements in the operation phase. dDSS can be used to smoothen the top 

layers, and level them to the expected level. It is like levelling the final height of the element 

when levelling in micro level is also included. In the micro level, the aim is to level the layer to 

fill the micro-pits of printing or provide thinner layers to be just at the required layer level. 

In the integrated system proposed for concrete printer, height detector sensor observes the 

printing path and input Height of the last printed layer. The sensor is attached to the printer 

in a way that it is scanning the just printed layer (sensor is looking back). The level of H is the 

expected elevation for the printed element at the time of printing. At a certain point X1’, the 

input H’ is received to dDSS, in a way that “H-H’ = h” is exceeding the tolerance range. In this 

Figure 106: Imperfections in printing tool path 



151 

 

case, the coordination (X1’) of the point in which the different elevation of H’ is observed.  The 

distance between points “ L = X2’- X1’ ”, in which, h is the constraint, is the length which setting 

should be varied to be able to fill the gap (or deposit less material in the case where H is higher 

than expected). 

There are two considerations at this stage. First, in registering X1’ and X2’, the distance 

between the actual point of nozzle point and sensor point (the point measuring height) should 

be calculated. And secondly, L should be reasonable (defined by the user) for the system to 

be compensated, which is case based and may vary between functionalities of the element. 

For the new layer of printing, dDSS gives the suggestion to leverage a process parameter which 

is considered to be varied. Here it is assumed that Print speed is the variable, while changing 

Pump degree is not the recommended to perform in time modifications, due to the delay of 

effect ( due to the length of the hose) and influencing material characteristics. Thus, changing 

Pump degree in several points during the printing will make the element heterogeneous, 

which makes predicting the behaviour of the element harder.   

Therefore for the printing length of L between points X1’ and X2’, Print speed is adjusted, 

according to inputs received from sensor and concrete printer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the Second generation of dDSS, the system should also evolve to incorporate concepts, 

components and methodology of Expert Systems ES). 

Figure 107: Decision supporting by sensor data 
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“An expert system is a problem-solving program that achieves good performance in a 

specialized problem domain that generally requires specialized knowledge and skill. The 

systems process the knowledge of experts and attempt to mimic their thinking, skill, and 

intuition (Nelson Ford, 1985).” 

There is a difference between DSS and ES, which makes it necessary to evolve dDSS. The 

objective of ES is to provide the user and generally the system a decision, which is above 

suggestions of DSS. Here it is required automated interventions at specific lengths, during the 

printing process. So, dDSS should be able to check the (i)current situation, (ii) make 

comparisons with introduced constraints or rules, (iii)retrieve required knowledge from 

model-base and (iv) performs actions. 

Hence, although dDSS should put the decision maker at the centre, more responsibilities 

should be shifted to DSS, by defined rules and constrained, which makes the system less 

flexible in controlling procedures. Because in DSS such a procedure is done by the user, now 

it should be done partly by the system, meeting defined limitations. 

Main components of Rule-based systems should be  added to dDSS, which activates certain 

decisions in response to a situation, comparing it with introduced rules (constraints) by the 

expert (also decision maker in this case).  

In this approach of expert systems, problem-solving knowledge is expressed in sets of rules 

which consist of antecedents as conditions and they result in consequences if conditions have 

a true statement.  

IF <antecedent> THEN <consequents> 

They incorporate practical human knowledge in conditional If-Then rules (Hayes-Roth, 1985). 

In the other words, it follows the human reasoning for problem-solving and decision-making. 

RBSs adaptively determine the best sequence of rules to execute. Moreover, they explain their 

conclusions by retracing their actual lines of reasoning and translating the logic of each rule 

employed into natural language (H*ayes-Roth, 1985). 

In evolved dDSS as the second generation of DSS, Knowledge Management System (KMS) is 

hold the knowledge processing capabilities of Problem Process System (PPS) in the first 

generation of DSS, while it contains Rule-based or Rule memory. Rule-base store constraints 

which, defines rules for control procedure of dDSS. It is activated when antecedent sensor 

data triggers consequents of Rule-based conditions. In addition to static memory, 

incorporating rules, working memory is added to dDSS to store temporary assertions, such as 

printed layer elevations, differences in height and distances between X1’ and X2’. Hence 

working memory corresponds to the dynamic facts of a situation (Hayes-Roth, 1985).  

Input from sensors are checked and processed by KMS, when it triggers sets of rules, through 

working memory, data is linked to Model Management System (MMS), infer related 

knowledge and performs a proper action via modifying process setting. Below the elaborated 

second generation of dDSS is depicted. 
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Figure 108: the Second generation suggested architecture 

 

 

 

 

 

 

 

 

 

 

MMS: Model Management System 

KBM: Knowledge Base Management 
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