Technische Universiteit
Eindhoven
University of Technology

Improving the Interoperability
Between City and Road
Semantics

An Integration of CityGML and OKSTRA
Data Based On Semantic Web Technologies

Yuan Zheng

Chairman Prof. Bauke de Vries
First Supervisor Ir. Wiet Mazairac
Second Supervisor Prof. Jacob Beetz

Eindhoven, 12-2017

Colophon

Master thesis
Title:Improving the Interoperability of Between City and Infrastructure Information
Subtitle:An Integration of CityGML and OKSTRA Data Based On Semantic Web and Linked

Data Technology

Version:Final Version

Author:

Name: Yuan Zheng Kt

ID: 0981516

Email: y.zheng@student.tue.nl

University:

University: Eindhoven University of Technology

Faculty: Architecture, Building and Planning

Department (main): Built Environment

Department (secondary): Construction Management and Engineering
Chair: Information Systems in the Built Environment (ISBE)

Graduation committee:

Academic supervisors:

Chairman: Prof. dr. ir. B. (Bauke) De Vries

First supervisor: Ir. L.A.J. (Wiet) Mazairac

Second supervisor: Prof.dr. Dipl-Ing. J. (Jakob) Beetz (RWTH Aachen)

Date: Monday 4'" December, 2017

Technische Universiteit
Eindhoven
University of Technology

ii

Improving the Interoperability Between City and Road Semantics

Preface

This report is the result of my two-year education period and my graduation research carried out at
Eindhoven University of Technology. In the 2015, I came from China to start my master program
of Construction Management and Engineering at here with my ambition. I truly obtained a vast
amount of novel knowledge about system engineering in built environment, Building Information
Modeling, Geographical Information System and smart city and urban environment, which has
shaped my academic orientation and could help me to make contribution for my motherland in
the future.

The formulation of my research was not easy. The lack of knowledge of semantic web and program-
ming were big problems for me. In the beginning of the graduation project, I paid a lot of time to
study semantic web relevant knowledge and begin to learn scripting from almost zero basis. After
the study, the research went smoothly and my knowledge and skill grew. This research shines me
a light for my future steps.

Here, I would like to thank all my families, teachers and friends who support and stimulate
me during my entire master period. First, I really appreciate my parents who founded me to
study here in the Netherlands. Meanwhile, the academic and technical support from my super-
visors Prof.Jacob Beetz and Dr.Wiet are greatly appreciated. Furthermore, I also feel thankful
to the support from my department Prof.Burke de Vries, Ir.Aant van der Zee, Dr.Qi Han and
Dr.Peter van der Waerden. I would also show acknowledgement to Mr.Stefan Wick for provid-
ing the OKSTRA model of Nordrhein-Westfalen state and CityGML technical support from Dr.
Claudine Metral in University of Geneva. Furthermore, I would also like to appreciate Qifan Dai,
who encouraged me every time when I was facing obstacles. Also my friend Dalei Li and Qiyue
Wang for tutoring me some scripting skills. What’s more, I would also like to thank to my cousin
Jingyue Ma, a 16-year-old boy that is currently fighting with serious illness, your courage is also
my courage to keep fighting with my ambition, hope you can recover soon.

I hope you will enjoy reading and could be learning from this research as I had.

King Regards,

Yuan Zheng, in Eindhoven, the Netherlands

Kz, T =R ER

Improving the Interoperability Between City and Road Semantics iii

Contents

Contents
List of Figures
List of Tables

1 Introduction

1.1 Research Background
1.2 Problem Statemento
1.3 Research Questions L o
1.4 Research Goals
1.5 Research Design e
1.5.1 Theoretical Research
1.5.2 Experimental Implementation
1.6 Report Outline
2 Preliminaries,Literature Summary and Related Work
2.1 CityGMLo
2.2 OKSTRA . . . e
2.3 Semantic Web Lo
2.3.1 Introduction of Semantic Web
232 OWLandRDF o
2.3.3 The Linked Data Approach
234 SPARQL e
2.4 Literature Summary and Related Work
2.4.1 Role and advantages of Semantic Web in AECO/FM industry . .
2.4.2 Related Works oo
2.5 Summary ... e e e e

3 Methodology

3.1 Integration Method L
3.2 Process Map of Experimental Implementation
3.2.1 Data Preparation
3.2.2 Data Transformation
3.2.3 Data Linking L L
3.2.4 Query Development

4 Transformation of the Data

4.1 Data Preparation L o
4.1.1 Instance Data Resource Acquisition and Introduction
4.1.2 OKSTRA Data Processing

4.2 Data Transformation

4.2.1 Constructing Ontologies for the XML Files of the Implementation

vii

b

SO UL U W N =

13
16
16
16
17
18
19
19
20
21

23
23
26
26
27
27
27

29
29
29
30
33
33

Improving the Interoperability Between City and Road Semantics

CONTENTS

4.2.2 Data Conversion: from data-XML to RDF 34
4.3 SUMMATY .« o v v v et bt e e e e e e e e e 37
5 Data Linking 39
5.1 Link the RDF Graphs of OKSTRA and CityGML 39
5.1.1 Ontology Mapping and Linking Definition 39
5.1.2 Data Linking 40
5.2 Query the Integration Result, 44
5.2.1 Query Topic Selection 44
5.2.2 Queryand Result L 45
6 Conclusions, Recommendation and Future Work 51
6.1 Conclusions L e e 51
6.2 Limitation and Discussion Lo 53
6.3 Recommendations L e 53
6.3.1 Practical Recommendations oL oL oL 54
6.3.2 Scientific Recommendations and Future Work 54
Bibliography 57
Appendices 61
A Cities around the world with open CityGML data sets 61
B Python code for parsing OKSTRA data 62
C Python code for finding Netzknoten in the target area 64
D XML Schema List for converting OKSTRA Schema to OWL 65
E Adapted CityGML Ontology for Experiment 69
F Adapted OKSTRA Ontology for Experiment s
G Python code for converting CityGML Data to RDF 87
H Python code for converting OKSTRA Data to RDF 92
I Python code for parsing and CityGML file and constructing geometric reference
104
J Python code for parsing CityGML and OKSTRA geometric reference CSV file
and translating to RDF statements 105
K Java code for merging CityGML RDF graph and OKSTRA graph with geo-
metric reference RDF graph 107
L Python code for finding the CityGML building and their closest OKSTRA road
section 108
M Python code for link the CityGML building and OKSTRA road section 109
N Python code for merging CityGML and OKSTRA RDF graphs and geometry
RDF graph 110
vi Improving the Interoperability Between City and Road Semantics

List of Figures

1.1

1.2
1.3

2.1
2.2
2.3
2.4
2.5

2.6

2.7
2.8
2.9

3.1
3.2
3.3
3.4

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.5

UML diagram of CityGML’s building model, contains both semantic and geomet-

rical information Source:OGCo 2
Research Design o e)
Report Layout e 6
CityGML Modules (source: OGC) o o it 10
CityGML UML for Building Module(source: OGC) 11
The five levels of detail (LOD) defined by CityGML (source: IGG Uni Bonn) . . . 12

The example of OKSTRA alignment with landscape terrain data (source: OKSTRA) 13

OKSTRA UML example of "Straflenelement und Verbindungspunkt’ diagram (source:
http://www.okstra.de/docs/2017 /html/index.htm)o 15
Semantic Web layered architecture (source: CCLRC Rutherford Appleton Labor-
ALOTY) « v v e e e 16
Graph of subject, predicate and object RDF triple 17
Graph of subject, property and value RDF triple 17
Example of The Linking Open Data cloud diagram source:lod-cloud.net 18
The Process of Ontology Mapping 24
The Process of Ontology Mapping with involving intermediate ontology 25
The Integration system and data flow 0L, 25
The process map of experimental implementation 26
The Road Network in Aachen, source: the North Rhine-Westphalia Road Informa-

tion Bank e 30
The Target Area (in the red square), source: Google Map 30
The Target Area CityGML Model Viewing in Azul 31
The Constitution of OKSTRA Road Model, Resource: okstra.de 31
OKSTRA Road Network Model, source:okstra.de 32
The Visualization of the OKSTRA Model in the Target Area 33
The XSLT . . . o o o e 34
The Original XSD and OWL of OKSTRA Class 'Netzknoten” 35
An Example of Transformation for OKSTRA XML to RDF 36
The count of triples in CityGML RDF graphs 37
The count of triples in OKSTRA RDF graphs 37
The BPMN graph of transformation data flow 38
The ideal composition of integrated ontology 39
The schematic diagram of spatial relationship between buildings and road sections 40
The illustration of conceptual ontology linking 41
The geometry reference of building 42
The GeoSPARQL query for calculate distance between one building and all road

SECtiONS e e e e e e e e e 43

Improving the Interoperability Between City and Road Semantics vii

LIST OF FIGURES

5.6 The information of final linked RDF set 43
5.7 The work space of visualizing query result buildings in FME 45
5.8 The SPARQL query for finding the kindergartens and secondary schools that within

100m distance to road and the information of their closest road sections 46
5.9 The visualization for the target kindergartens and secondary schools (in green) . . 47
5.10 The SPARQL query for finding the gas stations and car wash service buildings in

the target area and their closest road section information 48
5.11 The visualization for the target kindergartens and secondary schools (in blue) . . . 48
5.12 The SPARQL query for finding the buildings over 20m height that within 50m

distance toroad L 49
5.13 The visualization for the target kindergartens and secondary schools (inred) . .. 49
A1 Cities around the world with open CityGML datasets (source: OGC) 61

viii Improving the Interoperability Between City and Road Semantics

List of Tables

4.1 List of Netzknoten Coordinates in Target Area 33
5.1 The SPARQL result of topic 1, 46
5.2 The SPARQL result of topic 2 47
5.3 The SPARQL result of topic2 50
Improving the Interoperability Between City and Road Semantics ix

Summary

Recent years, 3D city models are increasingly being adopted throughout the world. The current
trend of the 3D city model is appending semantics to the geometrical objects describing the city
and relevant information in order to enlarge the possible applications of such models. CityGML
is known as the most widely implemented 3D semantic city data model which is gradually being
accepted and implemented in worldwide as the city modelling source.

However, although CityGML claims to contain not only the geometric information of city
objects but also their semantics, there are some problems about the language to represent the
semantics of urban information. First is CityGML is insufficient to contain all the city objects and
their semantics. Therefore, the CityGML should consider to integrate with other heterogeneous
city semantic data sources to enrich the volume of city information, but the City GML itself has lim-
itation of data source expansion, this is known as the second problem. Moreover, there is also the
third problem which is the insufficient utilities of semantic information inside the CityGML model.

In the most of the heterogeneous city data sources, the infrastructure data one of the most
necessary data source to be involved, especially for road data. Although current CityGML expan-
ded several modules to contain road and relevant infrastructure information, but which is not as
comprehensive and in detailed as existing road data platform such as OKSTRA. Therefore, from
another perspective with expanding the CityGML data standard, to integrate OKSTRA with
CityGML will promote the profundity of CityGML’s semantics and enhance the utility of existed
infrastructure information source since the isolated road information can be incorporated in the
entire city environment.

Therefore, this research is focused on integrating CityGML and OKSTRA models. The main
challenge of this research is to solve the integration issue of CityGML with road information data
sources and respond three latent problems of CityGML. Especially, to solve the data sharing
between CityGML and road data domains. Moreover, developing the further data querying and
analysis. Therefore, it is required an effective data integration approach to ensure successfully and
consequentially incorporate these two information sources.

In this research, the Semantic Web technologies is implemented as an integrating platform
for integrating the OKSTRA road information model and CityGML model. The research main
objective is to gain insight in how semantic web technology can be utilized as an integration
approach in order to enhance the interoperability of CityGML and OKSTRA semantics. This
goal can be divided into two sub-goals

1. Develop the methodology of using Semantic Web technology in order to integrate CityGML
and OKSTRA models.

2. Realize the integration process based on the developed method using existed tools and conduct
an experimental implementation case. Furthermore, query the integration product in order to
verify the integration process and obtain useful semantic query result.

In order to achieve the research objective, this research is conducted in two phases, the theoretical

X Improving the Interoperability Between City and Road Semantics

LIST OF TABLES

research and experimental implementation. The theoretical research starts with the literature
study and then establishes the method of integrating OKSTRA and CityGML models and im-
plementation process map. The integration methodology is divided into five parts: constructing
ontologies, transform CityGML and OKSTRA models into RDF graphs, create links between the
constructed ontologies, link the RDF graphs, and query the integrated RDF set. The designed
methodology is examined through the experimental implementation.

In the experimental implementation, after the raw data process and ontology development, the
instance data models of CityGML and OKSTRA are transformed to RDF graphs corresponded
with the developed ontologies. Then, the ontology mapping process is conducted to determine the
link between two ontologies and RDF graphs. In this research, the data linking between CityGML
and OKSTRA is achieved to create link based the spatial relationship of buildings in CityGML
and road sections in OKSTRA. This spatial relationship is determined by employing GeoSPARQL
technology to calculate the shortest distance between each building and road section to find the
closest road section to each building. Using this relationship, two RDF graphs are integrated into
one RDF set. Theoretically, the integrated RDF set is able to be synthetically processed and
queried across two data domains. Thus, several thematic queries are conducted later in order to
verify if the integration is successful and prove the integration product has additional value of
utilizing the semantics in RDF set from two data sources. Meanwhile, the query results are also
illustrated.

The thesis is constructed into six chapters to clarify and verify the integration process. Chapter
1 introduces the research background and the research process. The basic knowledge of CityGML,
OKSTRA, Semantic Web technologies is given in Chapter 2, together with the literature summary
of introducing the current state of Semantic Web implementation research in the AECO/FM in-
dustry. Chapter 3 describes the methodology that integrates the CityGML and OKSTRA model
based on Semantic Web technologies. In Chapter 4 and 5 this methodology is testified through
an experimental implementation. In the end, chapter 6 gives some reflections of this integration
method and provides some future research recommendations.

Overall, from this research, it can be proved that Semantic Web technology is a suitable
approach to integrate CityGML and OKSTRA data source. As a conclusion, the main research
question can be answered. The implementation of the integration of CityGML and OKSTRA based
on Semantic Web technologies can be achieved through a framework including several steps: 1)
Collect the necessary semantics data resource from CityGML and OKSTRA platforms 2) Analyze
the data schema of both platform and develop their ontologies 3)Transform the data into RDF
graphs under the developed ontologies, 4) Map the developed ontologies to determine the links
between RDF resources 5) Merge all the triples and link the determined related resources 6)
develop SPARQL query or use other RDF processing methods to apply the integrated product.

Improving the Interoperability Between City and Road Semantics xi

Abstract

Known as one of the most widely implemented 3D semantic city data models, CityGML has
already being adopted throughout the world, which is able to contain a large amount of city se-
mantic data along with 3D geometries. However, the infrastructure information in the CityGML
is limited and should be enriched by considering to integrate with other infrastructure data source
in order to expand the comprehensiveness of city semantics content and create further semantic
information usage.

This research which aims to develop the methodology of using Semantic Web technologies in
order to integrate CityGML and German road information system OKSTRA and realize experi-
mental implementation of developed methodology. Meanwhile, a paradigm of applying Semantic
Web SPARQL query approach is set up to realize spatial quires based on the integrated CityGML
and OKSTRA RDF set.

xii Improving the Interoperability Between City and Road Semantics

Glossary

CityGML

Smart City

AECO/FM

UML
KML
Collada
ESRI
0GC
GIS
BIMs

Semantic Web

OKSTRA

XML
RDF

Turtle

GML3

LOD

An open standardised data model and exchange format to store di-
gital 3D models of cities and landscape

An urban area that uses different types of electronic data collection
sensors to supply information used to manage assets and resources

efficiently

The abbreviation of Architecture, Engineering, Construction, Oper-
ations and Facility Management

The abbreviation of Unified Modeling Language

The abbreviation of Keyhole Markup Language

An interchange file format for interactive 3D applications
An powerful mapping and spatial data analytics software
The abbreviation of Open Geospatial Consortium

The abbreviation of Geographic Information System

The abbreviation of Building Information Models

A framework allowing data to be shared and reused across applica-
tion, enterprise, and community boudaries

The abbreviation of Objektkatalog fur das Strassen- und Verkehr-
swesen = Object catalog for road and traffic related data

The abbreviation of Extensible Markup Language
The abbreviation of Resource Description Framework

The abbreviation of A format for expressing data in the RDF data
model

The abbreviation of Geography Markup Language 3

The abbreviation of Levels of Detail

Improving the Interoperability Between City and Road Semantics

xiii

LIST OF TABLES

SIG 3D

ISO

IT

CTE
EXPRESS
XSD
EXPRESS-G
STEP

BASt

OWL

SPARQL
RDFS
HTTP
BIM
LOD

IoT

IFC
XSLT
DTD
JSON
BPMN
GeoSPARQL
CSsv
WKT
URI

3D-PDF

The abbreviation of Special Interest Group 3D

The abbreviation of International Organization for Standardization
The abbreviation of Information Technology

The abbreviation of common table expression

A standard modeling language for product data

The abbreviation of XML Schema Definition

A standard graphical notation for information models

The abbreviation of Standard for the Exchange of Product data
The abbreviation of German Federal Highway Research Institute

A semantic Web language designed to represent knowledge about
things and their relations

SPARQL Protocol and RDF Query Language

A data-modelling vocabulary for RDF data

The abbreviation of Hypertext Transfer Protocol

A process to create and manage digital representations of buildings.
The abbreviation of Linked Open Data

The abbreviation of Internet of things

The abbreviation of Industry Foundation Classes

The abbreviation of Extensible Style sheet Language Transformations
The abbreviation of Document Type Definitions

The abbreviation of JavaScript Object Notation

The abbreviation of Business Process Model and Notation

The abbreviation of A Geographic Query Language for RDF Data
The abbreviation of comma-separated values

The abbreviation of Well-known text

The abbreviation of A string of characters used to identify a resource

A PDF file that happens to contain 3D data

xiv

Improving the Interoperability Between City and Road Semantics

LIST OF TABLES

LiDAR The abbreviation of Light Detection and Ranging

Improving the Interoperability Between City and Road Semantics XV

Chapter 1

Introduction

1.1 Research Background

3D city models are increasingly being adopted throughout the world. Facing the challenges of
increasing complexity of construction, urbanization and management, the 3D city models could
provide further value and additional utility for built environment relevant effective decision-making
support and tremendously improve the process of facility management, urban planning, infrastruc-
ture designing, simulation, emergency and etc [18]. Moreover, 3D city models could also be an
essential element for constructing Smart City, which could bring advantages of data visualization
and analysis support, even could be a bridge to link with the ICT equipment of smart city and
other data sources for integrating city information within the Smart-Cities context [52]. Therefore,
the benefits of the 3D city models have successfully attracted the interest of stakeholders from
the Architecture, Engineering, Construction, Operations and Facility Management (AECO/FM)
industry.

In the past, most of the existing 3D city models focused on representing graphical and geomet-
rical information, while the use of semantic was neglected in the 3D city modelling domain[16].
In fact, the models without semantic data can only be considered as a visualization mean of 3D
geometry but not be able to realize extra functionality such as thematic queries, analysis tasks,
or even spatial data mining for domains of facility management, urban planning, infrastructure
designing, city simulation and emergency management [42][29], because these applications require
not only 3D geometry visualization but also rely on complex semantic information in different
scales and domains [62]. Sticking to the models without semantic models could become a bot-
tleneck for further 3D city model implementation since it limits the utility and potential of 3D
city models. Therefore, a strong demand emerged that the current 3D city models should also
contain more city semantic information in order to achieve different engineering and planning ap-
plications that enable complex queries and analysis for facilitating sophisticated decision tasks [56].

Therefore, the current trend of the 3D city model is appending semantics to the geometrical
objects describing the city and relevant information in order to enlarge the possible applications
of such models. Known as the most widely implemented 3D semantic city data model, CityGML
is a common semantic information model for the representation of 3D urban objects, which has
already added the semantic parts along with the geometrical information (shown as fig. 1.1) and
is gradually being accepted and implemented in worldwide as the modelling sources. Compared
with CityGML, other 3D city model data representations such as KML, Collada and ESRI Shape
files that are mainly focusing on the geometrical and geographical visualization aspects and lack
semantic information. Moreover, the CityGML standard laid the foundation for the storage and
application of semantics, which stimulates the progress of semantic 3D city modeling[64]. Cur-
rently, some of the cities in the worldwide has already created their own 3D city model based on

Improving the Interoperability Between City and Road Semantics 1

CHAPTER 1. INTRODUCTION

ot Curve, X=[2.4] =

i
0.4

S [
' = | =u=ageil. TSuld . gmi= MutiCunve
i L AT e Year
i =rooTypefl 1) RoomypeType IodXTeranintermacion, Xe[1.4» 0.1}
' “messuredHeighfl_ 1] gmit
] < =sioreysAbovednound|0. 1]: =:nonMegatveinieger
H il 1]: z=nond g
H =sioeyHeighizAboreGroundD. 11 omi:Measure CrNullLisTT e
E 1 kA Or L ST e
! g e
i 2 o) e Xelld w
1 s
I g
H g
| B
H B
i <oGeomeinea |4 loddGeomely, Xept 4] g
H gmls_Geomarry [e ¥.
i ocFmshrms
H | Bulldinginstalision
1 I
i PP i M-t - S,
= L]
3 !
H i
5 | | | | |
] =<Feghre=> <<Fealurer> w<Fealurer> <<Fealure>> <<Feshae=> =Feahge>e | <<Feahres> 1
H It ol & | utaon |
" H (]
§ . H
i sre-- | ooesse xeng | » L. =eomenre
H pa——
H hocdkuttEurisce = i oA

Figure 1.1: UML diagram of CityGML’s building model, contains both semantic and geometrical
information Source:OGC

CityGML standard and published as open data sources (shown as Appendix A).

1.2 Problem Statement

Although CityGML is able to represent various city objects in 3D geometry and contain their rel-
evant semantics, several latent problems could impact its future development. First is CityGML
is not able to contain all the city objects and their semantics. Practically, there are miscellaneous
semantic data sources to describe various city objects and relevant city information, however
CityGML is not possible to cover them all. Even the CityGML could expand its data schema
and modules continuously in order to cover more city objects and their related semantics, but in
terms of both integrity and details of data, the CityGML itself is still insufficient. For example,
one of the most important city objects are the buildings in the CityGML. However, from the
comprehensiveness perspective, the building models in the CityGML has less detailed information
if compared with BIMs of these buildings, only the most detailed CityGML LOD4 is closest to
BIM, in which buildings are portrayed as architectural models with their surfaces,openings and
details[58]. Therefore, in order to tackle this comprehensiveness problem, the CityGML should
consider to integrate with other heterogeneous city semantic data sources, but the CityGML it-
self has limitation of data source expansion, known as the second problem. This leads a gap for
CityGML to integrate with these data sources in various format representation. The third problem
is the insufficient utilities of semantic information inside the CityGML model. Although CityGML
has been recognized as 3D modeling platform within the GIS domain, currently it has still been
mainly used as 3D model resource for visualization purpose and the semantics in the CityGML
model is limited to be directly used as urban or spatial data source for querying and analysis
just like data processing in conventional GIS tools. All these problems have to be tackled in or-
der to build a comprehensive 3D semantic city information model applications based on CityGML.

2 Improving the Interoperability Between City and Road Semantics

CHAPTER 1. INTRODUCTION

In the most of the heterogeneous city data sources, one essential aspect should be mentioned
is the infrastructure data. Moreover, in the infrastructure domain, road is one of the most im-
portant city component that known as the vessel of city’s transportation and has an impact on
urban lives. Therefore, reliable information of road on the city level is needed and should be
linked with other city semantics to support policy making and then to assess impact of decisions
on the performance of the city in order to improve future decisions. Although current CityGML
expanded several modules to contain road and relevant infrastructure information, but which is
not comprehensive and in detailed to compare with existing road data platform. In fact, there
are already several systematic and comprehensive road and infrastructure information standards
such as OKSTRA and LandXML that have been implemented in different countries. Therefore,
from another perspective with expanding the data standard for different modules, a possible way
to improve the CityGML semantic data model is to integrate the existing infrastructure data
with CityGML data. Most importantly, integrating road information and CityGML will promote
the profundity of CityGML’s semantics and enhance the utility of existed infrastructure inform-
ation sourcesince the isolated road information can be incorporated in the entire city environment.

Therefore, the main challenge of this research is to solve the integration issue of CityGML with
road information data sources and respond three latent problems of CityGML. Especially, to solve
the data integration and interoperability between CityGML and road data domains. Moreover,
developing the further data querying and analysis. Therefore, it is required an effective data in-
tegration approach to ensure successfully and consequentially incorporate these two information
sources.

Despite the importance and omnipresence of the road information in the city level, the topic
of integrating CityGML and road data has not been investigated extensively, and there has been
a few holistic research that focusing on schema expansion but less data integration that encom-
pass the complete pipeline as described. The current heterogeneous city semantic data sources
of integrating with CityGML among the scholars is primarily focusing on Building Information
Models (BIMs), which are not directly related with this research but still valuable for finding the
appropriate integration approaches.

The Semantic Web technologies could be such an integrating platform for integrating the road
information data source and CityGML model. The Semantic Web is known as an extension of
the current web in which information is given well-defined meaning, better enabling computers
and people to work in cooperation[11]. The Semantic Web applications has been tested in the
integration of heterogeneous data model such as BIMs and Geo-spatial data sources like CityGML
and other GIS data source among the scholars, these current works will be minutely discussed in
the Chapter 2. According to the researches of integrating BIMs and CityGML, the application of
Semantic Web technologies has obvious advantages that meet current integration requirement of
miscellaneous data and is able to create links between different information data sets from different
domains and to provide further query that could make comparison with other approaches. Thus, in
this research, the Semantic Web technologies are employed to realize the integration of CityGML
semantics and road information data. A detailed description of the process will be presented in
the following chapters.

1.3 Research Questions

The research problem has been stated in the last section. In this research, the road data model is
the German OKSTRA (Objektkatalog fur das Strassen- und Verkehrswesen = Object catalog for
road and traffic related data) model, which will be integrate with the CityGML model. Moreover,
the further utilization of integrated model is achieved as query applications based on the Semantic
Web query language SPARQL and GeoSPARQL. Based on the problem area, this section outlines
the research questions of the proposed research to conduct the research process and solve the

Improving the Interoperability Between City and Road Semantics 3

CHAPTER 1. INTRODUCTION

research problem. The main research question is:

How to realize the data integration of CityGML and OKSTRA based on Semantic
Web technologies in order to enhance the city semantic information interoperation
meanwhile to develop query applications based on the integration product?

This main research question can be divided into a number of sub-questions in two parts:

The first part is "How the semantic web technology can be utilized to integrate
CityGML and OKSTRA models?’, including several following sub-questions:

1. How Semantic Web technology can enhance the semantic information sharing
during the integration process?

2. How to use semantic web technology to integrate CityGML and OKSTRA from
theoretical aspect?

The second part is ’how the integration result can be used for developing query ap-
plications based on a specific implementation’, including several following sub-questions:

3. What are detailed process to transform the CityGML and OKSTRA model into
RDF graphs?

4. What kind of linking between CityGML data and OKSTRA data can be cre-
ated?
5. How the linked CityGML-OKSTRA model could be utilized by querying integ-
rated product?

6. What kinds of topics of query can be achieved within the research scope?
All the question and sub-questions will be answered in Chapter 6, as the conclusions part of
this thesis.

1.4 Research Goals

The aims of this project is to propose a research that studies and develops approach and meth-
odology for integrating CityGML and OKSTRA data model based on Semantic Web technologies
and provide rather specific guidance for further researches in the field of information management
for city scale. Meanwhile, develop series of general approaches, tools and programs to realize the
integration of CityGML and OKSTRA models in specific German regions. Moreover, using the
semantic web query technology to realize the semantic queries of integration product. Therefore,
the main research goal is to gain insight in how semantic web technology can be utilized as an
integration approach in order to enhance the interoperability of CityGML and OKSTRA semantic.
This goal can be divided into two sub-goals which are corresponding with two parts of the research
questions:

1. Develop the methodology of using Semantic Web technology in order to integ-
rate CityGML and OKSTRA models

2. Realize the integration process based on the developed method using existed
tools and conduct an experimental implementation case. Furthermore, query the
integration product in order to verify the integration process and obtain useful se-
mantic query result

4 Improving the Interoperability Between City and Road Semantics

CHAPTER 1. INTRODUCTION

1.5 Research Design

This research is conducted in two phases, the theoretical research and experimental implementa-

tion, shown as fig. 1.2.

Prelinminaries of
> CityGML and
OKSTRA
Preliminary of
Literature Study > the Semantic
Web
Literature
> Review of
L_| Related Work
%0
g8 v
%2
8 g Literature
< Summary
=
\ 4
Methodology
Development
- Data
A\ o Transformation
Integration
Realization
> Data Linking
58 !
E=3] Query
0 9
o2 Development
oo
<
=
\4

Figure 1.2: Research Design

1.5.1 Theoretical Research

The theoretical research starts with the literature study which consists of three parts: First is
to acquire the preliminaries about the CityGML and OKSTRA data model standards. This step
will obtain the knowledge of basic data structure of both CityGML and OKSTRA. After the
general knowledge about OKSTRA and CityGML is acquired, the focus turns to Semantic Web
technologies including Linked data approach, RDF study and Semantic Web querying technology.
When all the preliminaries have been studied, the third parse is to start the literature study that

Improving the Interoperability Between City and Road Semantics)

CHAPTER 1. INTRODUCTION

focusing on the current researches of the roles and applications of Semantic Web technologies in
AECO/FM industry.

After the literature study, the second part for theoretical research is to establish the method
of integrating OKSTRA and CityGML models and implementation process map. The result will
be used to conduct the experimental implementation phase. Therefore, a design of the integration
method is needed to guide the data transformation and linking procedures in further experimental
implementation.

1.5.2 Experimental Implementation

The experimental implementation aims to realize the integration of CityGML and OKSTRA in-
stance models based on the integration method that enables Semantic Web technologies. Several
steps constitute the entire implementation process. The first step is the data processing in order
to generation the target CityGML and OKSTRA instance model for the experimental implement-
ation. After the data processing has been done, the integration based on the principle of the
semantic web technology is conducted contains following steps: 1)the ontologies development,
2)transformation of CityGML and OKSTRA data-XML file into RDF format, and 3)the data
linking process. At last, queries of the linked data RDF file is executed to verify if the integration
is successful.

1.6 Report Outline

The first chapter is concluded by presenting the general layout of this report (see in fig. 1.3).
The basic knowledge of CityGML, OKSTRA, Semantic Web technologies is given in Chapter 2,

Chapter 1
Introduction
Chapter 2 .
Preliminaries, Literatur | | Chapter 3 Theoretical Research
e Summary and Methodology
Related Work
v
Chapter 4
. . hapt
Experimental Implementation Data B e

Transformation

v

Chapter 6
Conclusion

Figure 1.3: Report Layout

together with the literature summary of introducing the current state of Semantic Web implement-
ation research in the AECO/FM industry. Chapter 3 describes the methodology of integrating

6 Improving the Interoperability Between City and Road Semantics

CHAPTER 1. INTRODUCTION

CityGML model and OKSTRA data, together with the process mapping of the experimental im-
plementation including the data transformation, data linking and query development. The details
of experimental implementation is described in Chapter 4 and 5. Finally in Chapter 6 provides
the conclusions, recommendations and future work from this research.

Improving the Interoperability Between City and Road Semantics

Chapter 2

Preliminaries,Literature Summary
and Related Work

Currently, Semantic Web technologies have been increasingly developed and applied in different
industries. Simultaneously, the research of using semantic web technologies in the AECO/FM
industries started in the early 2000s[50] and has been increasingly adopted. In this chapter, firstly
the preliminaries about relevant fields of CityGML, OKSTRA as well as the Semantic Web tech-
nologies are briefly discussed. In Section 2.1 and Section 2.2 relevant knowledge of CityGML and
OKSTRA data standards is provided. In the following Section 2.3, the knowledge of relevant
Semantic Web technologies are introduced. Following with the literature study of this research
about the role and advantages of Semantic Web technology and related works of data integration
in AECO/FM industry are briefly summarized, which aims to gain an insight about what kind
of role that Semantic Web is playing in the AECO domain to enhance the semantic information
sharing and be utilized for integration process of city and infrastructure information.

2.1 CityGML

CityGML is a common semantic information model for the representation of 3D urban objects that
can be shared over different applications, which is known as an open standardized data model and
exchange format to store digital 3D models and semantics of cities and landscapes in the XML-
based format for virtual 3D city models[34]. Tt is an application schema for the Geography Markup
Language 3 (GML3), the extendable international standard for spatial data exchange issued by
the Open Geospatial Consortium (OGC) and the ISO TC211[35]. Known as a generic informa-
tion standard for 3D city models, CityGML represents city elements and objects with modulates
information[44]. The whole CityGML file consists of 12 modules, including different city elements
(shown as fig. 2.1).

The latest version of CityGML is CityGML 2.0.0, which is designed based on a number of stand-
ards from the ISO 191xx family and is also implemented as an application schema for Geography
Markup Language (GML 3.1.1) from OGC. Furthermore, CityGML has been developed by the
Special Interest Group 3D (SIG 3D) of the initiative Geodata Infrastructure North-Rhine West-
phalia, Germany|[44].

CityGML aims to define the basic entities, attributes and relations within 3D city domain,
which mainly describes the geometry, attributes and semantics of different kinds of 3D city
objects[35]. The base class of all objects is CityObject that all the objects inherit the proper-
ties from CityObject. Moreover, CityGML not only represents the graphical appearance of city
models but specifically addresses the representation of the semantic and thematic properties, tax-
onomies and aggregations[44]. CityGML includes a geometry model that allows for the consistent

Improving the Interoperability Between City and Road Semantics 9

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

1 [] 1 1] 1
<<Leafs> <<Leafs> <<Leafs> <<Leaf>> <<Leafs> <<Leaf>>
Appearance - Bridge - Building < CityFurniture |- | CityObjectGroup |-, Generics

i i ; ' i
1 ' ‘ ' 3

1 D[] v [[v [
<<Leaf>> 1 <<Leaf>> ‘ <<Leaf>> | <<Leaf>> : <<Leaf>> 3 <<Leaf>>
LandUse 7 Relief i Transportation | Tunnel . Vegetation 7 WaterBody

]
—] \ <<import>>

|
|
|
:
- - L
<<import>> CityGML Core =<import>> D]

___________________ R <<Application Schema=>> [~ _____

_________________________ <<leaf>>
H " _ " i - | TexturedSurface
1 <<import=> <<import>>

— v — W [derecated

<<XSDschema=>> <<X8Dschema=>
Geography Markup Language extensible Address Language
(fromOCGC) (from CASS)

Figure 2.1: CityGML Modules (source: OGC)

and homogeneous definition of geometrical and topological properties of spatial objects within 3D
city models. Nevertheless, CityGML is also designed as a common semantic information model
for the representation of 3D urban objects that can be shared over different applications[36]. This
makes a semantically ample CityGML model could be used in GIS applications as the data re-
source for relevant semantic analysis. The data in CityGML model can be interpreted by both
computers and humans, and there is extensive semantics which is directly linked to the geometries
in a spatially aggregated hierarchy. In fig. 2.2 the UML diagram for the relevant semantics of a
CityGML building module is shown.

Furthermore, CityGML supports different Levels of Detail (LOD), which is an omnipresent
concept in geographic information. Five levels of detail is defined to (as shown in fig. 2.3) represent
a city object, where higher level contains more detailed features and properties of a CityObject
[31]. Moreover, one object can be represented in different LODs, which enables the analysis and
visualization of the same object with regard to different degrees of resolution[36] to satisfy different
detail requirements.

10 Improving the Interoperability Between City and Road Semantics

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

core, Emnl

[]
jimpliciFegees omation = T

Kgdimg: ¥
coeimpiiciepresaniatian U2

I vl ke prasertation

T —— I ——
Indéimpiic tRpresentation l
o 0.1 [. T
=Goomoiye I Gaiminlry -
luiGesenetry | gmi: Goamatry ki Casommntry + [rom st CodeType [0.1])
0.1 loed Geomeiny o |#Funstion gl CodaType [0.7] =
R
=/ SrerSug rematon
EE
I
+ciams : gmt:CoduTyom [0..1]
. Gt Type [0

vusign | gt CodeTyos [0,

raammingallation
tunction : grel: CodeTypa 10.7] -
usage - gmi-CodoType (0.7

ymarOeCansruction - seg¥ear [0.1]

| ==Featunes =yoarCDemoktion - xs:gYear [£.1] .
g “raaiType ; gmi:CodaTyre [0.1] =
- CodeType [0.1] ~measurndHeght - gmi-LengthType [0..1]
" slneysADCvRGouNd | xS Tonhogatweinteger [0..1]
[+ usmage : gmit:CodeT 0. rd ek .11
. S5 st pHsigha AbcuR Gronnd | gl Mess ureCruliLsType [0.7)
* intoricrFuminre gt + g iLisType [0.1]

[+ciass - gmi-CoceType [0_1]
etion - gmit:CodeType [0.%]
+usage : gmi:CodeTypa 1.7

kod1 MuliSurtace

0_10 - T T oaURS e
T Tod¥uBSuriacn
kMRS | eiRoalEdge
0 2 -
N e secrmairye Ty TosZMuBGure
s gmi:_Sald gmli-MuliSurises EMuBCue
0.1 B
01-'1\':1 A u:_unt:u»u
IadahtuRS U JeZhuBSerace R
genilzMulBCure.
Uoansutae| |
laiddhiSudoce
benratidB 2 J
0
:‘E‘-’-}| _BoundarySurfscs
! 1] ! 1 1
<<Fparner
ResfSurtace WallSurtsces | | |Grounssurtace ClosursSurtace CailingSurfacs InteriorWallSurface FlocrSurtacs
<<Fomuau=> =<Fealun==
o Ou riace

Figure 2.2: CityGML UML for Building Module(source: OGC)

Improving the Interoperability Between City and Road Semantics

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

LODO0 LOD1

Figure 2.3: The five levels of detail (LOD) defined by CityGML (source: IGG Uni Bonn)

12 Improving the Interoperability Between City and Road Semantics

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

2.2 OKSTRA

The OKSTRA® (Objektkatalog fiir das Strassen- und Verkehrswesen; English version: Object
catalog for road and traffic-related data) is a feature catalogue and application schema for road
and traffic-related data covering the whole life-cycle of a road and with the goal of a lossless ex-
change of road-related data, known as a standardized, conceptual data model for various areas of
roads and transport[40]. OKSTRA unifies the data description of objects from traffic engineering
and also contains a data model for geometry alignment data for align with other geometry and
geographical sources (shown as fig. 2.4, the OKSTRA geometry model in the green color is aligning
with the landscape terrain surface).

The main design goal of OKSTRA is to ensure a consistent object representation and the simple
unified graphical/geometric data exchange in the road and transport sector between different
applications that implement the standard[32]. Moreover, in terms of industrial knowledge and
IT-based techniques, OKSTRA®) is strongly oriented to coordinate with existing regulations and
standards [55], since road design is being targeted in current developments by organizations such
as buildingSMART and the Open Geospatial Consortium (OGC) [4].

Figure 2.4: The example of OKSTRA alignment with landscape terrain data (source: OKSTRA)

Virtually all work processes in road and traffic are now supported by IT procedures. The
digital loss-free transfer of the data in these processes is only possible in a limited extent and is
characterized by media breaches. The idea of using uniform objects of the road and traffic in the
IT process provides a remedy for the prevention of media breaches and their consequences. The
summary of the objects is the object catalog in the road and traffic (OKSTRA)[53].

The current OKSTRA standard (version 2.017) was published in April 2016, providing the
data model solely as an XSD schema. In the past, the OKSTRA standard was provided as an
EXPRESS schema with the CTE data format. However, recently the OKSTRA developers moved
from EXPRESS to XSD, from NAIM Diagrams (like EXPRESS-G Diagrams) to UML (partial
example is shown as fig. 2.5) and from STEP for storing instance files to XML[4].

Improving the Interoperability Between City and Road Semantics 13

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

The OKSTRA is owned by BASt (German Federal Highway Research Institute) and distributed
under an open license that permits its use for commercial projects. The OKSTRA standard was
developed for the German market and initiated in the research company for road and traffic
engineering and implemented within the scope of research assignments[4]. Meanwhile, OKSTRA
was introduced as a nationwide standard for the area of the Federal Highway and recommended
to the road construction administrations of the countries for application. Therefore, the official
XSD schema specifies all identifiers in German, however, currently some the documentation is also
available in English.

14 Improving the Interoperability Between City and Road Semantics

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

ASE_Objekt
historisches_Objekt
«Fachids
Netzknoten

Strazzenkante

«Fachlds
Abschnitt_oder_Ast

+ Punkigsometrie: GM_Point [0.1) + Liniengeometrie: GM_Curve [0_1]
: ; : TH25, | + Lasnge: Kilomater

Nummer: ttd_NK_Nummar + Herunft_Laenge: Herunft_Lsenge [0..1)
+ Knotensrt: Knitsnsn[ﬂ 1] + Betriebsmerkmal: Betriehsmermal [0..1]
+ Knotenname: CharacterString [0..1] + Abschnitts_Astnummer: CharacterString
+ Knotenpunktform: K":tE"DU"“fS”“ [0 -“% T + Abschnitts_Astbezeichnung: CharacterString [0..1]
. .
+ K i K tfunkticn [0..%]
+ K _sonst: Ki sonst [0..7] 01

0.1

+zwischen_Kreuzungsbersichen

Teilkante +im_Kreuzungsbereich
«FestureTypes
Teilelement
< beginnt_bei_
+ endet_bei_:
0.~
+hat_Teilelement
+auf_Strassenelement 0.~ 0.
Strassenkante
Strazzenknoten 1
- - «Fachlds
«Fachids
)) St lement
Verbindungspunkt +beginnt_bei_VF +Beginn_von_! -
+ Liniengeometrie: GM_Curve [0..1]
+ Punkigeometrie: GM_Paint [0..1] e 0% |+ GDF_ID: CharacterSiing [0.1]
w ezt THN B IS = Varshrzichtung: Vertehrsrichtung_SE [0_1]
+ Kennung_Gemeinde: CharacterSting [0.1] vendet bei VR +Ende_von_Strassenelement | + Lasnge: Mter [0..1]
+ Mummer: Integer [0..1] bel + Stufe: Stufe_Strassenelement [0..1]
+ GDF_ID: CharacterString [0..1] p
+ ist_Strassenpunkt: Strassenpunkt [0..1] 1.1
o -

Fist Verbindungspunit +hat_Strassenelement

+hat_Verbindungspunkt +hat_Strassenelement

+in_Mullpunkt sin_ulTounit

0.1

Strassenknoten

«Fachlds
Nullpunkt

+ Punkigeometrie: GM_Faint [0..1] OKSTRA_Objekt
+ Zusatz: Mullpunktkennung
+ Nullpunktart: Nullpunktart ;:’;'ETULP;‘
en
+ i=_Stre GM_Curve [0..1]

+in_komplexem_Knoten +in_komplexem_Knoten

A

OKSTRA_Objekt

«FeatureTypes
Komplexer_Knoten

+ Art_komplexer Knoten Art _komplexer Knoten

Figure 2.5: OKSTRA UML example of 'Strafienelement und Verbindungspunkt’ diagram (source:
http://www.okstra.de/docs/2017 /html/index.htm)

Improving the Interoperability Between City and Road Semantics 15

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

2.3 Semantic Web

2.3.1 Introduction of Semantic Web

The Semantic Web is defined as a Web of Data, which is known as an extension of the Web
through standards by the World Wide Web Consortium (W3C). The concept was addressed by
Tim Berners-Lee in 1998 [10]. The architecture of the Semantic Web is shown in fig. 2.6. The
Semantic Web will be built by adding more layers on top of existing ones and may take around ten
years to complete.[33]. The main objective of the Semantic Web is to create a universal medium
for the exchange of data, which can reach its full potential only if it becomes a place where data
can be shared and processed by automated tools as well as by people.[27]. In fact, the Semantic
Web involves publishing in languages specifically designed for data: Resource Description Frame-
work (RDF), Web Ontology Language (OWL), and Extensible Markup Language (XML), which
has a possibility to describe arbitrary things[3§].

Logic and Proof

Ontologies

Resource Description Framework

XML

UNICODE and URIs

Figure 2.6: Semantic Web layered architecture (source: CCLRC Rutherford Appleton Laboratory)

The collection of Semantic Web technologies (RDF, OWL, RDFS, SPARQL, and etc.) provides
an environment where application can query that data and draw inferences using vocabularies[13].
Basic Semantic Web technologies include representation languages of the Semantic Web: OWL
and RDF, with RDF serving as the foundation and OWL as a formalism Web Ontology Language,
as well as RDF Schema and RDF query language SPARQL.

2.3.2 OWL and RDF

OWL

The W3C Web Ontology Language (OWL) is a Semantic Web language designed to represent rich
and complex knowledge about things, groups of things, and relations between things[22], which
is a computational logic-based language such that knowledge expressed in OWL format can be
exploited by computer programs. OWL is built on RDF and RDF Schema and has potential to
add more vocabulary for describing properties and classes[7]. Meanwhile, OWL documents, known
as ontologies, can be published in the World Wide Web and may refer to or be referred from other
OWTL ontologies. OWL is part of the W3C’s Semantic Web technology stack, which includes RDF,
RDFS, SPARQL. etc.

16 Improving the Interoperability Between City and Road Semantics

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

RDF

RDF (Resource Description Framework) is a standard model for data interchange on the Semantic
Web, which addresses one fundamental issue in the Semantic Web: managing distributed data[l].
The data model of RDF is deceptively simple, which is the triple of subject, predicate and object.
The triple merely defines a directed binary relation between subject and object, which is called a
predicate. The RDF triple can be visualized as a directed labelled graph (s, p, o model), consist-
ing of subject, predicate, and object (as shown in fig. 2.7). Moreover, sometimes predicate and
object maybe referred to as property and value, this is known as another representation of RDF
triples: subject-property-value (s, p, v) model (shown as fig. 2.8). The fundamental concepts
of RDF are resources, properties and statements. Resources can be considered as subjects or
objects, which usually has a Uniform Resource Identifier (URI) which can be a Uniform Resource
Locator (URL) to describe as a web resources. Properties are a special kind of resources that they
describe relations between resources, known as predicate. While statements assert the properties
of resources. A statement is an object attribute-value triple, consisting of a resource, a property,
and a value[38]. Moreover, values can either be resources or literals[5]. The triple concept enables
RDF to represent simple statements about resources as a graph of nodes and arcs representing
the resources, and their properties and values and lets users describe resources using their own
vocabulary.[38]

Subject Predicate ———» Object

Figure 2.7: Graph of subject, predicate and object RDF triple

Figure 2.8: Graph of subject, property and value RDF triple

In the Semantic Web, RDF is serving as the foundation. RDF relies heavily on the infrastruc-
ture of the Web, using many of its familiar and proven features, while extending them to provide
a foundation for a distributed network of data, which has features that facilitate data merging
even if the underlying schemas differ, and it specifically supports the evolution of schemas over
time without requiring all the data consumers to be changed.

As same as OWL, RDF is intended for situations in which the information needs to be processed
by applications, rather than being only displayed to people. RDF provides a common framework
for expressing (his information so it can he exchanged between applications without loss of mean-
ing. Since it is a common framework, application designers can leverage the availability of common
RDF parser and processing tools.

2.3.3 The Linked Data Approach

The Semantic Web was created not only publishing data on the web, but also aims to create links
between data sources in order to use data-in-hand to find other related data [9]. This method
called Linked Data, which lies at the heart of what Semantic Web, is about employing the Resource
Description Framework (RDF) and the Hypertext Transfer Protocol (HTTP) to publish structured
data on the Web and to connect data between different data sources, effectively allowing data in
one data source to be linked to data in another data source.[14]. In another words, Linked data is
simply about using the Web to create typed links between data from different sources (shown as
fig. 2.9), which can be utilized to interoperate heterogeneous sources at the data level[13]. Linked

Improving the Interoperability Between City and Road Semantics 17

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

Data provides a publishing paradigm in which not only documents, but also data, can be a first
class citizen of the Web, thereby enabling the extension of the Web of Data, known as Semantic
Web[39].The four Linked Data principles are as follows [9]:

1. use URIs as names for things;
2. use HTTP URIs so those names can be looked up;
3. return useful information upon lookup of those URIs;
4. include links by using URIs which dereference to remote documents.
What should be mentioned is Linked Data refers to data published on the Web is machine-readable.

Therefore, the meaning of data is explicitly defined, which can in turn be linked to from external
data sets[3].

Figure 2.9: Example of The Linking Open Data cloud diagram source:lod-cloud.net

2.3.4 SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) is the query language and protocol for
the RDF[21], which is developed for semantic query of RDF databases and is able to retrieve and
manipulate data stored in RDF data sets. A SPARQL query consists of a set of triple patterns.
In these triple patterns, each element (the subject, predicate or object) could be a variable. The
solution of the variables is found by matching the patterns in the query to triples in the RDF data
set. SPARQL provide four types of queries[2]:

1.ASK: Ask whether there is at least one match of the query pattern in the RDF graph data;
2.SELECT: Select all or some of those matches in tabular form ;

3.CONSTRUCT: Construct a new RDF graph by substituting the variables in those matches

18 Improving the Interoperability Between City and Road Semantics

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

in a set of triple templates;
4.DESCRIBE: describe the matches found by constructing a relevant RDF graph.

Moreover, SPARQL has an advantage to navigate all the relations in RDF graph data through
graph pattern matching. Furthermore, multiple of simple patterns can construct a complex pattern
based on logic relationships to explore more elaborate relations and result in the data.

2.4 Literature Summary and Related Work

2.4.1 Role and advantages of Semantic Web in AECO/FM industry

In order to theoretically demonstrate Semantic Web technologies can be used as the approach of
CityGML and OKSTRA integration, the literature study initially started with an inspection of
roles the Semantic Web technologies is playing of solving current issue in the AECO/FM domain
and the advantages can Semantic Web technologies can bring based its feature.

Currently in the industry, the interoperability between heterogeneous data source is known
as a long-standing challenge. Various information sources (e.g. BIM and GIS) is required
to be combined and federated for enhancing the availability, efficiency and interoperability of
information[50]. This demand of combinations of information and data source requires an effective
data integration approach with high quality and universality. Therefore, the current circumstance
stimulates the increasing interest in the use of semantic web technologies and linked data techno-
logies, which has features that represent information in structured graphs and efficiently integrate
various kinds AECO data sources. The Semantic Web technologies provide several advantages
such as using one single data model RDF for representing any kind of information with its in-
herent semantics[11][49], using OWL to describe the knowledge and various data standard and
structure among the AECO/FM industry[57], and has potential to link diverse RDF graphs of
information across the different domains easily. Therefore, Semantic Web technologies could be
the ideal technical means to solve the interoperability issue[50].

Based on these natures, the roles and usage of the Semantic Web technologies in the industry
are mainly about 1) solving the interoperability issue among various data formats, standards, and
tools or at least improve information exchange processes between them: Casey and Vankadara
[17] stated that enabling technologies of Semantic Web such as XML and RDF, could provide
a universal accessibility to ontologies with foundations for software services capable of reasoning
and making inferences based on domain knowledge in the form of ontologies. Consoli et al.[20]
addressed that the use of Semantic Web technologies such as ontologies and Linked Open Data
(LOD) have high potential and can be known as a solution towards the current data management
for modern smart cities is facing different kinds of challenges, especially for integrating hetero-
geneous urban data sources from multiple domains. Moreover, the use of linked data technologies
has meaningful usage of improving interoperability between systems and data models in a generic
way and enable a a higher level of data analysis[25].; 2) as a bridge to link to various domains
that are relevant with AECO domains, for examples: Stefan et al.[12] stated the use of Semantic
Web technologies like linked-data could enrich processing of the annotated data, especially for a
variety of Smart city data sources like data from WoT and IoT to be processed. Meanwhile,Zhang
et al.[63] suggested the technologies of the Semantic Web could be considered as a key element to
solve the complexity of IoT data obtained for smart cities and can offer an interface to facilitate
the fusion of IoT data with existing knowledge. Furthermore, Lecue et al.[45] developed a system
supporting semantic traffic analytic and reasoning for city based on Semantic Web technologies
to integrates heterogeneous data and historical and real-time traffic conditions.

Improving the Interoperability Between City and Road Semantics 19

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

2.4.2 Related Works

Recently, Semantic Web technologies has been increasingly adopted by in the domains of AE-
CO/FM, however, the most of the applications are typically centre on buildings and BIM/IFC.
One of the perspective is about converting BIMs in to Semantic Web data representation. For
examples, Schevers and Drogemuller[54] developed a unidirectional conversion from an IFC to an
OWL to convert not all the IFC data to OWL but supports the search for a more appropriate
mapping. Later on, Beetz et al.[8] addressed that the EXPRESS modelling language used by IFC
has limitations in resources reuse and interoperability. They developed an approach to achieve
the translation from IFC schema to Semantic Web graph. Moreover, with development of data
transformation approaches, researches also focused on considering implement Semantic Web as
the middleware to improve the interoperability of BIM/IFC with other data sources. Pauwels
et.al[49] suggested considering the semantic web as an alternative approach to enhance the in-
teroperability of BIM and indicate how it could be used to solve the BIM interoperability issue.
Moreover, Curry et.al[23][24] employed Linked Data approach to overcome interoperability chal-
lenges in order to enable data from multiple sources to be merged into a holistic scenario models
for different stakeholders of buildings and further used the Linked Data as mean for developing
cloud-based building data services in order to create an integrated well connected graph of rel-
evant information for managing a building. As a conclusion, although these previous researches
focusing on Semantic Web applications in BIM domain, they have contributed to prove Semantic
Web technologies could extend the development possibilities of BIM and appear as an alternative
approach to improve interoperability and interaction of heterogeneous data source.

Similar with BIM, the greatest challenge of CityGML integration and interoperability issue is
the semantically inconsistent with other data sources[15][19]. Therefore, in the early stage, most
of the researches put the efforts on data translating and format conversion between CityGML and
other data resources. In 2007, Dollner and Hagedorn[28] discussed the integration of urban GIS,
CAD and BIM data based on unified 3D model system, in which BIM is converted to CityGML.
Isikdag and Zlatanova (2009b) have built a framework for conversion of IFC to CityGML auto-
matically by transforming both semantic and geometric information. De Laat and Van Berlo[26]
introduced their GeoBIM CityGML extension, which translate the semantics inside IFC as GIS
CityGML contexts.

With the development of both CityGML and Semantic Web, more attention has turned to
involve CityGML as a data source into Semantic Web world. Métral et al.[46] argued CityGML is
insufficient for representing the semantics of urban information, which leads 3D city models based
on CityGML are not able to be used in urban tasks that involving multiple actors and multiple
tools. Therefore, for sake of overcoming this limitation, CityGML should considering involving
ontology concept to improve its interoperability with other information systems. Later in 2012,
Métral et al.[48] developed a direct translation of the CityGML 2.0 schema to an OWL description
by using XSLT (http://cui.unige.ch/isi/onto/). This developed ontology is reused in this research.

In 2013, Van den Brink and Janssen[59], develop an approach based on XSLT to transfer the
GML data to RDF representation. Their research has successfully translated the GML instance
data into RDF graphs and provided a general XSLT template.

Furthermore, several researches have implemented the Semantic Web technologies approach
as the means of integration CityGML data with heterogeneous data sources, which have threw
light on this research. El-Mekawy and Ostman[BO] has develop a formal mapping between IFC and
CityGML ontologies, which proposes a more expressive reference ontology between IFC, CityGML
semantic models and an intermediate unified building modelled (UBM), based on reference onto-
logy, a bidirectional formal mapping between IFC and CityGML ontologies that allows bidirec-
tional conversion.

20 Improving the Interoperability Between City and Road Semantics

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

Vilgertshofer et al.[60] addressed CityGML and IFC models cannot be comprehensively mapped
onto one another without data loss. Thus, they employed Linked Data approach to provide a se-
mantically rich connection between the domains of BIM and GIS. In their research, EXPRESS
schema and CityGML XML schema are translated to OWL representation, then manually inspect
both schemas and creating an OWL mapping that contains the similarities on the schema level of
IFC Tunnel and CityGML, at last an instance RDF file is created to connect the corresponding
entities of the IFC and GML instance files.

In 2015, Métral et al.[47] addressed a RDF-based specification of 3D city model visualization
technique. In their research, all the heterogeneous data sets are translate to isolated RDF graphs
and then store in RDF in the triple store. While in the visualization phase, each RDF graphs apply
the desired visualization transformation to produce a graph of abstract visual entities. However,
they considering CityGML files as a semi-RDF /XML file and the gml:id attribute can serve as a
resource identifier for the RDF rather than URI. Therefore, it only requires a slight modification
of add RDF elements in CityGML file to translate CityGML data to RDF /XML representation.

Moreover, Hor et.al in 2016 [41] proposed a novel approach for integrating BIM and GIS using
Semantic Web technologies and RDF graphs, which uses Semantic web ontologies is as nutshell
between BIM and GIS to integrate BIM and GIS technologies into one unified model. The approach
including several step of integrating IFC and CityGML:1)constructing IFC ontology 2)construct-
ing GIS ontology 3)Ontology mapping by linking similar concepts and relationships between two
ontologies 4)Querying integrated ontology based on application domain.5)Load the instance data.
This research shows a paradigm of using Semantic Web technologies and Linked Data method to
integrate IFC and CityGML model, which has contribution to inspiring the establishment of this
research’s methodology.

As introduced above, the CityGML is able to contain semantic information of city entities,
but it is insufficient for representing the semantics of urban information and requires enhance
it interoperability with other data source. The Semantic Web could be regard as integration
approach of various information resources as well as generating and sharing new knowledge.

2.5 Summary

In this chapter, firstly the basic knowledge of the relevant concepts and technologies are introduced
in order to illustrate the nature of these concepts and technologies. Both CityGML and OKSTRA
data models are represented in XML format, contains both geometric data and semantic informa-
tion. Meanwhile, their data schema is in XSD format. Moreover, the RDF is the standard model
for data interchange on the Semantic Web and OWL is a Semantic Web language to represent
data structure. Therefore, in order to employ Semantic Web technologies to integrate CityGML
and OKSTRA data models, the first process is data transformation, which aims to convert the
CityGML XML model and OKSTRA XML model into Semantic Web data representation, which
will be the process of XML to RDF and XSD to OWL. After, the Linked Data approach could be
involved to realize the data integration.

The following part of this chapter is a brief summary of the literature and related work. As a
conclusion, the Semantic Web technologies in the AECO/FM domain are mainly implemented to
solve 1) the interoperability issue among various data formats, standards, and tools and 2) as a
bridge to link to various domains that are relevant with AECO/FM domain. Meanwhile, several
researches has been done to employ Semantic Web technologies with CityGML domain, the main
purposes of these researches aim to enhance the interoperability of GIS and CityGML with other
data sources, especially for BIM. All these efforts proved that Semantic Web could be a solution to
for CityGML integration issue and have reference value for establish the integration methodology
in this research.

Improving the Interoperability Between City and Road Semantics 21

CHAPTER 2. PRELIMINARIES,LITERATURE SUMMARY AND RELATED WORK

22 Improving the Interoperability Between City and Road Semantics

Chapter 3

Methodology

In this chapter, the method to integrate CityGML and OKSTRA by implementing the Semantic
Web technologies is firstly described in Section 4.1. Following with the framework design and
detailed process description of the experimental implementation are based on this method with
CityGML and OKSTRA models, including data conversion, data linking and query development.

3.1 Integration Method

The integration method of CityGML and OKSTRA proposed in this thesis is based on three
concepts or technologies:

1. CityGML model and standard
2. OKSTRA model and standard that have been already mentioned in the preliminary chapter
3. Semantic Web technologies of Linked Data and RDF graphs.

The general method is to implement Semantic Web technologies as the approach to integrate
CityGML and OKSTRA models. Therefore, based this general method, the integration method-
ology consists of several steps as follow:

1. Constructing Ontology of CityGML (Ogitygmi) and OKSTRA (Ookstra) under the
application domain:

Initially, the ontology models under the application domain of both CityGML and OKSTRA
should be developed in order to illustrate the predicates between each subject and object. Afore-
mentioned in the previous chapter, both CityGML and OKSTRA data are written in XML format
and their schema is XSD. Therefore, a series of process that transforms CityGML and OKSTRA
data schema from a traditional format to RDF/OWL graphs are required.

2. Transform both CityGML and OKSTRA Data Models into RDF graphs based
on Ocitygml and Ookstra:

After Ocitygmi and Oopsira are generated, a data translation from XML-format CityGML model
and OKSTRA model into RDF graph should be conducted corresponded with these two ontologies.
Aforementioned, RDF is a graph where the nodes are URI references, Blank Nodes or Literals.
URIRefs and Blank Nodes can both be thought of as resources. The core idea behind convert-
ing every data-XML including CityGML and OKSTRA into RDF graphs is that every complex
XML element maps to a resource and every attribute maps to a property of this resource node
[61]. Thus, the translate principle of both CityGML and OKSTRA XML-format models into RDF
graphs is every class in CityGML or OKSTRA XML model map to a resource and are followed

Improving the Interoperability Between City and Road Semantics 23

CHAPTER 3. METHODOLOGY

by its properties. After the transformation, two RDF graphs should be uploaded to a triple store
that able to store and create new RDF data for further data linking.

3. Create links between the constructed ontologies of O.iygmi and Oopsirq based on
Linked Data method to generate the integrated ontology O_.itygmi—okstra:

In this part, based on the Linked Data method, two ontologies Ocitygmi and Oopsire Will be
integrated as one ontology Ocitygmi—okstra based on recognizing the semantic correspondences
between two ontologies. This ontology integrating process has two steps: 1)ontology mapping and
2) involving intermediate ontologies. In terms of the process of ontology mapping, it is the premiere
and mandatory step that it inspect both of ontologies to determine the objects in distinct ontologies
that can be directly linked and then creates corresponded links. The direct relationships can be
classified as two different types: 1) As same, i.e., Objectcirygmi (an object in CityGML ontology) is
equivalent to Object oksirq (an object OKSTRA ontology), which means they have similar concepts.
Therefore, during the mapping process, these two objects can be matched and joined as one
object in the newly integrated ontology. 2) required the establishment of direct relationships:
there are direct logic relationships between a Objectcitygmi and a Objectorstrq €xisted but no
links between them. Therefore, this circumstance requires creating new relationships between
objects in order to directly links two objects. The process of mapping of ontology is illustrated in
fig. 3.1. As seen, the enriched ontology Ocitygmi—okstra contains all the objects from both Ociygmi
and Oppstra, and objects in two ontologies are directly linked or overlapped based on ontology
mapping. Mathematically, this ontology mapping process can also be given as:

Ocitygmlfokstra = Ocitygml U Ookstra

Ontology of Ontology of Integrated
CityGML | CityGML and OKSTRA

Ontology
[Ontology of Mapping
O

OKSTRA

CityGML XSD

OKSTRA XSD

Required establishment
of relationships

Figure 3.1: The Process of Ontology Mapping

However, the second step of involving intermediate ontologies is optional. Only if the relation-
ships between respective ontologies can not be found and created as direct links in the ontology
mapping step, involving intermediate ontology is necessary. Due to the relationship between in
two ontologies can not be found as direct link, thus, it requires an additional ontology to be an
intermediary that both of the CityGML ontology and OKSTRA ontology can be directly link with
this it. Thus, the integrated ontology is constituted by Ocitygmi—okstra:Ookstra and intermediate
ontology with links between them. This process is shown in fig. 3.2

4. Link the RDF graphs of CityGML and OKSTRA models:

24 Improving the Interoperability Between City and Road Semantics

CHAPTER 3. METHODOLOGY

Ontology of
intermediate

Ontology of Ontology of Integrated CityGML

) CityGML \ and OKSTRA involves
‘k o A\ ~a H intermediate ontology
CityGML XSD :) H
XSD to OWL p— i
Transformation °
Ontology of Mapping

OKSTRA

S

OKSTRA XSD

Figure 3.2: The Process of Ontology Mapping with involving intermediate ontology

Since the relationships between objects in two ontologies have been defined in the ontology
linking process, the corresponding linkages can be created between two RDF graphs by creating
RDF statements to describe the relationships. These statement triples should be merged with
existed RDF graphs of both CityGML and OKSTRA model as the final integrated RDF set. By
using the same URI system, the integration is automatically realized during the RDF graph mer-
ging process by computer. The integrated RDF set will be uploaded in the triple store for next
step validation and application.

5. Query the integrated RDF set for practical application:

After the integration process has been accomplished, the integrated RDF result should be
validated and utilized for practical applications afterwards. The validation and application are
realized by using SPARQL approach to query the RDF set to verify if the integration is successful
and this RDF set could be further implemented as a semantic data base for city information query.

Corresponded with the integration method discussed previously, an architecture of the integ-
ration system and data flow are designed and presented as shown in fig. 3.3 . The integration
system consists of four parts: 1) CityGML and OKSTRA models input, 2) RDF transformation 3)
Data linking 4) Application. The input models contain CityGML and OKSTRA data represented
as XML formats. RDF transformation refers to the process for translation the models to RDF
graphs based on the developed ontologies. Data linking part aims to associate two RDF graphs
corresponded with the integrated ontology to achieve the data linking. Application part aims to
utilize the integration product, for example, extracting useful semantic information for specific
purpose.

CGMLOnoloay Integrated CityGMLIOKSTRA Ontalogy
CityGML Model ‘ RDF T i ‘ C-ty;ixpLhRDF |
e ' R
inkil CityGML-OKSTRA
OKSTRA Model T LLJ City;l\:;nRDF :
. Jo - _ SPARQL

OKSTRA Ontology

Figure 3.3: The Integration system and data flow

Improving the Interoperability Between City and Road Semantics 25

CHAPTER 3. METHODOLOGY

3.2 Process Map of Experimental Implementation

In order to realize and validate the created integration method, it is necessary to conduct an
experimental implementation corresponded with the integration method aforementioned. In this
section, the process map of the experimental implementation will be designed based on the integ-
ration method to guide the practical implementation process. The general process map for this
experimental implementation is shown in fig. 3.4 , which includes four main parts: data prepar-
ation, data transformation, data linking, and query development. More detailed descriptions of
the process will be displayed as follow.

Data Preparation

Data Analysis ! Data Transformation
|] Data Linking]
! | uery Developmen
: [Data Linking }_,—‘ +—»[Query Topic Selection |
SPARQL Query

Figure 3.4: The process map of experimental implementation

3.2.1 Data Preparation

Data Acquisition

The initial step of the experimental implementation is to prepare data for the whole integra-
tion process, which first requires obtaining complete available data source. Therefore, the process
starts with data acquisition, the step that could affect the whole process results. The aim of
the data acquisition is to obtain suitable raw data resource that with the legal license. The key
criteria for data selection include the availability of the data and suitability of this research. Apart
from the key criterion, the accuracy, richness, and stability of the data should be considered as
important criteria.

Data Analysis

After obtaining the raw data sources, the next step is to analyze. This data analysis process
includes analyzing the data schema and data sets themselves. Analyzing the data schema aims to
gain insight of the data structure, concepts and the relationships among different concepts, which
is helpful for further ontology development and XML to RDF transformation. To look up data
sources themselves could gain a clear understanding of the instance data and semantics within the
data sets.

Data Process

The data process aims to produce a meaningful appropriate data set by modifying or adjusting
the raw data set for further integration, since the raw data sets could be exceed the research scope
or need to coordinate with the further application. The data process in the implementation mainly
focus on modifying the raw CityGML and OKSTRA XML files to ensure the data is not exceed
the research scope and suitable for RDF translation without data loss.

26 Improving the Interoperability Between City and Road Semantics

CHAPTER 3. METHODOLOGY

3.2.2 Data Transformation

The data transformation is mainly about to translate the XML format CityGML and OKSTRA
instance models into RDF graphs. With the purpose of unifying data format and preparing for
data linking, the data transformation is structured into two steps: 1)Ontology development and
2) Transforming data-XML to RDF.

Ontology development

Before the transforming of XML instance models to RDF graphs, ontologies of both CityGML
and OKSTRA to describe resources and relationships inside the instance model and within prac-
tical application domain should be established. In this research, there are two approaches for the
development of the ontologies, first is to search for existing ontologies if can be applied. Second is
to develop the ontologies based on the data schema.

Transforming data-XML to RDF

Transforming data-XML to RDF includes two parts: 1) extract the data/semantics in XML
files and 2) recombine them into RDF graphs. Currently, there are no comprehensive tools can
be directly utilized to convert data-XML to RDF graphs, all the tools are adapted to correspond
specific XML file, because of the diversity of XML that every type of XML file for different uses that
contains different elements and restricted by its XML schema. Therefore, suitable transformation
tools should have functions to achieve the functions of parse and extract the XML elements and
write RDF triples. Meanwhile, an appropriate serialization format should also be considered.
Furthermore, for evaluating of the data transforming and merging result, several SPARQL queries
can be executed. If the SPARQL queries go smoothly and get correct results, it proves that the
data transforming and merging part works well.

3.2.3 Data Linking

After the RDF graphs from different data sources are generated, the graphs are still isolated and
should be merged in one RDF set and associated via the data linking process.

Ontology Mapping

To select which dependent classes from various sources to perform linking is based on the logic
relationship between all the classes in the individual ontologies. Therefore, identifying of the link-
ing objects is achieved by ontology mapping, and the method has been described in the last section .

Data Linking

The newly created links should perform as a bridge to navigate between different semantics
island and could be used to extract useful semantic information. The linkage can be a reference
of existing ontology vocabularies or self-created. Moreover, abundant Semantic Web applications
can be used for data linking, such as Apache Jena, Silk, RDFlib and etc.

3.2.4 Query Development

There are two purposes of designing the query part in the implementation: 1) verify the integ-
ration method and process: SPARQL queries can be utilized as an evaluation approach of data
conversion and data linking, which are able to evaluate the RDF data transformation or data
linking are successful. 2) reflects practical usage of the integration product: SPARQL queries can
be used to query useful semantic information based specific topics which cannot be achieved in

Improving the Interoperability Between City and Road Semantics 27

CHAPTER 3. METHODOLOGY

isolate data set.
Query topics selection

In this research, CityGML and OKSTRA models are the data sources. Two data resources have
their data range that CityGML model contains city and building relevant semantic information
and geometric data, while OKSTRA model contains road information and semantics. Therefore,
all the queries should be designed based on available data range and meaningful usage, which
requires an analysis to define topics that not only can be realized based on data-in-hand but also
have meaningful usage.

SPARQL query development

According to the selected query topics, the SPARQL query could be conducted. The SPARQL
query aims to use the SPARQL language to extract query result among direct or indirect resources
relationships.

28 Improving the Interoperability Between City and Road Semantics

Chapter 4

Transformation of the Data

In the previous chapter, a complete integrating methodology has been introduced. In the next
two chapters an experimental implementation based on this methodology is described, which has
a purpose of validating the developed data linking method and simultaneously testing the interop-
erability of two data platforms CityGML and OKSTRA by using Semantic Web technology. The
implementation itself includes two parts: data transformation and data linking. In this chapter
the data transformation process of both CityGML and OKSTRA data model into RDF graphs
is described, including the explanation of data preparation phase, ontology development of each
data and data transformation approaches description. This is followed by a description of data
linking and query process in the next chapter.

4.1 Data Preparation

4.1.1 Instance Data Resource Acquisition and Introduction

In order to realize the experimental implementation of integrating CityGML and OKSTRA data,
the instance data resource acquisition is the first step. Initially, a target area should be determined
according to several scenarios of searching an optimal target area for the experiment. The selecting
scenarios were set up including:1) considering the data access availability 2)searching within the
Germany territory (due to OKSTRA is a German infrastructure information standard that only
widely applied in Germany currently) 3)the area contains with several main roads and a number
of buildings to ensure the rich and sufficient building and road information that can be used and
linked in the data linking process. Therefore, in this experimental implementation, the city of
Aachen is the selected. Aachen is a German city in the North-Rhine Westphalia state, known
as the westernmost city in Germany that near the borders with Belgium and the Netherlands.
Within the territory of Aachen, several roads such as A54, B1, B1A,B264, B57, B258, L.136 and
etc have linked with the entire city(shown as fig. 4.1).

Nevertheless, the whole city is a huge scale that exceed the scope and operability of the exper-
iment. Therefore, the selected target area was further shrink as a square region in the northeast
part of Aachen. In this part, road B1, B1A and L136 cross by and a number of buildings for vari-
ous functions are located. The coordinate of four square vertices in two dimensions is (295000.0,
5629000.0), (295000.0, 5630000.0), (296000.0, 562000.0) and (296000.0, 563000.0) in ETRS89-
UTM32 Geo-coordinate system (shown as fig. 4.2).

The CityGML model of the target area in Aachen is acquired from CityGML organization
homepage, which is published as an open Geo-data set of 3D city models for the entire North
Rhine-Westphalia state. Moreover, all the CityGML models in this model set are separated in
different cities and named based on the lower corner’s coordinates, which is easily navigated. The

Improving the Interoperability Between City and Road Semantics 29

CHAPTER 4. TRANSFORMATION OF THE DATA

5202014
® AC-Roihe Erde

Figure 4.1: The Road Network in Aachen, source: the North Rhine-Westphalia Road Information
Bank

Figure 4.2: The Target Area (in the red square), source: Google Map

model set contains both LoD1 and LoD2 models of the buildings are present and partial of the
relevant semantics is present as well. The chosen model is LoD2 model due to obtain more se-
mantics, however, in the LoD2 model there are still some LoD1 buildings without rooftop. The
visualization of the target area in CityGML visualization tool ’Azul’ is shown in fig. 4.3.

Meanwhile, the OKSTRA data was obtained from Mr.Stefan Wick in the North Rhine-Westphalia
Road Information Bank. The provided data set contains basic OKSTRA infrastructure/road in-
formation of the whole North-Rhine Westphalia state, which is huge and complex, therefore the
OKSTRA data in-hand need a further data processing to extract the OKSTRA data of the target
area, and the process of data processing will be described in next section.

4.1.2 OKSTRA Data Processing

Aforementioned, the OKSTRA data-in-hand covers the entire North Rhine-Westphalia state,
which is exceed the scope of the experiment. Thus, in order to find the road network data model
in the target area, a data processing is conducted in order to extract the OKSTRA data of the

30 Improving the Interoperability Between City and Road Semantics

CHAPTER 4. TRANSFORMATION OF THE DATA

LoD2.295.5628.1 Nilgml

Figure 4.3: The Target Area CityGML Model Viewing in Azul

target area.

Data Analysis
The road model in OKSTRA is shown in the fig. 4.4 | in which a real-world road is represented by

reale Strale | Nullpunkte |
I N
Netzknoten . Ast |

Abschnitte ~ Stralenpunkte |

Y
l N 420m p8m

Figure 4.4: The Constitution of OKSTRA Road Model, Resource: okstra.de

several model components: Nullpunkte (English: Zero point of the Road), Netzknoten(English:
Road Network Node), Ast(English: Road Branch) and Abschnitte (English:Road Section), all
these components are elements in the OKSTRA XML file as ”gml:featureMember” .Furthermore,
all the roads constructed by these components constitute the road network model (shown as fig. 4.5
). Therefore, to extract the road information in the target area is equivalent to extract all the
road represent elements within the target area from the entire North Rhine-Westphalia OKSTRA
XML file.

Obtaining the Target Area Data

In the OKSTRA XML data file, a Netzknoten is a OKSTRA object type for representing a net-
work node, which is a height-equal node that results from the traffic connection of two or more
roads of the relevant road network. A Netzknoten has sole position 3D coordinates, therefore the

Improving the Interoperability Between City and Road Semantics 31

CHAPTER 4. TRANSFORMATION OF THE DATA

Strafennetz - Beispiel

Straftenpunkt

Nullpunktort

Nullpunkt
Nullpunktkennung
Verbindungspunkt
Abschnitt oder Ast
Teilabschnitt
Strallenelement

Kennung fir Teilabschnitte

mI“ }O._

Abschnitte:
von NK 008 nach NK 014 (Abs.-NP 014B)

von NK 007 nach NK 014 (zentraler NP 0140)
von NK 014 (zentraler NP 0140) nach NK 003

Aste:
von A nach B
ven D nach E

von B nach C
ven F nach G

Teilabschnitte:
a = Teilabschnitt auf Abs. 008 - 014B

b = Teilabschnit auf Ast AB
¢ = Teilabschnitt auf Abs, 007 - 0140
d = Teilabschnitt auf Ast BC
e = Teilabschnitt auf Abs, 007 - 0140
f = Teilabschnitt auf Abs, 0140 - 009
g = Teilabschnitt auf Abs, 007 - 0140

Figure 4.5: OKSTRA Road Network Model, source:okstra.de

coordinates of Netzknoten could be utilized to navigate all the Netzknoten within the target area,
sequentially according the elements linkage to find all the other road elements. Thus, the proced-
ure to extract the OKSTRA road data of the target area is initially to find all the Netzknoten
in the file, which should parse the entire OKSTRA XML and search all the Netzknoten elements
to find their coordinates . This step is realized by developing a Python program using several
Python packages, parsing the file and using the Xpath to find the coordinates for 'Netzknoten’.
The Python script for seeking the Netzknoten within the target area is shown in the the Appendix
B, the output of the program is a CSV file contains 3D coordinates of the 'Netzknoten’. Next,
those 'Netzknoten’ whose coordinates that are inside the boundary of the target area need to be
determined. To realize this, a Python program (shown as Appendix C) is implemented in order
to find satisfied result based on the generated 'Netzknoten’ coordinates CSV file.

Eventually, four 'Netzknoten’ were found inside the target area (shown as table 4.1), and these
Netzknoten have linkage with other road elements such as Nullpunkt. Based on the relationships
of between each elements, all of the essential road elements in XML file could be navigated and
extracted to constitute a new OKSTRA-XML file for the target area (shown as fig. 4.6).

32 Improving the Interoperability Between City and Road Semantics

CHAPTER 4. TRANSFORMATION OF THE DATA

Table 4.1: List of Netzknoten Coordinates in Target Area

Netzknoten Coordinates List
Netzknoten X Y Z
Oklabi.15927.0900011u7ad 295157.167 5629195.85 0
Oklabi.15927.090001luamn 295601.203 5629372.571 | 0
Oklabi.15927.0900011vr8n 295719.931 5629358.3 0
Oklabi.15927.090001m323 295905.711 5629349.295 | 0

©® www.okstra.de/pruefung/pruefgeo.htmi?tmp/_OPP3rnXF_newokstra.xml.s

e e -

Figure 4.6: The Visualization of the OKSTRA Model in the Target Area

4.2 Data Transformation

After data preparation phase is completed, the data transformation could be conducted. The gen-
eral idea of data-XML to RDF transformation consists two phases. The first one is to distinguish
and derive the classes and properties from XML. This phase could be achieved by collecting of
classes and properties from the XML schema which describes structure of data-XML. The second
phase is producing RDF graphs by extracting the data in the generated XML file from first step
and compiling to RDF triples. Therefore, based on the general transformation idea, the procedure
of the transformation itself includes two parts: ontology development and the data-XML to RDF
conversion. In terms of the process of ontology development, it coincides with the first phase
distinguish and derive the classes and properties from CityGML and OKSTRA XML Schema file.
Meanwhile, the data-XML to RDF conversion aims to produce the RDF graphs for both platforms.

4.2.1 Constructing Ontologies for the XML Files of the Implementation

An ontology is a formal specification of a shared conceptualization [37], which aims to illustrate
the interrelationships between various entities from a particular domain including their name,
types, properties, and data type. Thus, the ontology could be used as a representation to derive

Improving the Interoperability Between City and Road Semantics 33

CHAPTER 4. TRANSFORMATION OF THE DATA

the classes and properties from XML. In this experimental implementation, both of CityGML and
OKSTRA ontologies should be developed within the research scope to illustrate the data struc-
ture, especially different classes and their properties. Therefore, the created ontologies could be
applied to guide the data conversion and for further data linking process.

The ontology of entire CityGML standard has been developed by University of Geneva in
OWL format, which is constructed based on the XML schema of CityGML standard. This existed
CityGML ontology is determined to be directly utilized for this research, due to the fact that
utilizing the existed ontology could enhance the veracity of further ontology mapping process.
Nevertheless, from the data perspective, the CityGML instance model for this experimentation
only contains the data of buildings in the target area. Therefore, the existed ontology should be
adapted in order to create coordinated CityGML ontology corresponded with the instance model.
The representation of the ontology in OWL can be seen in the Appendix E. Notice that in fact, few
of current open CityGML model sources containing the data of the road or infrastructure, most
of they only contain the partial semantics of buildings compare with the full scale data schema.

Moreover, in terms of OKSTRA ontology, since there is no direct artifacts for this domain, it
should be self-constructed in this research. According to the OKSTRA data XML schema, the
ontology of OKSTRA model can be produced to describe relationships of classes and properties
that derives from OKSTRA XML schema which well described the OKSTRA data structure. The
principle of distinguishing the element in XSD is a class or a property in OWL is that each com-
plexType in OKSTRA XML schema is consider as a class and each sub-element belong to this
class is regarded as a property or sub-classes of this class.

Since both OKSTRA schema and OWL are written in XML format, the main approach to
create the OKSTRA ontology of well-structured XML is to convert their XML schema into OWL
by using the Extensible Style sheet Language Transformations (XSLT), shown as fig. 4.7. XSLT is
a widely-used language for transforming XML documents into other XML documents by using a
XSLT stylesheet with converting principles. In order to convert OKSTRA XML schema, an XSL
(Extensible Stylesheet Language) template is scripted to generate the OWL of OKSTRA road
network module XML schema in RDF/XML format (As shown in Appendix D). The conversion
principle is corresponded with the distinguishing principle that convert each class in OKSTRA
XSD to an OWL class and the properties belong to this class translate to its property restrictions.

OKSTRA XML
Schema

Ontology in OWL

XSLT

(O; || XSD to OWL "

Figure 4.7: The XSLT

Due to the generated OKSTRA instance data model for the target area only contains the data
from OKSTRA road network module. Thus, in this case the OKSTRA ontology development
process only focuses on this module. After some manual adaption, the ontology of OKSTRA road
network module is constructed. The partial ontology in OWL of 'Netzknoten’ class is shown in
fig. 4.8, compared with the original XML schema. The full ontology represents in OWL can be
seen in the Appendix F.

4.2.2 Data Conversion: from data-XML to RDF

After constructed the data ontology of both OKSTRA and CityGML, the process of converting
data-XML to RDF graphs could be started. In this section, conversion principles and transform-

34 Improving the Interoperability Between City and Road Semantics

CHAPTER 4. TRANSFORMATION OF THE DATA

— | <element name="Netzknoten" substitutionBroup="gml:AbstractFeature" type="okstra:NetzknotenType"/>
<c exType name="NetzknotenType">
nt

ractFeatureType®>

< ent minOccu ame="0KSTRA_ID" type="okstra-typen:GUID"/>

<element minOc "@" name="Punktgeometrie" type="gml:PointPropertyType"/>

<element name="Numerierungsbezirk" type="okstra-typen:TK25_Blattnummer”/>

<glement name="Nummer" type="okstra-typen:1lfd_NK_Nummer"/>

<glement minOccu @" name="Knotenart" type="okstra-basis:KeyValuePropertyType"/>
<element maxOccurs="unbounded" name="hat_Nullpunkt" type="okstra-basis:ObjectRefType"/>

www.okstra.de/okstra/Netzknoten">
ource="gml:AbstractFeature"/>

urce="http://www.okstra.de/okstra/Knotenart"/>
:resource="okstra-basis:KeyValuePropertyType"/>

urce="http://www.okstra.de/okstra/Numerierungsbezirk"/>
:resource="okstra-typen:TK25_Blattnummer"/>

esource="http://www.okstra.de/okstra/Nummer" />
f:iresource="okstra—typen:1lfd_NK_Nummer"/>

esource="http://www.ckstra.de/okstra/OKSTRA ID"/>
f:resource="okstra—typen:GUID"/>

esource="http://www.ckstra.de/okstra/Punktgeometrie" />
f:resource="gml:PointPropertyType"/>

esource="http://www.ckstra.de/okstra/hat Nullpunkt"/>
f:resource="okstra-basis:0ObjectRefType"/>

Figure 4.8: The Original XSD and OWL of OKSTRA Class 'Netzknoten’

atio and corresponding result will be introduced.
Conversion Principles

As discussed in the methodology chapter, the conversion principle of both CityGML and OK-
STRA XML instance data into RDF graphs should follow this general idea that every class in
XML map to a resource and is followed with its properties. For every tag in the XML document,
it has been verified whether it is a name of a class or a property in the developed ontologies.
Therefore, according to the developed ontologies, the class should be the URIRefs or Blank Nodes
in the RDF graphs. To distinguish a node has URI or not depends on if it has attributes of
gml:id. Moreover, in this experiment, the creation of URIs are fake URLs. The naming path of
each OKSTRA data URIRefs begins with ”mycitygml.tue.nl/”, pluses the type of the elements
and its gml:id. The naming path for the OKSTRA elements begins with ”myokstra.tue.nl/” and
continues with the description and its gml:id. Meanwhile, in the XML file there is 'xlink’ be used
to refer relevant classes, thus, during the transformation process the ’xlinks’ are converting to
corresponded URIRef.

One thing should be mentioned as well is that the data-XML to RDF transformation should
use the RDF property name rather than the XML name for the property [61], which means to
use more RDF statement to describe the XML elements. However, in this case, the original XML
data statement are used with the original namespace and tag name without converting to RDF
statements, since both of CityGML and OKSTRA are well-structured XML standard and all their
XML elements are well-defined. Therefore, the reuse of XML statement as subjects, predicates
and objects in the RDF is sufficient and correlated rather than using RDF statement to describe

Improving the Interoperability Between City and Road Semantics 35

CHAPTER 4. TRANSFORMATION OF THE DATA

the elements.
Transformation Approach and Result

For the sake of translating data-XML into RDF graphs, two procedures is required that first
is extracting the XML data out and the second is creating the triples in RDF graphs. However,
with currently available tools and languages, translating between XML and RDF is not a simple
task, since the XML provides a popular format for data exchange accompany with a diversity of
the XML data sets. On the other hand, the XML file is restricted by its data schema (usually
DTD or XSD), which should be considered as well in the data transformation. All these conditions
lead to the complexity of XML to RDF transformation process that there is no general converting
tool and each specific type of XML data set should have a corresponding and generic converting
tool to be developed.

Currently, there are several approaches and tools claim can convert data-XML into RDF
graphs. In this research, the chosen approach to convert CityGML and OKSTRA data into RDF
is implementing several existed Python packages, including lxml and beautiful soup for parsing
the XML file and extracting XML data out and RDFlib for creating new triples and inputting the
XML data into triples. The programs of transformation in Python code is shown in the Appendix
G and H.

Furthermore, the serialization of RDF graphs has several format, including RDF /XML, Turtle,
N3-triples and RDF/JSON. In this case, in order to have a clear view of readable triples in the
RDF graphs and further convenient data linking process, the turtle format is selected.An example
of the transformation is shown in fig. 4.9.

Tname>]

<gml:Point gml:i int.3967706" srsName="EPSG:25B832"»

¢gml:pos srsDimension="3">2958157.147 5429195.85 0.0</gml:pos>
r </okstra:P
<OKSTra:h [c/oKstra:Numerierungsbezirk>
cokstra:h r>819</okstra:Nummer>
<okatra:Knotenartsle/okatratKnotenarts
<okstra:hat_Nullpunkt Objektklasse="Nullpunkt" xlink:href="#0klabi.15928.8%988811u7%0"/>
<gkstra:hat_Nullpunkt Obj lasse="Nullpunkt" xlink:href="#0klabi.15%28.8%08011u7gp"/>
T <okstra:hat_Nullpunkt Objektklasse="Nullpunkt" xlink:href="#0klabi.15928.8%80811u7im"/>
<okstra:hat_Nullpunkt Objektklasse="Nullpunkt" xlink:href="#0klabi.15928.8%80811lu7dp"/>
<okstra:hat Wullpunkt Objektklasse="Nullpunkt" xlink:href="#0klabi,.15%28.8%88811u7da"/>
</okstra:Netzknoten>
</gml:featureMember>
[«myokstra.tue.nl/Netzknoten /#0klabi,15927.@988@11u7ad> a <http://schema.okstro.de/2816/Netzknoten> |
pkstra:Knotenart "1" ;

pkstra:Numerierungsbezirk "5282" ;
kstra:Nummey "Q10"

| Dkstra:Punktgeometrie [gml:Point <myokstra.tue.nl/Netzknoten/ #Point.39677@6> 1 |
pkstra:hat_Nullpunkt "#0klabi,.15928,89@@011u790",
"#0klabi.159268.8900811lu7da",

(IR "#0klabi,15928,0900811u7dp",
"#Oklabi.15928.8900811u7gp",
"#0klabi.15928.8900811u7im" ;

gml:name "G202@819" .
Figure 4.9: An Example of Transformation for OKSTRA XML to RDF

So far, the data transformation process is done with a result of two turtle-format RDF graphs.
For CityGML RDF graphs contain over 180,000 triples (shown as fig. 4.10). Meanwhile the RDF
graphs of OKSTRA contain over 2000 triples (shown as fig. 4.11). Two RDF graphs will be used
in further data linking process.

36 Improving the Interoperability Between City and Road Semantics

CHAPTER 4. TRANSFORMATION OF THE DATA

Dataset size

Note this may be slow and impose a significant load on large datasets: [&7 [« CENIET Ko 5T

graph name: triples:
default graph 185046

Figure 4.10: The count of triples in CityGML RDF graphs

Dataset size

Note this may be slow and impose a significant load on large datasets: [Ty &g/o CEN TRy =105

graph name: triples:
default graph 2298

Figure 4.11: The count of triples in OKSTRA RDF graphs

4.3 Summary

In this chapter, the data transformation process is described, the detailed BPMN graph to il-
lustrate the data flow is shown as fig. 4.12. Started with an introduction of the experimental
implementation and the raw data process is addressed and followed with the description of the
data transformation process which is intended to illustrate the detailed data transformation prin-
ciple and approach based on the developed methodology that aim to achieve the translation of
CityGML and OKSTRA XML data to RDF representation. As the second chapter introduced,
both CityGML and OKSTRA data are represented as XML, which providing a tree-based data
model. In order to translate them to RDF graph-based models, the transformation process should
identify and overly structured data. These syntactic artifacts must be translated into a proper
semantic model where objects and properties are typed and semantically related to common vocab-
ularies. Thus, initially, ontologies of both OKSTRA and CityGML in the certain data domain
is created. Based on the ontologies, the translation of data-XML of both data platform to RDF
graphs is conducted. The result of data transformation will be the preparation for the next step:
Data Linking.

Improving the Interoperability Between City and Road Semantics 37

s

2
W Acquire CityGML data
W
o
]
g
§
<
[=
5
2
o

£ {Pyinon

- Transfor XML data fles (N Merge all RDF files as. End data

m E o TTLtle (Il one transformation

2

1

§

£

MLt
o] Pytnon | wr A Pyinon
3 <" | converter
- S N S [vl Comvertai vl GonvertWiT Nyl
M GML geomeric data _ (A et daalo ¥ (Al geometric data to ADF (el
2
m
H H
= CityGML DataOKSTRA Data H
8 CiyGMLGML OKSTRAGHL CityGMLWKT OKSTRAWKT
Goometric ‘Geometric Goometric Geometric
referencing referencing referencing referencing
data data data data

hgh

CityGMLTTL file OKSTRATTL file

hiRh

CityGML Geometric OKSTRA Geometric
referencing referencing
RDF File ROF File

Merged CityG?
Geor

)

STRA RDF File with
referencing

Figure 4.12: The BPMN graph of transformation data flow

Chapter 5

Data Linking

In the previous chapter, the data transformation process is introduced. As a result, both of the
CityGML data and OKSTRA data models are transformed as RDF graphs that contain with all
the statement triples in the Turtle format. However, at this stage, the heterogeneous data from
both platforms in RDF graphs is still isolated, which requires a further data linking process to
associate the two RDF graphs.

In this chapter, the data linking process of the experimental implementation will be introduced.
This data linking process aims to create linkages between specific object classes in both RDF
graphs based on linked data method and GeoSPARQL concept in order to realize the integration
of CityGML and OKSTRA. Furthermore, the following with an introduction of the application
of querying the integrated RDF graphs based on specific topics, which can be also known as a
validation of the linking process.

5.1 Link the RDF Graphs of OKSTRA and CityGML

5.1.1 Ontology Mapping and Linking Definition

As discussed in the methodology chapter, the data linking process should be started with onto-
logy linking in order to create a unified integrated ontology (shown as fig. 5.1). The first step

Integration

Ontology
If, / Y \ ‘\I
| 7\ |
| ; OKSTRA [| CityGML | |
\ \ Ontology | | Ontology | /
\\ \)\< / /

Figure 5.1: The ideal composition of integrated ontology

is the ontology mapping process that inspecting the classes in two different ontologies that have
might have direct relationships and then create corresponded links. Otherwise, if the ontology
mapping process cannot find direct relationships between two ontologies, the ontology linking

Improving the Interoperability Between City and Road Semantics 39

CHAPTER 5. DATA LINKING

should be achieved by involving a intermediate ontology to link both ontologies. In terms of this
experimental implementation, in the adapted OKSTRA ontology, there are classes and properties
describing the road elements. Hence, in the corresponding instance RDF graph, there are instance
data of these classes and properties, including semantics and geometry data. Meanwhile, the
CityGML ontology consists of the classes of basic elements and properties about of the buildings.
Therefore, from the perspective of ontology mapping, there are no equivalents or defined direct
relationship between objects in two ontologies. Thus, in this research, the ontology linking process
is designed to create a link between the classes in OKSTRA and CityGML ontologies by applying
additional ontology as the intermediary.

According to the real-world and topological circumstance, the buildings have their closest roads
sections (shown as fig. 5.2). Therefore, this spatial relationship could be used as the self-defined

Building 2 Building 4

Building 1

Building 5

Building 3

Figure 5.2: The schematic diagram of spatial relationship between buildings and road sections

property for these buildings, known as "has the closest road section”. From ontology perspect-
ive, the OKSTRA ontology class of ’okstra:Abschnitt’ expressing the road section can be linked
within CityGML ontology class ’bldg:Building’ by the relationship of ’has closest road section’ as
a literal property of 'bldg:building’ class. This connection links two separated information part
as one resource-interrelated model. The corresponding data linking process of two RDF graphs is
realized in the merged RDF set by adding triples that state the relationship of ”building” - ”has
closest road section” - "road section” with the same URI of both building node in CityGML and
road section node in OKSTRA.

5.1.2 Data Linking

In order to realize data linking by automatically determining the spatial relationship between
buildings and road sections, here the GeoSPARQL technology is selected to be employed. The
GeoSPARQL standard is developed by OGC, which is designed to support representing and query-
ing geospatial data on the Semantic Web[51]. GeoSPARQL can be regarded as an extension of
SPARQL query language. It is designed for processing geospatial data on Semantic Web and
performs efficiently geospatial reasoning. GeoSPARQL defines a vocabulary dictionary for repres-
enting geospatial data in RDF and has its own ontology. Meanwhile, GeoSPARQL has a series
of query transformation rules that expand a feature-only query into a geometry-based query from
both topological query and non-topological spatial query [43] about spatial and geometric rela-
tions between different features, once they have the same specification in both qualitative systems

40 Improving the Interoperability Between City and Road Semantics

CHAPTER 5. DATA LINKING

and quantitative systems.[6]. Thus, considering these features, GeoSPARQL is one of appropriate
approaches for this case to determine the spatial relationship between buildings and road sections.

Aforementioned, in order to employ GeoSPARQL to determine the spatial relationship between
buildings and road sections, firstly both buildings and road sections node in RDF should have the
same specification. This means to involve the geometry classes in GeoSPARQL ontology as the
middleware to link the ontologies of both CityGML and OKSTRA. For building and road section
class, a property of ’hasGeometry’ is created with geometry class in GeoSPARQL ontology (shown
as fig. 5.3). So far, three ontologies have been linked. Corresponding with the linked ontology,

CityGML ontology OKSTRA ontology

bldg:Building okstra:Abschnitt

geo:hasGeometry

Geometry Classes

GeoSPARQL ontology

Figure 5.3: The illustration of conceptual ontology linking

each building node and road section node in RDF graphs requires property of ’hasGeometry’
with instance data of referencing geometry class. In order to have same qualitative systems and
quantitative systems, the referencing geometries are required to be described by using specific
GeoSPARQL RDF vocabulary with same format and same coordinate referencing system. Thus,
in this case, a data processing is required to create GeoSPARQL RDF geometric references for all
the buildings and road sections.

In terms of the LoD2 buildings in the CityGML model, they have at least one ground surface,
whose geometric type is known as 3D polygon. Therefore, geometric coordinate list (gml:poslist) of
each ground surface polygon is used here to extract geometric data for constructing GeoSPARQL
geometric references for each building (shown shown as fig. 5.4). Moreover, since the geometry
representation of each road section is 2D linestring, in order to ensure the distance calculation
during GeoSPARQL query process, each geometric reference of building is simplified from the
3D ground surface polygon to a 2D referencing point by calculating the mean value of X and Y
coordinates of polygons. This data process is achieved by a Python code to parse and calculate
the CityGML file, shown in Appendix I. All these coordinates of referencing points are then trans-
formed to WKT format under WGS84 system along with corresponded building id via open online
WKT translator (https://mygeodata.cloud/) and stored in a CSV file. Moreover, aforementioned
OKSTRA the geometries of OKSTRA road section are representing as 2D linestrings, so they can
be directly extracted from OKSTRA XML file and converted to WKT format in CSV file via the

Improving the Interoperability Between City and Road Semantics 41

CHAPTER 5. DATA LINKING

PG~

LoD2 Building

Building’s Ground Surface Geometric Reference Point
'WKT POINT

gml:poslist

Figure 5.4: The geometry reference of building

open online WKT translator.

By using Python RDFlib package to translate these two CSV files (the script is shown in
Appendix J), one RDF graph is created to contain all the geometries in GeoSPARQL RDF vocab-
ulary. It contains buildings with their point referencing geometries in WKT and road sections
with their WKT linestring geometries. Afterwards the translation of geometry to RDF has been
done, the referencing geometry RDF is merged with CityGML and OKSTRA RDF graphs as one
RDF set that contains all triples of CityGML building and OKSTRA road section together with
their geometric references. Since, the URIs of buildings and road section in three RDF graphs
are consistentthe computer will automatically append the referencing geometry triples to each
building and road section. The merging process is realized by applying Java Apache Jena package
(script is shown in Appendix K).

As so far, the preparation of applying GeoSPARQL has been done. However, the linking is
not accomplished yet. To determine the spatial relationship, the GeoSPARQL distance function
is utilized here, which is a filter function to return the shortest distance in units between any two
geometric objects as calculated in the spatial reference system of the first object. Here, using
GeoSPARQL distance function and SPARQL basic bind function to query the merged RDF set
of buildings and road sections with their geometry, the distances between one building to every
road section can be calculated (shown as fig. 5.5). This query result is exported as CSV file and
a small Python program (shown in Appendix L) is scripted to find the shortest distance value to
indicate the closest road section for every building. Till now, the relationship of building and its
closest road section is determined, which is translated as ”building URI” - "hasclosestroadsection”
- "road section URI” triples and added to the RDF set (the script is shown in Appendix M).

After the spatial relationship between each building and road section is defined, all the re-
quired RDF graphs have been generated and should be gathering and storing in one RDF set
in order to realize the data linking. The Python code of this process is shown in Appendix N.
Since the relationship RDF contains the consistent URI of both buildings and road sections with
CityGML and OKSTRA RDF graph, the merged RDF set will automatically link the CityGML
and OKSTRA RDF graph based on URI. In this research, the GraphDB is used for the storage
and the retrieval of all the RDF triples as one merged RDF graph set. The merged model consists
all the RDF triples from both RDF graphs of CityGML model and OKSTRA model and their
relationship. Once the merged RDF set consists of 198599 RDF triples, shown as fig. 5.6.

42 Improving the Interoperability Between City and Road Semantics

CHAPTER 5. DATA LINKING

PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX

SELECT

afn: <http://jena.hpl.hp.com/ARQ/function#>

fn: <http://www.w3.org/2005/xpath-functions#>

geo: <http://www.opengis.net/ont/geospargli=>

geof: <http://www.opengis.net/def/function/geosparql/>
gml: <http://www.opengis.net/ont/gml:>

owl: <http://www.w3.org/2002/87/owlé>

par: <http://parliament.semwebcentral.org/parliament#>
rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns&=>
rdfs: <http://www.w3.0rg/2000/01/rdf-schema#=

sf: <http://www.opengis.net/ont/sf#=

units: <http://www.opengis.net/def/uom/0GC/1.0/>

xml: <http://www.w3.org/XML/1998/namespace=>

x5d: <http://www.w3.0rg/20081/XMLSCchema#=

uom: <http://www.opengis.net/def/uom/0GC/1.0/>

bldg: <http://www.opengis.net/citygml/building/1.0>
okstra: <http://schema.okstra.de/2016/o0kstra:>

co: <http://citygmlinteckstra.tue.nl/>

7a (MIN(7distance) AS tmindis) ?b

WHERE { ?a rdf:type bldg:building

7a geo:hasGeometry 7agen .
Tageo geo:aswKT ?awkt .
7a bldg:function ?afunction .
7b geo:hasGeometry 7hgeo .
7b rdf:type <http://schema.okstra.de/2816/Abschnitt> .
?bgeo geo:aswKT ?hwkt .
BIND (geof:distancel?awkt, ?bwkt,uom:metre) AS 7distance)

FILTER {?agec != Tbgeo)

GROUP BY ?a 7b

Figure 5.5: The GeoSPARQL query for calculate distance between one building and all road

sections

Active

Local

repository

newest

total statements 198,349 explicit
198,599 250 inferred

1.00 expansion ratio

Import RDF data

Import tabular data with OntoRefine

Export RDF data

Figure 5.6: The information of final linked RDF set

Improving the Interoperability Between City and Road Semantics

43

CHAPTER 5. DATA LINKING

5.2 Query the Integration Result

As long as the data linking phase is accomplished, the CityGML data and OKSTRA data have
been theoretically integrated. To verify whether if the integration is successful and able to conduct

spatial query for useful semantics, several thematic queries based on selected topics are developed
by using SPARQL.

5.2.1 Query Topic Selection

The selection of the topics has two principles: 1) within the available range based on the instance
RDF set and 2) has practical usage. In the CityGML model, available semantics are basic in-
formation about the building including building name, building function, roof type and measured
height. While in the OKSTRA model, the most interested semantics are the road name, road
section name, number of lanes of road section, and road section is separated or not. Compared
with the data schema of both CityGML building module and OKSTRA road network module,
the instance data sources contain less available semantic. However, it is still able to query the
integration product for interested topics that can not achieved in sole data models. Therefore,
considering the scenarios, several topics are determined:

1.Find the kindergartens and secondary schools that within 100m distance to road
and the information of their closest road sections

Road safety is an crucial issue to neighborhoods and communities. A short distance between
buildings and highways can bring potential safety hazard to vulnerable groups such as children
and students. Thus, especially for buildings as kindergarten or secondary school that contain a
number of children, an inspection of road ambience is required. Here, the integrated RDF set
can be applied for searching the secondary schools and kindergartens that close to roads, and the
information of their closest road sections. The result could help the local authorities to inspect
the safe condition about the schools in the neighborhood and improve the safety for children. If
some of the kindergartens or secondary schools are found within 50 metres distance to road, they
should be marked and reminded to pay more attention on prevent traffic accident with actions
like employing more safety facilities and enhancing the education of travel safety to students and
parents.

2.Find gas stations and car wash service buildings in the target area and their
closest road section information
Both of gas stations and car wash shops are important facilities for vehicles on the road. These
functional buildings provide specific car services. Therefore, the information such as the traffic
volume and number of traffic lanes about the closest road section of these buildings could be sup-
portive to the operators’ decision making process regarding to the management of business and
facilities.

3.Find the buildings over 20m height that within 50m distance to road

In the architecture and urban design domain, the skyline of the buildings close to road is
always considered as an essential design index for architects, urban designers and engineers. The
design height of the project which close to the road usually is corresponded with other buildings in
order to create erratic skyline. Moreover, there is a relationship between residential floor level and
concentration of traffic-related airborne pollutants. Therefore, if the integrated RDF set can be
used to query for buildings close to street and with specific height, architects can use the building

44 Improving the Interoperability Between City and Road Semantics

CHAPTER 5. DATA LINKING

height information to support design meanwhile for urban traffic pollutant research can easily find
target building to research.

5.2.2 Query and Result

So far, three selected topics have been determined, the thematic queries are able to be conducted
by applying SPARQL technology to query the integrated RDF set. Notice that the query result
output of SPARQL are tables with the varieties and their values. Moreover, in order to illustrate
the result clearly, the result about the specific buildings are also visualized in 3D representation
in the 3D city model. However, currently there are no existed tools that directly visualize the
selected 3D objects inside RDF file. Therefore, the visualization of result building is realized still
based on CityGML visualization through FME workbench. FME workbench provides functions
of input CityGML and GML models, and various translating functions to translate the models
into visual results with different feature. In this case, the ’testfilter’ translator is implemented to
use buildings’ property ’gml:id’ as the index to select buildings in the query result and 'geometry
appearance setter’ is used to change their color of appearance in output 3D-PDF file (shown as
fig. 5.7). Therefore in the 3D-PDF file, the buildings as the query result are highlighted in the

Figure 5.7: The work space of visualizing query result buildings in FME

entire city model, so the enquirer can easily navigate the target building and get an intuitive
impression from a city scale. In the following parts, the query process of three thematic queries
are briefly discussed and the query results are illustrated.

1.Find the kindergartens and secondary schools that within 100m distance to road
and the information of their closest road sections

As shown in the fig. 5.8, the query is conducted in order to find the buildings with function
of kindergarten (function code:”31001-3065”) and secondary school(function code:”31001-3021”)
that within 100 metres to road and the information of the name of road that the buildings are
close to and number of lanes the road section has. There are two restrictions in the query, one is
the building function only can be kindergarten or secondary school and the other is must within
50 metres distance to road. These two restrictions are used as filter to constraint the result
in SPARQL query. The fig. 5.9 shows result of the target kindergartens and secondary school
inside the CityGML model. Meanwhile, the table 5.1 is shown as to illustrate the result of road
information.

Improving the Interoperability Between City and Road Semantics 45

CHAPTER 5. DATA LINKING

PREFIX afn: <http://jena.hpl.hp.com/ARQ/functions>

PREFIX fn: <http://www.w3.org/2005/xpath-functions#>

PREFIX geo: <http://www.opengis.net/ont/geosparqlés

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX gml: <http://www.opengis.net/gml:>

PREFIX owl: <htip://www.w3.0rg/2002/07/owlé#>

PREFIX par: <http://parliament.semwebcentral.org/parliament#>
PREFIX rdf: <http://www.w3.0rg/1995/082/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/20008/01/rdf-schema#>

PREFIX sf: <http://www.opengis.net/ont/sf#>

PREFIX units: <http://www.opengis.net/def/uom/0GC/1.8/>
PREFIX xml: <http://www.w3.org/XML/1998/namespaces

PREFIX xsd: <htip://www.w3.org/2001/XMLSchema#>

PREFIX uom: <http://www.opengis.net/def/uom/0GC/1.0/>

PREFIX bldg: <http://www.opengis.net/cityaml/building/1.@=>
PREFIX okstra: <http://schema.okstra.de/2@816/okstra:>

PREFIX co: <http://citygmlinteokstra.tue.nl/>

SELECT ?building ?roadname ?totalnumbercflane
WHERE { ?building rdf:type bldg:building
Tbuilding bldg: function ?bf .
7b rdf:type <http://schema.okstra.de/2816/Abschnitts .
?b gml:name ?bname .
Tbuilding co:hasshortestdistancetoroad ?distance .
?building co:hasclosestroadsection ?b .
?b okstra:zu_Strasse ?f .
?f gml:name ?roadname .
?c okstra:hat_Strecke ?d .
?c okstra:Fahrstreifen_Richtung ?numberoflanel .
?c okstra:Fahrstreifen_Gegenrichtung ?numberoflane2 .
?e okstra:in_Strecke ?d .
7e okstra:auf_Abschnitt_oder_Ast 7b .
FILTER (?distance = 188} .
FILTER (?bf = "31@01 _3821"||?bf = "310@1_3065") .

BIND (xsd:integer(?numberaflanel)+ xsd:integer(?numberoflane2) as 7totalnumberoflane)

Figure 5.8: The SPARQL query for finding the kindergartens and secondary schools that within
100m distance to road and the information of their closest road sections

Table 5.1: The SPARQL result of topic 1

total
building roadname
number of lane

file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000MiES8 B1 2
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000MiuR B1 2
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000MjMs | Bl 2
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000Mjbu B1 2
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39ALGN00001F | Bl 4

2.Find gas stations and car wash service buildings in the target area and their
closest road section information

The SPARQL query script for this topic is shown in fig. 5.10, in which the restriction is to find the
selected building only have the specific function of gas stations or car wash service.fig. 5.10 Accord-
ing to CityGML building function code-book, the codes of two building functions are ”31001-2131”
and 731001-2130”. Shown as fig. 5.11, the highlight buildings in blue color are the result of the
target buildings inside the CityGML model. And the table 5.2 is shown as to illustrate the result
of road information.

3.Find the buildings over 20m height that within 50m distance to road
In this query (shown as fig. 5.12), the target buildings are selected based their shortest distance
to the closest road section and measured height. The restrictions of the distance is less than 50
metres and the height is over 20 metres. The query aims to find the buildings satisfy with this
restriction and their semantic information. The result is shown in the fig. 5.13 and table 5.3.

46 Improving the Interoperability Between City and Road Semantics

=
..-lé-::l- oA :-‘:“‘rj E Euh_' F:—.

Figure 5.9: The visualization for the target kindergartens and secondary schools (in green)

Table 5.2: The SPARQL result of topic 2

number
building roadname

of lane
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000Mk61I B1 2
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000Mice B1 2
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000MjcM L136 4

PREFIX afn: <http://jena.hpl.hp.com/ARD/Functiond=

PREFIX fn: <http://www.w3.org/2085/xpath-functions#=

PREFIX geo: <http://www.opengis.net/ont/geospargl#s

PREFIX geof: <http://www.openois.net/def/function/geospargls=
PREFIX agml: <http://www.opengis.net/gml:=

PREFIX owl: <http://www.w3.0ro/20@2/07/0wl#=

PREFIX par: <http://parliament.semwebcentral.org/parliament#=
PREFIX rdf: <http://www.w3.0oro/1999/02/22-rdf-syntax-ns#=
PREFIX rdfs: <http://www.w3.0rg/2008/01/rdf-schema#=

PREFIX sf: <http://www.opengis.net/font/sfé#=

PREFIX units: <http://www.opengis.net/def/uom/0GC/1.8/=
PREFIX xml: <http://www.w3.oro/XML/1998/namespace=

PREFIX xsd: <http://www.w3.o0ro/2081/¥MLSchemad=

PREFIX uom: <http://www.opengis.net/def/uom/0GC/1.0/>

PREFIX bldg: <http://www.opengis.net/citygml/building/1.@>
PREFTX okstra: <http://schema.okstra.de/2816/okstra:>

PREFIX co: <http://citygmlinteokstra.tue.nl/>

SELECT ?building ?roadsection ?roadname ?numberoflane
WHERE { ?building rdf:type bldg:building
?building bldg:function ?bf .
?roadsection rdf:type <http://schema.okstra.de/2816/Abschnitt= .
?huilding co:hasclosestroadsection ?roadsection .
?roadsection okstra:zu_Strasse ?f .
7f gml:name ?roadname .
7c okstrazhat_Strecke 7d .
7c okstra:Fahrstreifen_Richtung 7numberoflanel .
7c okstra:Fahrstreifen_Gegenrichtung Fnumberoflane? .
7e okstra:in_Strecke 7d .
7e okstra:auf_Abschnitt_cder_Ast 7?roadsection .
FILTER (7bf = "31@01_2131"||?bf = "31ea1_2130") .

BIND (xsd:integer(?numberoflanel)+ xsd:integer(?numberoflane2) as Tnumberoflane)

Figure 5.10: The SPARQL query for finding the gas stations and car wash service buildings in the
target area and their closest road section information

Figure 5.11: The visualization for the target kindergartens and secondary schools (in blue)

PREFIX afn: <http://jena.hpl.hp.com/ARQ/ function#=

PREFIX fn: <=http://www.w3.org/2085/xpath—functions&=

PREFIX geo: <http://www.opengis.net/ont/gecsparglé=

PREFIX geof: <http://www.opengis.net/def/function/geospargl/=
PREFIX gml: <http://www.opengis.net/gml:>

PREFIX owl: =http://www.w3.org/2002/87/owld=

PREFIX par: <http://parliament.semwebcentral.org/parliaments#=
PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: =http://www.w3.0rg/2008/01/rdf-schemad#>

PREFIX sf: <http://www.opengis.net/ont/sf#=

PREFIX units: <http://www.opengis.net/def/uom/0GC/1.8/>
PREFIX xml: <http://www.w3.org/XML/1998/ namespaces

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#=

PREFIX uom: =http://www.cpengis.net/def/uom/0GC/1.8/>

PREFIX bldg: <http://www.opengis.net/citygml/building/1.@>
PREFIX okstra: <http://schema.okstra.de/2816/okstra:>

PREFIX co: <http://citygmlinteokstra.tue.nl/=

SELECT DISTINCT ?building ?height
WHERE { 7building rdf:type bldg:building
Tbuilding geo:hasGecmetry 7ageo .
Tageo geo:aswWKT 7awkt .
Tbhuilding bldg:measuredHeight ?height .
7b geo:hasGeometry Fbgeo .
b rdf:type <http://schema.okstra.de/2816/Abschnitt= .
7bgeo geo:asWKT ?bwki .
FILTER (geof:distance(?awkt, 7bwkt,uom:metre) < 58)
FILTER (xsd:double{?height) = 28)
FILTER (7ageo != ?bgeo)

Figure 5.12: The SPARQL query for finding the buildings over 20m height that within 50m
distance to road

Figure 5.13: The visualization for the target kindergartens and secondary schools (in red)

Table 5.3: The SPARQL result of topic 2

building height
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL10005W9z 23.308
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL10005WMp | 20.082
file:// /Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city/building/ DENW39AL1000Mimi 20.205
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city/building/ DENW39AL1000Mivp 24.021
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000Mj3R | 24.38

file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city/building/ DENW39AL10005VtZ 22.238
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MiFR | 21.082
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city/building/DENW39AL1000MiQl 25.723
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MiDn | 20.376
file:// /Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000Mij5 20.83

file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MjB5 | 20.311
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000M;Dt 33.997
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MjKb | 21.58

file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000M;jL6 20.234
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MjLL | 20.665
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000MjZn 20.981
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MiFW | 20.135
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000MiP8 20.063
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MiTt 20.571
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MiYW | 21.066
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000MitM 20.347
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000M;j61 22.293
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000MjIg 22.135
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000MieQ 23.778
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000Mi91 20.185
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MiJA | 21.914
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000Mihq 20.111
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000Mixi 20.348
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000M;j8n 21.149
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/DENW39AL1000MjqG | 20.402
file:///Users/pc/Desktop/geolinkrdf/mycitygml.tue.nl/city /building/ DENW39AL1000Mjya 20.521

Chapter 6

Conclusions, Recommendation
and Future Work

In this chapter, the answers all research questions based on the accomplishment of the research
goals will constitute the conclusions of this research. Following are the discussion of the limitation
and process of the research, and recommendations based on research result. At last, the future
work of this study will be described.

6.1 Conclusions

Aforementioned, the research purpose is divided into two goals, each aims to provide insight
in a specific part of the research of the CityGML and OKSTRA integration and corresponded
with different research questions. In this concluding part, the sub-questions will be answered suc-
cessively at first according to different research goals, and then the main question will be answered.

The first goal aims to answer the first part of how the semantic web technology can be utilized
to integrate CityGML and OKSTRA models, as described in chapters 3 and 4. The answer to
this question is based upon the findings in the previous studies and literature that related with
the Semantic Web implementation in AECO/FM domain and used to generate an output as the
own integration method of integrating CityGML and OKSTRA models.

1. How Semantic Web technology can enhance the semantic information sharing
during the integration process?

From preliminary and literature study, it can be concluded that the Semantic Web technologies
including RDF, OWL and Linked Data have obvious advantages to merge various information
sources. Since the Semantic Web technology have capabilities to combine heterogeneous data
sources by implying RDF data model across islands of information. Therefore, interoperability
and efficiency during the information exchange process can be improved. Moreover, the imple-
mentation of Semantic Web technologies like linked-data could optimize the processing of the
annotated data and perform as middleware to link heterogeneous data source without information
loss during the conversion between different sources and is able to integrate data various sources
regardless of their format or domain boundaries.

2. How to use semantic web technology to integrate CityGML and OKSTRA from
theoretical aspect?

From theoretical perspective, the integration of CityGML and OKSTRA models could be realized
via implementing Linked Data approach, which allows data in one data source to be linked to data

Improving the Interoperability Between City and Road Semantics 51

CHAPTER 6. CONCLUSIONS, RECOMMENDATION AND FUTURE WORK

in another data source. However, in order to employ the Linked Data approach, it is required to
create the ontologies of both CityGML and OKSTRA models and use RDF graphs to represent
these models, and then integrate the ontologies to guide create RDF statements to describe the
relationship between two graphs and merge all the RDF graphs as one linked RDF set. Therefore,
according to these requirements, an integration methodology is designed and consists several parts:
1. Constructing Ontology of CityGML (O itygmi) and OKSTRA (Ogksirq) under the application
domain

2. Transform both CityGML and OKSTRA Data Models into RDF graphs based on Ocitygm: and
Ookstra

3. Create links between the constructed ontologies of Ocirygmi and Oopsire based on Linked Data
method to generate the integrated ontology Ocitygmi—okstra

4. Link the RDF graphs of CityGML and OKSTRA models

5. Query the integrated RDF set for practical application

Moreover, the second research goal aims to answer the question about how the integration can
be realized based on a specific implementation by describing the detail integration process and in
chapter 5 and 6.

3. What are detailed process to transform the CityGML and OKSTRA model
into RDF graphs?

As we known, both CityGML and OKSTRA models are serialized as XML format. Therefore,
the data transformation can be regarded as data-XML to RDF issue. From the literature study,
several approaches have been applied to translate data-XML to RDF. In this research, the trans-
formation method is to extract the data from XML files and reconstruct it as RDF triple under
the instruction of the developed ontologies of both CityGML and OKSTRA within the research
scope. The ontologies illustrate classes and properties in the XML file. In terms of the classes in
ontologies, they are subjects or objects in the triples, refers to URI nodes or blank nodes. For
properties, they are predicates in the triples. Moreover, the values in XML also need to be extrac-
ted to construct the entire RDF graph. Furthermore, the transformation tools are several Python
packages that can realize parsing XML file and write RDF triples for the sake of translation.

4. What kind of linking between CityGML data and OKSTRA data can be cre-
ated?

Theoretically from the Linked Data method, the resource links can be created when there are
semantics have similarity, equivalents or logic relationships existed between the data resources.
However, in experimental implementation for the research, the CityGML model in hand only
contains geometric data and limited semantics of buildings in the target area. Similarly, the OK-
STRA model only contains geometric data and limited semantics of the roads. Therefore, between
CityGML and OKSTRA models, there are no direct relationships between classes in both ontolo-
gies. Considering this circumstance, a spatial relationship should be self-defined to link buildings
and roads. In this case, since there is no semantics to be used, specific geographical reflection of
both buildings and road sections are append to them and serialized as RDF by extracting and
processing their geometric data for employing GeoSPARQL, which can be used to calculate the
distance between each buildings and road section in order to establish the linkage between building
and road section, known as: building "hastheclosestroadsection’. This relationship describes the
geographical relation between one building and its closest road section. The linkage is generated
through creating corresponding RDF triples in RDFlib that represent the links and adding them
to the merged RDF model.

5. How the linked CityGML-OKSTRA model could be utilized by querying integ-
rated product?

52 Improving the Interoperability Between City and Road Semantics

CHAPTER 6. CONCLUSIONS, RECOMMENDATION AND FUTURE WORK

In order to utilize the integrated product, known as the linked CityGML-OKSTRA model, several
queries based on a specific topic can be conducted through the SPARQL query and the query
results processing, which aims to query the semantic questions that could not be achieved when
the models are isolated. To be mentioned, the result of query process can be considered as the
validation of integration method as well.

During the experimental implementation of the research, although there is a limitation of the
semantics richness in both CityGML and OKSTRA data source, the query topics are created to
analyze the available useful building environment semantics, such as the average building height
and variety of building functions of a specific road section. In fact, the query process can be
realized in several existed Semantic Web tools. In this research, a python program is created to
perform all the topic queries and data processing.

Main question: How to implement the integration of CityGML and OKSTRA se-
mantics based on Semantic Web technologies in order to enhance the city semantic
information interoperation and cooperation?

As a conclusion, the main research question can be answered. The implementation of the integra-
tion of CityGML and OKSTRA based on Semantic Web technologies can be achieved through a
framework including several steps: 1) Collect the necessary semantics data resource from CityGML
and OKSTRA platforms 2) Analyze the data schema of both platform and develop their ontolo-
gies 3)Transform the data into RDF graphs under the developed ontologies, 4) Map the developed
ontologies to determine the links between RDF resources 5) Merge all the triples and link the
determined related resources 6) develop SPARQL query or use other RDF processing methods to
apply the integrated product.

Overall, from this research, it can be proved that Semantic Web technologies are suitable ap-
proaches to integrate CityGML and OKSTRA data source, which performs to integrate them by
determining the rational relationships among different data sources. Therefore, the all the data in
different domains is all kept without data loss. Moreover, the implementation of Semantic Web
technologies can be used for further applications such as thematic semantics queries across two
different data domains. In other words, it overcomes the data isolation.

6.2 Limitation and Discussion

In this research, it is clearly evident that the main limitation is the fact that both of the CityGML
models and OKSTRA only contains limited semantics. In terms of the CityGML model with only
contains LoD1 and LoD2 buildings and there is limited semantics for each building. Meanwhile,
the OKSTRA model only contains road elements with their basic information, so the available
semantics are limited as well. This leads to a consequence that for ontologies adapted based on
the data range, during linking process there is no direct relationship can be found between two
ontologies, which requires an additional GeoSPARQL ontology get involved for determining the
spatial relationship between building and road section. Moreover, it extremely confined further
application, only a few query topic could be conducted, which undermined the practicability of
implementation.

6.3 Recommendations

As a reflection, several research recommendations can be made based on the entire research.
Considering the different aspects, the recommendations can be classified into two kinds: scientific

Improving the Interoperability Between City and Road Semantics 53

CHAPTER 6. CONCLUSIONS, RECOMMENDATION AND FUTURE WORK

recommendation and practical recommendation.

6.3.1 Practical Recommendations

The practical recommendations consider the current development of the CityGML and OKSTRA
data resource, and Semantic Web technology practical utilization. The following recommendations
are made with regard to the practical development of use case utilizing 3D city models in real
estate applications:

1. Increase the richness and quality of semantics in the CityGML model and OKSTRA model

As discussed in the limitation part, the current drawback of the CityGML and OKSTRA data
source is the models are scarce of semantics in the model. Moreover, the limitation of the semantics
in both models has restricted the linking creation and further practical application domain and
possible use cases. Therefore, in order to solve this data lack issue, several recommendations could
be made from different perspective: 1) improve the modification tools to enhance the ability of
appending necessary semantics to 3D objects that might be generated from LiDAR or 3D point
cloud; 2) enrich the semantics of building objects in CityGML model by integrate from the cor-
responded building’s BIM model 3) enlarge the city model to contain more variety of city objects
according to the CityGML thematic modules.

2. Develop and publish the official full-scale ontology of both CityGML and OKSTRA standard

In order to enhance the interoperability of both CityGML and OKSTRA for further linking
with other possible data source, the ontology of both data standard should be established at the
first stage. In this research, the used ontology of CityGML is adapted from the existed onto-
logy that created by the University of Geneva, while the used ontology of OKSTRA is generated
through the translation from OKSTRA data schema to OWL via the XSLT. However, from the
perspective of standardization and normalization, the ontologies should be developed and pub-
lished by the creator in order to guide the future integration.

6.3.2 Scientific Recommendations and Future Work

The scientific recommendations consider to discuss the shortcomings of this research and recom-
mendations for further research. In this research, three obvious shortcoming have limited the
research, and should be overcome in the future studies:

1. Visualization of CityGML and OKSTRA semantics in RDF format

In this research, the visualization of the query result is realized by return the result to the
FME workbench in order to highlight buildings in the entire CityGML model by changing the
appearance of a geometric item of the building in the output 3D-PDF file. However, this approach
can not present of semantic annotation of the query result. Therefore, new means of visualization
are demanded that can achieve both 3D visualization of city object and can show the annotation
semantics of query result direct from the RDF file. This approach requires first parsing the both
semantic and geometric data store in the RDF file. Afterwards, recompiling the geometric data
to 3D object and translate the semantics to human-readable annotation information.

2. Integrate with more data sources

This research focuses on the integration of CityGML and OKSTRA, however, there are possib-
ilities to integrate more heterogeneous city data source in order to rich the semantics for achieving

54 Improving the Interoperability Between City and Road Semantics

CHAPTER 6. CONCLUSIONS, RECOMMENDATION AND FUTURE WORK

more possible applications in order to realize more applications and use cases. Currently, various
data sources about the city information are becoming as open data sources. Meanwhile, consider-
ing the trend of smart city, abundant ICT devices like sensors are employed in the cities throughout
the world. In this research, the RDF data set can be translated from CSV file and data-XML file,
however, most of the various data format can be translate to RDF as well. Therefore, there is a
possibility to integrate these sorts of sensor data in different format with the CityGML model as
a solution to build up a Semantic Web data base of smart city.

3. Research on feasibility of the combination of Linked Data approach and Big Data analysis
for city semantic knowledge and spatial data analysis

From this research, it can be proved that Linked Data approach has the ability to integrate
heterogeneous data source. Therefore, the Linked Data approach might be an effective approach
to enlarge the data size and add more variables in the data set in a certain range. Considering this
nature, the Linked Data approach could be supportive regarding the city big data analysis from
the data variety perspective. In fact, there has been a clear connection and mutual interest from
both Semantic Web and Big Data. However, current Semantic Web technologies has limitation to
cooperate with Big Data concept. One the most acute issues is that Big Data analysis requires
complex data processing and calculation. However, currently within the Semantic Web domain it
cannot be realized. If the data process issue can be overcome, it will be more convenient if the
possible data mining processes can be directly conducted within the RDF graphs.

Improving the Interoperability Between City and Road Semantics 55

Bibliography

1]
2]

[3]

[14]

[15]

Resource description framework (rdf). https://www.w3.org/RDF/. 17

What is sparql - semantic search query language. https://ontotext.com/knowledgehub/
fundamentals/what-is-sparql/. 18

Dean Allemang and James Hendler. Semantic web for the working ontologist: effective mod-
eling in RDFS and OWL. Elsevier, 2011. 18

Julian Amann and André Borrmann. Okstra internationalization. http://www.okstra.de/
forschung/okstra_internationalization_EN.html. 13, 14

Grigoris Antoniou and Frank Van Harmelen. A semantic web primer. MIT press, 2004. 17

Robert Battle and Dave Kolas. Geosparql: enabling a geospatial semantic web. Semantic
Web Journal, 3(4):355-370, 2011. 41

Sean Bechhofer. Owl: Web ontology language. In Encyclopedia of Database Systems, pages
2008-2009. Springer, 2009. 16

Jakob Beetz, Jos Van Leeuwen, and Bauke De Vries. Ifcowl: A case of transforming express
schemas into ontologies. Ai Edam, 23(1):89-101, 2009. 20

Tim Berners-Lee. Linked data. https://www.w3.org/Designlssues/LinkedData.html, Jun
2009. 17, 18

Tim Berners-Lee et al. Semantic web roadmap, 1998, 1998. 16

Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific american,
284(5):28-37, 2001. 3, 19

Stefan Bischof, Athanasios Karapantelakis, Cosmin-Septimiu Nechifor, Amit P Sheth, Aless-
andra Mileo, and Payam Barnaghi. Semantic modelling of smart city data. 2014. 19

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far. Semantic
services, interoperability and web applications: emerging concepts, pages 205-227, 2009. 16,
17

Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked data on the web
(1dow2008). In Proceedings of the 17th international conference on World Wide Web, pages
1265-1266. ACM, 2008. 17

André Borrmann, Thomas H Kolbe, Andreas Donaubauer, Horst Steuer, Javier Ramos Ju-
bierre, and Matthias Flurl. Multi-scale geometric-semantic modeling of shield tunnels for gis
and bim applications. Computer-Aided Civil and Infrastructure Engineering, 30(4):263-281,
2015. 20

C Brenner, N Haala, and D Fritsch. Towards fully automated 3d city model generation.
Automatic Extraction of Man-Made Objects from Aerial and Space Images (II1), pages 47—
57, 2001. 1

Improving the Interoperability Between City and Road Semantics 57

https://www.w3.org/RDF/
https://ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://ontotext.com/knowledgehub/fundamentals/what-is-sparql/
http://www.okstra.de/forschung/okstra_internationalization_EN.html
http://www.okstra.de/forschung/okstra_internationalization_EN.html
https://www.w3.org/DesignIssues/LinkedData.html

BIBLIOGRAPHY

[17]

[18]

[19]

[20]

[25]

[26]

[27]

[30]

[31]

[32]

Michael J Casey and Sriharsha Vankadara. Semantics in cad/gis integration. CAD and GIS
Integration, 143, 2010. 19

S Chan, G Sohn, L, Wang, and W Lee. Dynamic wifi-based indoor positioning in 3d virtual
world. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 1(4):1-6, 2013. 1

Jack Cheng, Yichuan Deng, and Qianru Du. Mapping between bim models and 3d gis city
models of different levels of detail. In 13th international conference on construction applica-
tions of virtual reality, London, pages 30-31, 2013. 20

Sergio Consoli, Misael Mongiovic, Andrea G Nuzzolese, Silvio Peroni, Valentina Presutti,
Diego Reforgiato Recupero, and Daria Spampinato. A smart city data model based on se-
mantics best practice and principles. In Proceedings of the 24th International Conference on
World Wide Web, pages 1395-1400. ACM, 2015. 19

World Wide Web Consortium. Sparql protocol for rdf. https://www.w3.org/TR/
rdf-sparql-protocol/. 18

World Wide Web Consortium. Web ontology language (owl). https://www.w3.org/2001/
sw/wiki/OWL. 16

Edward Curry, James O’Donnell, and Edward Corry. Building optimisation using scenario
modeling and linked data. In First International Workshop on Linked Data in Architecture
and Construction (LDAC 2012), pages 6-8, 2012. 20

Edward Curry, James O’Donnell, Edward Corry, Souleiman Hasan, Marcus Keane, and Seidn
O’Riain. Linking building data in the cloud: Integrating cross-domain building data using
linked data. Advanced Engineering Informatics, 27(2):206-219, 2013. 20

Mathieu d’Aquin, John Davies, and Enrico Motta. Smart cities’ data: Challenges and op-
portunities for semantic technologies. 19:66-70, 11 2015. 19

Ruben de Laat and Leon Van Berlo. Integration of bim and gis: The development of
the citygml geobim extension. In Advances in 3D geo-information sciences, pages 211-225.
Springer, 2011. 20

Jiri Dokulil, Jaroslav Tykal, Jakub Yaghob, and Filip Zavoral. Semantic web infrastructure. In
Semantic Computing, 2007. ICSC 2007. International Conference on, pages 209-215. IEEE,
2007. 16

Jirgen Dollner and Benjamin Hagedorn. Integrating urban gis, cad, and bim data by service-
based virtual 3d city models. Urban and regional data management-annual, pages 157-160,
2007. 20

Jirgen Dollner, Thomas H Kolbe, Falko Liecke, Takis Sgouros, Karin Teichmann, et al. The
virtual 3d city model of berlin-managing, integrating, and communicating complex urban
information. In Proceedings of the 25th Urban Data Management Symposium UDMS, volume
2006, pages 15-17, 2006. 1

Mohamed El-Mekawy and Anders Ostman. Semantic mapping: an ontology engineering
method for integrating building models in ifc and citygml. In 3rd ISDE DIGITAL EARTH
SUMMIT, 12-14 June,, 2010. 20

Mohamed El-Mekawy, Anders Ostman, and Thab Hijazi. A unified building model for 3d
urban gis. ISPRS International Journal of Geo-Information, 1(2):120-145, 2012. 10

Reinhard Erstling and Clemens Portele. Standardization of graphic data in road and transport
part 1: Study. research and development, ss number = 724, year = 1996. 13

o8

Improving the Interoperability Between City and Road Semantics

https://www.w3.org/TR/rdf-sparql-protocol/
https://www.w3.org/TR/rdf-sparql-protocol/
https://www.w3.org/2001/sw/wiki/OWL
https://www.w3.org/2001/sw/wiki/OWL

BIBLIOGRAPHY

[33]

[34]

[35]

Vladimir Geroimenko. Dictionary of XML technologies and the semantic web, volume 1.
Springer Science & Business Media, 2004. 16

G Groger, TH Kolbe, C Nagel, and KH Héfele. Oge city geography markup language (citygml)
encoding standard, version 2.0, ogc doc no. 12-019. Open Geospatial Consortium, 2012. 9

Gerhard Groger, Thomas H Kolbe, Angela Czerwinski, and Claus Nagel. Opengis city geo-
graphy markup language (citygml) encoding standard. Open Geospatial Consortium Inc,
pages 1-234, 2008. 9

Gerhard Groger, Thomas H Kolbe, Claus Nagel, and Karl-Heinz Héafele. Open geospatial
consortium ogc city geography markup language (citygml) encoding standard, 2012. 10

Thomas R Gruber. A translation approach to portable ontology specifications. Knowledge
acquisition, 5(2):199-220, 1993. 33

Xingui He, Ertian Hua, Yun Lin, and Xiaozhu Liu. Computer, Informatics, Cybernetics and
Applications: Proceedings of the CICA 2011, volume 107. Springer Science & Business Media,
2011. 16, 17

Tom Heath and Christian Bizer. Linked data: Evolving the web into a global data space.
Synthesis lectures on the semantic web: theory and technology, 1(1):1-136, 2011. 18

Jochen HETTWER. The object catalog for traffic and transport - okstra ®). 13

A-H Hor, A Jadidi, and G Sohn. Bim-gis integrated geospatial information model using
semantic web and rdf graphs. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial
Information Sciences, 3(4), 2016. 21

Ebrahim P Karan and Javier Irizarry. Extending bim interoperability to preconstruction
operations using geospatial analyses and semantic web services. Automation in Construction,
53:1-12, 2015. 1

Dave Kolas, Matt Perry, and John Herring. Getting started with geosparql. OGC presenta-
tion, 2013. 40

Thomas H Kolbe. Representing and exchanging 3d city models with citygml. 3D geo-
information sciences, pages 15-31, 2009. 9

Freddy Lécué, Simone Tallevi-Diotallevi, Jer Hayes, Robert Tucker, Veli Bicer, Marco Sbodio,
and Pierpaolo Tommasi. Smart traffic analytics in the semantic web with star-city: Scenarios,
system and lessons learned in dublin city. Web Semantics: Science, Services and Agents on
the World Wide Web, 27:26-33, 2014. 19

Claudine Métral, Roland Billen, Anne-Francoise Cutting-Decelle, and Muriel Van Ruym-
beke. Ontology-based approaches for improving the interoperability between 3d urban models.
Journal of Information Technology in Construction, 15:169-184, 2010. 20

Claudine Métral and Gilles Falquet. Prototyping information visualization in 3d city models:
a model-based approach. arXiv preprint arXiw:1505.07267, 2015. 21

Claudine Metral, Nizar Ghoula, and Gilles Falquet. An ontology of 3d visualization techniques
for enriched 3d city models. In Usage, Usability, and Utility of 3D City Models—FEuropean
COST Action TU0801, page 02005. EDP Sciences, 2012. 20

Pieter Pauwels, Ronald De Meyer, and Jan Van Campenhout. Interoperability for the design
and construction industry through semantic web technology. In International Conference on
Semantic and Digital Media Technologies, pages 143-158. Springer, 2010. 19, 20

Improving the Interoperability Between City and Road Semantics 59

BIBLIOGRAPHY

[50]

[51]

[52]

[53]

[54]

[55]

Pieter Pauwels, Sijie Zhang, and Yong-Cheol Lee. Semantic web technologies in aec industry:
A literature overview. Automation in Construction, 73:145-165, 2017. 9, 19

Matthew Perry and John Herring. Ogc geosparql-a geographic query language for rdf data.
OGC Implementation Standard. Sept, 2012. 40

F Prandi, M Soave, F Devigili, M Andreolli, and R De Amicis. Services oriented smart city
platform based on 3d city model visualization. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2(4):59, 2014. 1

W Rueffer. Okstra-the key to road and traffic data. Road ss e And Motorway, 52(2), 2001.
13

Hans Schevers and Robin Drogemuller. Converting the industry foundation classes to the web
ontology language. In Semantics, Knowledge and Grid, 2005. SKG’05. First International
Conference on, pages 73-73. IEEE, 2005. 20

Christian Schultze and Erich Buhmann. Developing the okstra® standard for the needs of
landscape planning in context of implementation for mitigation and landscape envelope plan-
ning of road projects. In International conference on information technologies in landscape
architecture, pages 310-320, 2008. 13

Alexandra Stadler and Thomas H Kolbe. Spatio-semantic coherence in the integration of
3d city models. In Proceedings of the 5th International Symposium on Spatial Data Quality,
Enschede, 2007. 1

Igor Svetel and Milica Pejanovi¢. The role of the semantic web for knowledge management
in the construction industry. Informatica, 34(3), 2010. 19

Pavel Tobids. An investigation into the possibilities of bim and gis cooperation and utilization
of gis in the bim process. Geoinformatics FCE CTU, 14(1):65-78, 2015. 2

Linda Van den Brink, Paul Janssen, and Wilko Quak. From geo-data to linked data: auto-
mated transformation from gml to rdf. Linked Open Data-Pilot Linked Open Data Nederland.
Deel 2-De Verdieping, Geonovum, 2013, pp. 249-261, 2013. 20

S Vilgertshofer, J Amann, B Willenborg, A Borrmann, and TH Kolbe. Linking bim and gis
models in infrastructure by example of ifc and citygml. In Computing in Civil Engineering
2017, pages 133-140. 21

Jan Wielemaker. A structured approach to covert xml into rdf. http://semanticweb.cs.
vu.nl/xmlrdf/. 23, 35

Xun Xu, Lieyun Ding, Hanbin Luo, and Ling Ma. From building information modeling
to city information modeling. Journal of Information Technology in Construction (ITcon),
19(17):292-307, 2014. 1

Ningyu Zhang, Huajun Chen, Xi Chen, and Jiaoyan Chen. Semantic framework of internet
of things for smart cities: case studies. Sensors, 16(9):1501, 2016. 19

Qing Zhu, Jungiao Zhao, Zhigiang Du, Yeting Zhang, Weiping Xu, Xiao Xie, Yulin Ding, Fei
Wang, and Tingsong Wang. Towards semantic 3d city modeling and visual explorations. In
Advances in 3D Geo-Information Sciences, pages 275-294. Springer, 2011. 1

60

Improving the Interoperability Between City and Road Semantics

http://semanticweb.cs.vu.nl/xmlrdf/
http://semanticweb.cs.vu.nl/xmlrdf/

Appendix A

Cities around the world with open

CityGML data sets

Cities around the world with open CityGML datasets

dataset country

Germany
Brussels (hitp:/ furbisd ownload gic ifenet befen/dimention) Belgium
Dresden [http://www.dresden.de/de/leben /stadiportrait/statistil/geoinformationen/3-d-modell. php? Germany
shortout=301
Dutch cities (https://3d bk tudelft nl/opendata/3diier) Netherlands
Hamburg (http:/ /suche transparenz. hamburg de/dataset/3d-stadtmodell-lod2-de-hambu Germany
Helsinki [http://kartta hel fi/3d/] Finland
Austria
France
Canada
Mew York City TUM] [t/ www. gis. bgu.bum.deen)/projects new-york-city-3d, United
Sates
Hew York City by Dol TT {hitp:/} nyc.govisite/doitt finitiatives/3d-building. page! United
States
Morth Rhine-Westphalia (state] (hitpe:/'www.opengeod ata nrv.de/produlte/geshasts/36-gm Germany
Roterdam (hitp:/fwww. rotterdamopendata. nl/dataset/rotterdam-3d-bestanden) Netherlands
The Hague {hitps/idata overhelid.nl'data idataset/3d-model-den-haag Netherlands
Ji Garmany

defdownloadbereiche/downloadoffen egeo datenth¥ C3%BCingen/download 3dgebieC3%Adude aspo)

YEAE Building LOD
2013 LoDz

2014 LOD2

2009 LODL/LOOZL003
2016 LoDL

017 LOD1 and LODZ
2016 LoDZ2

2011 LODZ2

2012 LOD2

2009 LOD2

2015 LoDL

2016 LoDZ2

2016 LODL+LOD2
2010 LODZ2

2011 LOD2

2013 LODL {full) +
[cadastre LODZ (partly)
footprints)

-2016 and

earlier

[LIDAR)

other classes

Building

Terrain and many othe

Tarrain, water

[httpe i onness yille i
numerigue-de-terrain-

Roads, lots, parks, wat

Terrain

Figure A.1: Cities around the world with open CityGML datasets (source: OGC)

Improving the Interoperability Between City and Road Semantics

61

Appendix B

Python code for parsing OKSTRA
data

@author: JacobBeetz&YuanZheng
from lxml import etree

import sys

import csv

variable for the data sets
source = r’/Users/pc/Desktop/Models /INSNRW/INSNRW . xml’
source = r’d:\data\okstra\NRW_2016hj2\OKSTRA _Daten_QStr_20160705.xml’
source = r’d:\data\okstra\NRW_2016hj2\
OKSTRA _Daten_Netzdaten_ohne_Dnst_VerwB_20160705 . xml’

def fast_iter (context, func, sargs, xxkwargs):

b
http://lxml.de/parsing . html#modifying—the—tree
Based on Liza Daly’s fast_iter
http://www.ibm.com/developerworks/xml/library /x—hiperfparse/
See also http://effbot.org/zone/element—iterparse .htm
N NN
for event, elem in context:
func (elem)
It’s safe to call clear () here because no descendants will be
accessed
elem . clear ()
Also eliminate now—empty references from the root node to elem
for ancestor in elem.xpath(’ancestor—or—self::x7):
while ancestor.getprevious () is not None:
del ancestor.getparent () [0]
del context

#global variable to count e.g. the number of okstraObjekt instances
count = 0
lineofpos =[]

def getPosition (elem):

:param elem: gml:featureMember XML node to retrieve a position from
creturn:

299

get the XPath of a gml position in the graph

62 Improving the Interoperability Between City and Road Semantics

APPENDIX B. PYTHON CODE FOR PARSING OKSTRA DATA

positions = elem.xpath(’okstra:Netzknoten/okstra:Punktgeometrie/gml: Point/gml:
pos’ ,namespaces={ ’okstra’: ’'http://schema.okstra.de/2016/okstra’

. gml’:’
http://www. opengis.net/gml/3.2"})

positions = elem.xpath(’okstra: Abschnitt’,namespaces={ ’okstra ’: ’http://
schema. okstra.de/2016/okstra’

"gml ’: "http://www.opengis.net/gml/3.2°})

for pos in positions:
global count
count = count +1
if count % 1000 ==0:
print (count)
print the coordinates of the gml:pos element
print (”netzknoten” ,pos.text)
lineofpos.append(pos.text + '\n’)

#search for all

gml: featureMember nodes in the file
context =

etree.iterparse (source, tag='{http://www.opengis.net/gml/3.2}
featureMember’, events = (’end’,))

the callback function to execute,

when a featuerNode member is
fast_iter (context, getPosition)

found

print the total number of positions found
print (count)

print (len(lineofpos))

file= open (’output.csv’,’w’)
file.writelines (lineofpos)

file . close ()

Improving the Interoperability Between City and Road Semantics 63

Appendix C

Python code for finding
Netzknoten in the target area

@author: YuanZheng

import csv
import pandas as pd
import numpy as np

data = pd.read_csv(’/Users/pc/Desktop/data/okstra data extract/output/outputl.csv’)
xcoord = np.array (data.X)
ycoord = np.array (data.Y)
zcoord = np.array (data.Z)

#search for the coordinates within target area in the file
indices =[]
for i in range(0,np.size(xcoord)):
if xcoord[i] <=296000 and xcoord[i] >= 295000 and ycoord[i] <= 5630000 and
ycoord [i] >= 5629000:
indices .append (i)
output = {’X’:xcoord[indices],
'Y’ :ycoord[indices],
'Z’ :zcoord [indices]}
df = pd.DataFrame(output)
df.to_csv(’rect_area_new.csv’,index= False)

64 Improving the Interoperability Between City and Road Semantics

Appendix D

XML Schema List for converting
OKSTRA Schema to OWL

<?xml version="1.0" encoding="utf—-8’7>

<!DOCTYPE xsl:stylesheet [

<IENTITY owl "http://www.w3.0rg/2002/07/owl#" >
<!ENTITY gml "http://www.w3.0rg/2002/07/owl# >
<!ENTITY core ”http://www.opengis.net/citygml/1.0#”>
1>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform?”
xmlns:xs="http://www.w3.org /2001 /XMLSchema”
xmlns:owl="http://www.w3.o0rg/2002/07/owl#’
xmlns:rdf="http: //www.w3.0rg/1999/02/22—rdf —syntax—ns#’
xmlns:rdfs="http: //www.w3.o0rg /2000/01/rdf—schema#’
xmlns:gml="http://www.opengis.net/gml/3.2#”
xmlns:okstra="http://www. okstra.de/okstra /2.017#”
xmlns:okstra—basis="http://www. okstra.de/okstra /2.017#"”
xmlns:okstra—types="http://www. okstra.de/okstra /2.017#"

<xsl:template match="xs:schema >
<xsl:text>
</xsl:text>

<rdf:RDF xmlns="http://www.w3.org /2001 /XMLSchema#’
xml:base="http: //www.okstra.de/okstra /2.017#”
xmlns:xsd="http://www.w3.org /2001 /XMLSchema#”
xmlns:rdfs="http://www.w3.o0rg/2000/01/rdf—schema#’
xmlns:rdf="http: //www.w3.0rg/1999/02/22 —rdf —syntax—ns#"
xmlns:owl="http: //www.w3.0rg/2002/07/owl#’
xmlns:gml="http://www.opengis.net/gml/3.2#”
xmlns:okstra="http://www. okstra.de/okstra /2.017#”
xmlns:okstra—basis="http://www. okstra.de/okstra /2.017#”
xmlns:okstra—types="http://www. okstra.de/okstra /2.017#”>

<owl:Ontology rdf:about="myokstra.tue.nl/RoadnetworkOntology” />
<xsl:apply —templates select="xs:complexType” />
<xsl:apply —templates select="xs:simpleType” />

<xsl:apply —templates select="xs:element [@substitutionGroup|” />

</rdf:RDF>

Improving the Interoperability Between City and Road Semantics

APPENDIX D. XML SCHEMA LIST FOR CONVERTING OKSTRA SCHEMA TO OWL

</xsl:template>

<xsl:template match="xs:complexType”>
<xsl:text>

</xsl:text>
<owl:Class>
<!— Content: template —>
<xsl:attribute name="rdf:about”> <!— was about” —>
<xsl:value—of select="Qname” />
</xsl:attribute>
<xsl:text >

</xsl:text> <!—— LINE FEED —>
<xsl:variable name="txt">
<xsl:value—of select="@name” />
</xsl:variable >

<xsl:if test="contains($txt, ’Property’)”>
<xsl:comment>association </xsl:comment>

</xsl:if >

<xsl:apply —templates select="./xs:annotation/xs:documentation”></xsl:apply —
templates>

<xsl:apply —templates select="./xs:complexContent/xs:extension”/>

<xsl:apply —templates select="./xs:complexContent/xs:extension/xs:sequence/
xs:element [@name]” />

<xsl:apply —templates select="./xs:complexContent/+/xs:sequence/xs:element [@Qref]”
/>

</owl:Class >
<l—— generate datatype properties —>
<xsl:for —each select="./xs:complexContent/xs:extension/xs:sequence/xs:element |

starts —with (Qtype, "xs:7)]”">
<owl:DatatypeProperty>
<xsl:attribute name="rdf:about”><xsl:value—of select="@name”/></xsl:attribute
> <l—— was rdf:about —>
</owl:DatatypeProperty>
</xsl:for —each>
</xsl:template>

<xsl:template match="xs:documentation”>
<rdfs:comment><xsl:value—of select=".7/>
</rdfs:comment>

</xsl:template >
<xsl:template match="xs:simpleType”>
<xsl:text >
</xsl:text> <!—— LINE FEED —>
<owl:Class >
<xsl:attribute name="rdf:about”> <!—— about —>
<xsl:value —of select="@name” />
</xsl:attribute >
<xsl:comment>simple class </xsl:comment>

</owl:Class>
</xsl:template>

<xsl:template match="xs:extension”>
<rdfs:subClassOf>
<xsl:attribute name="rdf:resource”><xsl:value—of select="Qbase” /></
xsl:attribute >
</rdfs:subClassOf>
</xsl:template>

66 Improving the Interoperability Between City and Road Semantics

APPENDIX D. XML SCHEMA LIST FOR CONVERTING OKSTRA SCHEMA TO OWL

<xsl:template match="/xs:schema/xs:element”>
<owl:ObjectProperty>
<xsl:attribute name="rdf:about”> <!—— about —>
<xsl:value —of select="@name” />
</xsl:attribute >

<xsl:if test="@substitutionGroup != ’7">
<rdfs:subPropertyOf>
<xsl:attribute name="rdf:resource”> <xsl:value—of select="
@substitutionGroup” />
</xsl:attribute >
</rdfs:subPropertyOf>
</xsl:if >

<rdfs:range>
<xsl:attribute name="rdf:resource”> <xsl:value—of select="Qtype” />
</xsl:attribute >

</rdfs:range>

</owl:ObjectProperty>
</xsl:template>

<xsl:template match="xs:complexType//xs:element [@name]”>
<xsl:text>

</xsl:text >
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<xsl:attribute name="rdf:resource”><xsl:value—of select="Qname”/></
xsl:attribute >
</owl:onProperty>
<owl:allValuesFrom>
<xsl:attribute name="rdf:resource”><xsl:value—of select="Qtype”/></
xsl:attribute >
</owl:allValuesFrom >
</owl:Restriction>
</rdfs:subClassOf>

<xsl:if test="not(@minOccurs='0")"> <!l——— mandatory field —>
<rdfs:subClassOf>
<owl:Restriction >
<owl:onProperty >
<xsl:attribute name="rdf:resource”><xsl:value—of select="Qname”/></
xsl:attribute >
</owl:onProperty>
<owl:someValuesFrom>
<xsl:attribute name="rdf:resource”><xsl:value—of select="Qtype”/></
xsl:attribute >
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</xsl:if >
</xsl:template >

<xsl:template match="xs:complexType//xs:element [@Qref]”>
<xsl:text>

</xsl:text>
<xsl:variable name="refElt”>
<xsl:value—of select="@Qref”/>
</xsl:variable >
<xsl:variable name="refEltType”>
<xsl:value—of select="//xs:element [@name=$refElt]|/Qtype” />
</xsl:variable >

Improving the Interoperability Between City and Road Semantics 67

APPENDIX D. XML SCHEMA LIST FOR CONVERTING OKSTRA SCHEMA TO OWL

<rdfs:subClassOf>
<owl:Restriction >
<owl:onProperty>
<xsl:attribute name="rdf:resource”>
<xsl:value—of select="@Qref”/>
</xsl:attribute >
</owl:onProperty>
<owl:allValuesFrom>
<xsl:attribute name="rdf:resource”><xsl:value—of select="8refEltType”/></
xsl:attribute >
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>

<xsl:if test="not(@minOccurs=’0")"> <!——— mandatory field —>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<xsl:attribute name="rdf:resource”><xsl:value—of select="Qref”/></
xsl:attribute >
</owl:onProperty>
<owl:someValuesFrom>
<xsl:attribute name="rdf:resource”’><xsl:value—of select="$refEltType”
/></xsl:attribute >
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</xsl:if >
</xsl:template>

</xsl:stylesheet >

68 Improving the Interoperability Between City and Road Semantics

Appendix E

Adapted CityGML Ontology for
Experiment

<?xml version="1.0"7>

<rdf:RDF xmlns="http://www.opengis.net/citygml/1.0#”
xml:base="http: //www.opengis.net/citygml/1.0”7
xmlns:rdf="http: //www.w3.0rg/1999/02/22 —rdf —syntax—ns#”
xmlns:owl="http://www.w3.0org/2002/07/owl#’
xmlns:xml="http: //www.w3.org /XML/1998 /namespace”
xmlns:xsd="http://www.w3.org /2001 /XMLSchema#”
xmlns:rdfs="http: //www.w3.0rg /2000/01/rdf—schema#’>

<owl:Ontology rdf:about="http://www.opengis.net/citygml/1.0”7 />

<l

N N N s
//

// Object Properties
//
NN Iy,

—>

<!— http://www.opengis.net/citygml/
_GenericApplicationPropertyOfAbstractBuilding —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfAbstractBuilding” />

<!— http://www.opengis.net/citygml/
_GenericApplicationPropertyOfBoundarySurface —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfBoundarySurface” />

<!— http://www.opengis.net/citygml/_GenericApplicationPropertyOfBuilding —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfBuilding” />

Improving the Interoperability Between City and Road Semantics 69

APPENDIX E. ADAPTED CITYGML ONTOLOGY FOR EXPERIMENT

<!— http://www. opengis.net/citygml/_GenericApplicationPropertyOfBuildingPart
—>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfBuildingPart” />

<!— http://www.opengis.net/citygml/_GenericApplicationPropertyOfGroundSurface
-—>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfGroundSurface” />

<!— http://www. opengis.net/citygml/_GenericApplicationPropertyOfRoofSurface —
>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfRoofSurface” />

<!— http://www.opengis.net/citygml/_GenericApplicationPropertyOfWallSurface —
>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfWallSurface” />

<!— http://www.opengis.net/citygml/boundedBy —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/boundedBy” />

<!— http://www.opengis.net/citygml/consistsOfBuildingPart —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
consistsOfBuildingPart” />

<!— http://www.opengis.net/citygml/function —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/function” />

<!— http://www.opengis.net/citygml/lod1MultiSurface —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/lodIMultiSurface”

/>

<!— http://www.opengis.net/citygml/lod1Solid —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/lod1Solid” />

70

Improving the Interoperability Between City and Road Semantics

APPENDIX E. ADAPTED CITYGML ONTOLOGY FOR EXPERIMENT

<!— http://www.opengis.net/citygml/lod1TerrainIntersection —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
lodl1TerrainIntersection” />

<!— http://www.opengis.net/citygml/lod2MultiCurve —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/lod2MultiCurve” />

<!— http://www.opengis.net/citygml/lod2MultiSurface —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/lod2MultiSurface”
/>

<!— http://www.opengis.net/citygml/lod2Solid —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/lod2Solid” />

<!— http://www. opengis.net/citygml/lod2TerrainIntersection —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/
lod2TerrainIntersection” />

<!— http://www.opengis.net/citygml/measuredHeight —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/measuredHeight” />

<!— http://www.opengis.net/citygml/roofType —>

<owl:ObjectProperty rdf:about="http://www.opengis.net/citygml/roofType” />

<l

N N s

//
// Classes

//
N N s

—>

<!— core:AbstractCityObject —>

<owl:Class rdf:about="core:AbstractCityObject” />

<!— core:AbstractSite —>

<owl:Class rdf:about="core:AbstractSite” />

Improving the Interoperability Between City and Road Semantics 71

APPENDIX E. ADAPTED CITYGML ONTOLOGY FOR EXPERIMENT

<!— gml:CodeType —>

<owl:Class rdf:about="gml:CodeType” />

<!— gml:LengthType —>

<owl:Class rdf:about="gml:LengthType” />

<!— gml:MultiCurvePropertyType —>

<owl:Class rdf:about="gml:MultiCurvePropertyType” />

<!— gml:MultiSurfacePropertyType —>

<owl:Class rdf:about="gml:MultiSurfacePropertyType” />

<!— gml:SolidPropertyType —>

<owl:Class rdf:about="gml:SolidPropertyType” />

<!— http://www.opengis.net/citygml/AbstractBoundarySurface —>

<owl:Class rdf:about="http://www.opengis.net/citygml/AbstractBoundarySurface”>
<rdfs:subClassOf rdf:resource="core:AbstractCityObject” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfBoundarySurface” />
<owl:allValuesFrom rdf:resource="xs:anyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
lod2MultiSurface” />
<owl:allValuesFrom rdf:resource=
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:comment>A BoundarySurface is a thematic object which classifies
surfaces bounding an _AbstractBuilding , Room,
BuildingInstallation , and IntBuildinglnstallation. The geometry of a
BoundarySurface is given by MultiSurfaces. As it is a
subclass of _CityObject, it inherits all atributes and relations, in
particular the external references, and the
generalization relations. </rdfs:comment>
</owl:Class>

il

gml:MultiSurfacePropertyType” />

<!— http://www.opengis.net/citygml/AbstractBuilding —>

<owl:Class rdf:about="http://www.opengis.net/citygml/AbstractBuilding”>
<rdfs:subClassOf rdf:resource="core:AbstractSite” />
<rdfs:subClassOf>

72 Improving the Interoperability Between City and Road Semantics

APPENDIX E. ADAPTED CITYGML ONTOLOGY FOR EXPERIMENT

<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfAbstractBuilding” />
<owl:allValuesFrom rdf:resource="xs:anyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
boundedBy” />
<owl:allValuesFrom rdf:resource="http://www.opengis.net/citygml/
BoundarySurfacePropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
consistsOfBuildingPart” />
<owl:allValuesFrom rdf:resource="http://www.opengis.net/citygml/
BuildingPartPropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
function” />
<owl:allValuesFrom rdf:resource="gml:CodeType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
lod1MultiSurface” />
<owl:allValuesFrom rdf:resource="gml:MultiSurfacePropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
lod1Solid” />
<owl:allValuesFrom rdf:resource="gml:SolidPropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
lod1TerrainIntersection” />
<owl:allValuesFrom rdf:resource="gml:MultiCurvePropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
lod2MultiCurve” />
<owl:allValuesFrom rdf:resource="gml:MultiCurvePropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
lod2MultiSurface” />
<owl:allValuesFrom rdf:resource="gml:MultiSurfacePropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

Improving the Interoperability Between City and Road Semantics 73

APPENDIX E. ADAPTED CITYGML ONTOLOGY FOR EXPERIMENT

<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
lod2Solid” />
<owl:allValuesFrom rdf:resource="gml:SolidPropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
lod2TerrainIntersection” />
<owl:allValuesFrom rdf:resource="gml:MultiCurvePropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
measuredHeight” />
<owl:allValuesFrom rdf:resource="gml:LengthType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
roofType” />
<owl:allValuesFrom rdf:resource="gml:CodeType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:comment>Type describing the thematic and geometric attributes and the
associations of buildings. It is an abstract
type, only its subclasses Building and BuildingPart can be instantiated. An
_AbstractBuilding may consist of
BuildingParts, which are again _AbstractBuildings by inheritance. Thus an
aggregation hierarchy between _AbstractBuildings
of arbitrary depth may be specified. In such an hierarchy, top elements are
Buildings , while all other elements are
BuildingParts. Each element of such a hierarchy may have all attributes and
geometries of _AbstractBuildings. It must,
however, be assured than no inconsistencies occur (for example, if the
geometry of a Building does not correspond to the
geometries of its parts, or if the roof type of a Building is saddle roof,
while its parts have an hip roof). As subclass
of _CityObject, an _AbstractBuilding inherits all attributes and relations ,
in particular an id, names, external
references , and generalization relations. </rdfs:comment>
</owl:Class>

<!— http://www.opengis.net/citygml/BoundarySurfacePropertyType —>

<owl:Class rdf:about="http://www.opengis.net/citygml/
BoundarySurfacePropertyType” />

<!— http://www.opengis.net/citygml/Building —>

<owl:Class rdf:about="http://www.opengis.net/citygml/Building”>
<rdfs:subClassOf rdf:resource="http://www.opengis.net/citygml/
AbstractBuilding” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfBuilding” />
<owl:allValuesFrom rdf:resource="xs:anyType” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

74 Improving the Interoperability Between City and Road Semantics

APPENDIX E. ADAPTED CITYGML ONTOLOGY FOR EXPERIMENT

<!— http://www.opengis.net/citygml/BuildingPart —>

<owl:Class rdf:about="http://www.opengis.net/citygml/BuildingPart”>
<rdfs:subClassOf rdf:resource="http://www.opengis.net/citygml/
AbstractBuilding” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfBuildingPart” />
<owl:allValuesFrom rdf:resource="xs:anyType” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!— http://www.opengis.net/citygml/BuildingPartPropertyType —>

<owl:Class rdf:about="http://www.opengis.net/citygml/BuildingPartPropertyType”/
>

<!— http://www. opengis.net/citygml/GroundSurface —>

<owl:Class rdf:about="http://www.opengis.net/citygml/GroundSurface”>
<rdfs:subClassOf rdf:resource="http://www.opengis.net/citygml/
AbstractBoundarySurface” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfGroundSurface” />
<owl:allValuesFrom rdf:resource="xs:anyType” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!— http://www.opengis.net/citygml/RoofSurface —>

<owl:Class rdf:about="http://www.opengis.net/citygml/RoofSurface”>
<rdfs:subClassOf rdf:resource="http://www.opengis.net/citygml/
AbstractBoundarySurface” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfRoofSurface” />
<owl:allValuesFrom rdf:resource="xs:anyType” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!— http://www.opengis.net/citygml/WallSurface —>

<owl:Class rdf:about="http://www.opengis.net/citygml/WallSurface”>
<rdfs:subClassOf rdf:resource="http://www.opengis.net/citygml/
AbstractBoundarySurface” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.opengis.net/citygml/
_GenericApplicationPropertyOfWallSurface” />

Improving the Interoperability Between City and Road Semantics 75

APPENDIX E. ADAPTED CITYGML ONTOLOGY FOR EXPERIMENT

<owl:allValuesFrom rdf:resource=

</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

*xs:anyType” />

<!— xs:anyType —>

<owl:Class rdf:about="xs:anyType” />
</rdf:RDF>

<!— Generated by the OWL API (version 4.3.1) https://github.com/owlcs/owlapi —>

76 Improving the Interoperability Between City and Road Semantics

Appendix F

Adapted OKSTRA Ontology for
Experiment

<?xml version="1.0"7>

<rdf:RDF xmlns="http://www. okstra.de/okstra/myokstra.tue.nl/RoadnetworkOntology#”
xml:base="http://www.okstra.de/okstra/myokstra.tue.nl/RoadnetworkOntology”
xmlns:rdf="http: //www.w3.0rg/1999/02/22 —rdf —syntax—ns#”
xmlns:owl="http://www.w3.0org/2002/07/owl#’
xmlns:xml="http: //www.w3.org /XML/1998 /namespace”
xmlns:xsd="http://www.w3.org /2001 /XMLSchema#”
xmlns:rdfs="http: //www.w3.0rg /2000/01/rdf—schema#’>

<owl:Ontology rdf:about="http://www.okstra.de/okstra/myokstra.tue.nl/
RoadnetworkOntology” />

<l

N s yyyay

//

// Object Properties

//
N Ny

—>

<!— http://www. okstra.de/okstra/Abschnitts_Astbezeichnung —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/
Abschnitts_Astbezeichnung” />

<!— http://www. okstra.de/okstra/Abschnitts_Astnummer —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Abschnitts_Astnummer

» />

<!— http://www.okstra.de/okstra/Abschnittsfolgenummer —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/
Abschnittsfolgenummer” />

Improving the Interoperability Between City and Road Semantics

7

/111117

1117177

APPENDIX F. ADAPTED OKSTRA ONTOLOGY FOR EXPERIMENT

<!— http://www.okstra.de/okstra/Beginn_von_Abschnitt_oder_Ast —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/
Beginn_von_Abschnitt_oder_Ast” />

<!— http://www.okstra.de/okstra/Betriebsmerkmal —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Betriebsmerkmal” />

<!— http://www. okstra.de/okstra/Ende_von_Abschnitt_oder_Ast —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/
Ende_von_Abschnitt_oder_Ast” />

<!— http://www.okstra.de/okstra/Knotenart —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Knotenart” />

<!— http://www.okstra.de/okstra/Laenge —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Laenge” />

<!— http://www.okstra.de/okstra/Liniengeometrie —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Liniengeometrie” />

<!— http://www. okstra.de/okstra/Nullpunktart —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Nullpunktart” />

<!— http://www.okstra.de/okstra/Numerierungsbezirk —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Numerierungsbezirk”/
>

<!— http://www. okstra.de/okstra/Nummer —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Nummer” />

<!— http://www. okstra.de/okstra/Nummer_gehoert_zu_Strasse —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/
Nummer_gehoert_zu_Strasse” />

<!— http://www. okstra.de/okstra/OKSTRAID —>

78 Improving the Interoperability Between City and Road Semantics

APPENDIX F. ADAPTED OKSTRA ONTOLOGY FOR EXPERIMENT

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/OKSTRAID” />

<!— http://www.okstra.de/okstra/Punktgeometrie —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Punktgeometrie” />

<!— http://www. okstra.de/okstra/Seitenarm —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Seitenarm” />

<!— http://www. okstra.de/okstra/Zusatz —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/Zusatz” />

<!— http://www.okstra.de/okstra/beginnt_bei_ NP —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/beginnt_bei_ NP” />

<!— http://www. okstra.de/okstra/endet_-bei_ NP —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/endet_bei_NP” />

<!— http://www.okstra.de/okstra/getrennt_verlaufende_Fahrbahn —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/
getrennt_verlaufende_Fahrbahn” />

<!— http://www. okstra.de/okstra/hat_AoA_zugeordnet —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/hat_AoA_zugeordnet”/
>

<!— http://www. okstra.de/okstra/hat_Nullpunkt —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/hat_Nullpunkt” />

<!— http://www.okstra.de/okstra/hat_Nullpunktort —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/hat_Nullpunktort” />

<!— http://www. okstra.de/okstra/hat_Strassenbezeichnung —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/
hat_Strassenbezeichnung” />

Improving the Interoperability Between City and Road Semantics 79

APPENDIX F. ADAPTED OKSTRA ONTOLOGY FOR EXPERIMENT

<!— http://www. okstra.de/okstra/hat_Strassenbezugsobjekt —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/
hat_Strassenbezugsobjekt” />

<!— http://www. okstra.de/okstra/in_Netzknoten —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/in_Netzknoten” />

<!— http://www.okstra.de/okstra/zu_Strasse —>

<owl:ObjectProperty rdf:about="http://www.okstra.de/okstra/zu_Strasse” />

<l

N ey

//
// Classes

//
N vy

—>

<!— gml:AbstractFeature —>

<owl:Class rdf:about="gml:AbstractFeature” />

<!— gml:CurvePropertyType —>

<owl:Class rdf:about="gml:CurvePropertyType” />

<!— gml:PointPropertyType —>

<owl:Class rdf:about="gml:PointPropertyType” />

<!— http://www. okstra.de/okstra/Abschnitt —>

<owl:Class rdf:about="http://www. okstra.de/okstra/Abschnitt”>
<rdfs:subClassOf rdf:resource="gml:AbstractFeature” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Abschnitts_Astnummer” />
<owl:someValuesFrom rdf:resource="http://www.w3.org/2001/
XMLSchemastring” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Abschnitts_Astbezeichnung” />

80 Improving the Interoperability Between City and Road Semantics

/111177

/111177

APPENDIX F. ADAPTED OKSTRA ONTOLOGY FOR EXPERIMENT

<owl:allValuesFrom rdf:resource="http://www.w3.o0rg/2001/
XMLSchemastring” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Abschnitts_Astnummer” />
<owl:allValuesFrom rdf:resource="http://www.w3.org/2001/
XMLSchemastring” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Abschnittsfolgenummer” />
<owl:allValuesFrom rdf:resource="http://www.w3.o0rg/2001/
XMLSchemainteger” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Betriebsmerkmal” />
<owl:allValuesFrom rdf:resource="okstra—basis:KeyValuePropertyType”
/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/Laenge” />
<owl:allValuesFrom rdf:resource="okstra—typen:Kilometer” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Liniengeometrie” />
<owl:allValuesFrom rdf:resource="
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Nummer_gehoert_zu_Strasse” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/OKSTRAID
7?/>
<owl:allValuesFrom rdf:resource="okstra—typen:GUID” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/Seitenarm
”/>
<owl:allValuesFrom rdf:resource="okstra—basis:KeyValuePropertyType”
/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
beginnt_bei NP” />

gml:CurvePropertyType” />

Improving the Interoperability Between City and Road Semantics 81

APPENDIX F. ADAPTED OKSTRA ONTOLOGY FOR EXPERIMENT

<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
endet_bei_ NP” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
getrennt_verlaufende_Fahrbahn” />
<owl:allValuesFrom rdf:resource="okstra—basis:KeyValuePropertyType”
/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
zu_Strasse” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!— http://www. okstra.de/okstra/Ast —>

<owl:Class rdf:about="http://www.okstra.de/okstra/Ast”>
<rdfs:subClassOf rdf:resource="gml:AbstractFeature” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Abschnitts_Astbezeichnung” />
<owl:allValuesFrom rdf:resource="http://www.w3.o0rg/2001/
XMLSchemastring” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Abschnitts_Astnummer” />
<owl:allValuesFrom rdf:resource="http://www.w3.org/2001/
XMLSchemastring” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Betriebsmerkmal” />
<owl:allValuesFrom rdf:resource="okstra—basis:KeyValuePropertyType”
/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/Laenge” />
<owl:allValuesFrom rdf:resource="okstra—typen:Kilometer” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Liniengeometrie” />

82 Improving the Interoperability Between City and Road Semantics

APPENDIX F. ADAPTED OKSTRA ONTOLOGY FOR EXPERIMENT

<owl:allValuesFrom rdf:resource="gml:CurvePropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Nummer_gehoert_zu_Strasse” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/OKSTRA_ID
-,,'/>
<owl:allValuesFrom rdf:resource="okstra—typen:GUID” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
beginnt_bei_ NP” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
endet_bei NP” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
zu_Strasse” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!— http://www. okstra.de/okstra/Netzknoten —>

<owl:Class rdf:about="http://www.okstra.de/okstra/Netzknoten”>
<rdfs:subClassOf rdf:resource="gml:AbstractFeature” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/Knotenart
S
<owl:allValuesFrom rdf:resource="okstra—basis:KeyValuePropertyType”
/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Numerierungsbezirk” />
<owl:allValuesFrom rdf:resource="okstra—typen:TK25_Blattnummer” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/Nummer” />
<owl:allValuesFrom rdf:resource="okstra—typen:Ifd_ NK_Nummer” />
</owl:Restriction>
</rdfs:subClassOf>

Improving the Interoperability Between City and Road Semantics 83

APPENDIX F. ADAPTED OKSTRA ONTOLOGY FOR EXPERIMENT

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/OKSTRAID
',7/>
<owl:allValuesFrom rdf:resource="okstra—typen:GUID” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Punktgeometrie” />
<owl:allValuesFrom rdf:resource="gml:PointPropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
hat_Nullpunkt” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!— http://www. okstra.de/okstra/Nullpunkt —>

<owl:Class rdf:about="http://www.okstra.de/okstra/Nullpunkt”>
<rdfs:subClassOf rdf:resource="gml:AbstractFeature” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Beginn_von_Abschnitt_oder_Ast” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Ende_von_Abschnitt_oder_Ast” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Nullpunktart” />
<owl:allValuesFrom rdf:resource="okstra—basis:KeyValuePropertyType”
/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/OKSTRA_ID
',7/>
<owl:allValuesFrom rdf:resource="okstra—typen:GUID” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
Punktgeometrie” />
<owl:allValuesFrom rdf:resource="gml:PointPropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

84 Improving the Interoperability Between City and Road Semantics

APPENDIX F. ADAPTED OKSTRA ONTOLOGY FOR EXPERIMENT

<owl:onProperty rdf:resource="http://www.okstra.de/okstra/Zusatz” />
<owl:allValuesFrom rdf:resource="okstra—typen:Nullpunktkennung” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
hat_Nullpunktort” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
in_Netzknoten” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!— http://www. okstra.de/okstra/Strasse —>

<owl:Class rdf:about="http://www.okstra.de/okstra/Strasse”>
<rdfs:subClassOf rdf:resource="gml:AbstractFeature” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/OKSTRA_ID
‘,7/>
<owl:allValuesFrom rdf:resource="okstra—typen:GUID” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
hat_AoA_zugeordnet” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
hat_Strassenbezeichnung” />
<owl:allValuesFrom rdf:resource="
okstra:StrassenbezeichnungPropertyType” />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://www.okstra.de/okstra/
hat_Strassenbezugsobjekt” />
<owl:allValuesFrom rdf:resource="okstra—basis:ObjectRefType” />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!— http://www.w3.0rg/2001/XMLSchemainteger —>

<owl:Class rdf:about="http://www.w3.o0rg/2001/XMLSchemainteger” />

<!— http://www.w3.0rg /2001 /XMLSchemastring —>

Improving the Interoperability Between City and Road Semantics 85

APPENDIX F. ADAPTED OKSTRA ONTOLOGY FOR EXPERIMENT

<owl:Class rdf:about="http://www.w3.o0rg/2001/XMLSchemastring” />

<!— okstra—basis:KeyValuePropertyType —>

<owl:Class rdf:about="okstra—basis:KeyValuePropertyType” />

<!— okstra—basis:ObjectRefType —>

<owl:Class rdf:about="okstra—basis:ObjectRefType” />

<!— okstra—typen:GUID —>

<owl:Class rdf:about="okstra—typen:GUID” />

<!— okstra—typen:Kilometer —>

<owl:Class rdf:about="okstra—typen:Kilometer” />

<!— okstra—typen:Nullpunktkennung —>

<owl:Class rdf:about="okstra—typen:Nullpunktkennung” />

<!— okstra—typen:TK25_Blattnummer —>

<owl:Class rdf:about="okstra—typen:TK25_Blattnummer” />

<!— okstra—typen:lIfd_NK_Nummer —>

<owl:Class rdf:about="okstra—typen:lfd_NK_Nummer” />

<!— okstra:StrassenbezeichnungPropertyType —>

<owl:Class rdf:about="okstra:StrassenbezeichnungPropertyType” />
</rdf:RDF>

<!— Generated by the OWL API (version 4.3.1) https://github.com/owlcs/owlapi —>

86 Improving the Interoperability Between City and Road Semantics

Appendix G

Python code for converting
CityGML Data to RDF

@author: JerryZheng
from bs4 import BeautifulSoup

import rdflib

from pip.cmdoptions import allow_all_external
from rdflib.term import BNode

from numpy import poly

from builtins import str

from rdflib.plugins.sparql.operators import string

graph = rdflib .Graph(store="IOMemory’, identifier="cityGraph’)

gml = rdflib.Namespace(” http://www.opengis.net/gml:”)

core = rdflib.Namespace(”http://www.opengis.net/citygml/1.0”)

bldg = rdflib .Namespace(” http://www.opengis.net/citygml/building /1.0”)
gen = rdflib.Namespace(” http://www.opengis.net/citygml/generics/1.0”)
graph.bind (’gml’, gml)

graph.bind(’core’, core)
graph.bind(’bldg’, bldg)
graph.bind (’gen’, gen)

soup = BeautifulSoup (open(”/Users/pc/Desktop/LoD2.295.5629_-1_NW .gml”), ’'lxml-—xml’)
city = soup.CityModel
cityObjectMembers = city.find_all(’cityObjectMember)
for cityObjectMember in cityObjectMembers:
building = cityObjectMember. Building
building.id = building [’ ’gml:id]
print (building_id)
building_-node = rdflib.URIRef('mycitygml.tue.nl/city/building/’ + building-id)
graph.add ((building_-node , rdflib .RDF.type,bldg.building))
date = building.creationDate. text

graph.add ((building_node , core.creationDate, rdflib.Literal (date)))

externalRef = BNode()

Improving the Interoperability Between City and Road Semantics 87

APPENDIX G. PYTHON CODE FOR CONVERTING CITYGML DATA TO RDF

graph.add ((building_node , core.externalReference ,externalRef))
informationsystem = building.externalReference.informationSystem . text

graph.add ((externalRef , core.informationSystem ,rdflib.Literal (informationsystem)

externalObj = BNode()
graph.add ((externalRef ,core.externalObject ,externalObj))

graph.add ((externalObj, core.name, rdflib.Literal (building-id)))

stringattributes = building. find_all (’stringAttribute ’)
for stringattribute in stringattributes:

attr_name = stringattribute ['name’]

attr_value = stringattribute.value.text

string_attri = BNode()

graph.add ((building_node ,gen.stringAttribute ,string_attri))
graph.add ((string_attri ,gen.name, rdflib.Literal (attr_name)))
graph.add ((string_-attri ,gen.value,rdflib. Literal (attr_value)))

building_function = building.function.text
graph.add ((building_node ,bldg. function ,rdflib.Literal (building_function)))

measuredHeight = building . measuredHeight . text
graph.add ((building_-node ,bldg.measuredHeight , rdflib . Literal (measuredHeight)))

if building.find(’lod2Solid "):
#lod2
if building.find (’consistsOfBuildingPart ’):
lod2withbuidlingparts
buildingparts = building.find_all (’BuildingPart)

for buildingpart in buildingparts:
buildingpart_-id = buildingpart [’ ’gml:id]
buildingpart_-node = rdflib.URIRef(mycitygml.tue.nl/city/building/
BuildingPart/’ + buildingpart_id)
graph.add ((building_node ,bldg. consistsOfBuildingPart ,
buildingpart_node))

date = buildingpart.creationDate.text

graph.add ((buildingpart_node , core.creationDate, rdflib.Literal(
date)))

stringattributes = buildingpart.find_all(’stringAttribute’)
for stringattribute in stringattributes:

attr_name = stringattribute ['name’]

attr_-value = stringattribute.value.text

if buildingpart.find (roofType’):
buildingpart_rooftype = buildingpart.roofType. text
graph.add ((buildingpart_node ,bldg.roofType,rdflib. Literal(
buildingpart_rooftype)))

measuredHeight = buildingpart.measuredHeight. text
graph.add ((buildingpart_node ,bldg.measuredHeight , rdflib . Literal(
measuredHeight)))

if buildingpart.find(’lod2Solid 7):
solid = buildingpart.lod2Solid. Solid
solid_id = solid [’ ’gml:id "]

88

Improving the Interoperability Between City and Road Semantics

APPENDIX G. PYTHON CODE FOR CONVERTING CITYGML DATA TO RDF

solid_node = rdflib.URIRef('mycitygml.tue.nl/city/building/
solid/’ + solid_id)

graph.add ((buildingpart_node ,bldg.lod2Solid ,solid_node))

compositesurface = solid.exterior.CompositeSurface

compositesurface_id = solid.exterior.CompositeSurface[’gml:id ’]

compositesurface_.node = rdflib.URIRef(mycitygml.tue.nl/city/
building/buildingpart/solid /compositesurface/’ +
compositesurface_id)

graph.add ((solid-node ,gml. exterior ,compositesurface_node))

surfacemembers = compositesurface. find_all (’surfaceMember)
for surfacemember in surfacemembers:
surfacemember_xlink = surfacemember [’ xlink:href’]

surfacemember_identifier = rdflib.URIRef('mycitygml.tue.nl/
city /building/buildingpart/solid/compositesurface/
surfaceMember’ + Surfacemember,xlink)

graph.add ((compositesurface_node ,gml.surfaceMember ,
surfacemember_identifier))

multicurve =BNode ()
if buildingpart.find(’lod2TerrainIntersection’):
multiCurve = buildingpart.lod2TerrainIntersection.MultiCurve

graph.add ((buildingpart_node , bldg.lod2TerrainIntersection ,
multicurve))

curvemembers = multiCurve. find_all (’curveMember)
for curvemember in curvemembers:
linestring = BNode()
graph.add ((multicurve ,gml.curveMember, linestring))

poslist = curvemember. LineString . posList.text
graph.add ((linestring ,gml. posList ,rdflib. Literal (poslist)))

boundbys = buildingpart.find_all (’boundedBy ")
for boundby in boundbys:
surface = list (boundby.children) [1]

surfaceType = surface .name

surface_id = surface[gml:id’]

surface_node = rdflib.URIRef('mycitygml.tue.nl/city/building/
buildingpart /boundedBy/ '+surfaceType+’’ + surface_id)

graph.add ((buildingpart_node , bldg.boundedBy,surface_node))

creationdate = surface.creationDate.text
graph.add ((surface_node ,core.creationdate ,rdflib.Literal(
creationdate)))

multisurface_id = surface.lod2MultiSurface.MultiSurface [gml:id
]

multisurface_node = rdflib.URIRef(’mycitygml.tue.nl/city/
building/buildingpart/boundedBy/ '+surfaceType+’/
MultiSurface’ + multisurface-id)

graph.add ((surface_node ,bldg.lod2MultiSurface , multisurface_node

surfaceMember = surface.lod2MultiSurface.MultiSurface.
surfaceMember
polygon = surfaceMember.Polygon

Improving the Interoperability Between City and Road Semantics 89

APPENDIX G. PYTHON CODE FOR CONVERTING CITYGML DATA TO RDF

polygon_id = polygon [’ ’gml:id’]

polygon_node = rdflib.URIRef('mycitygml.tue.nl/city/building/
boundedBy/ +surfaceType+’/MultiSurface /Polygon +polygon_id)

graph.add ((multisurface_node ,gml.surfaceMember , polygon_node))

linearring = surfaceMember.Polygon.exterior.LinearRing

linearring_id = linearring [’gml:id]

linearring_node = rdflib.URIRef('mycitygml.tue.nl/city/building
//buildingpart /boundedBy/ '+surfaceType+’/MultiSurface/
Polygon/LinearRing +linearring_id)

graph.add ((polygon_node ,gml. exterior ,linearring_node))

poslist = linearring.posList.text
graph.add ((linearring_-node ,gml. posList ,rdflib. Literal (poslist))

else:
#1od2
building_rooftype = building.roofType. text
graph.add ((building-node ,bldg.roofType, rdflib.Literal (building-rooftype
)))

measuredHeight = building . measuredHeight. text
graph.add ((building_-node ,bldg.measuredHeight , rdflib . Literal (
measuredHeight)))

solid = building.lod2Solid. Solid

solid_id = solid ['gml:id "]

solid_.node = rdflib.URIRef('mycitygml.tue.nl/city/building/solid/’ +
solid_id)

graph.add ((building_-node ,bldg.lod2Solid , solid_node))

compositesurface = solid.exterior.CompositeSurface

compositesurface_id = solid.exterior.CompositeSurface[gml:id’]

compositesurface_.node = rdflib.URIRef(mycitygml.tue.nl/city/building/
solid /compositesurface/’ + compositesurface_id)

graph.add ((solid_node ,gml. exterior ,compositesurface_node))

surfacemembers = compositesurface.find_all(’surfaceMember)
for surfacemember in surfacemembers:
surfacemember_xlink = surfacemember |’ xlink:href’]

surfacemember_identifier = rdflib.URIRef(mycitygml.tue.nl/city/
building/solid /compositesurface /surfaceMember’ +
surfacemember_xlink)

graph.add ((compositesurface_node ,gml.surfaceMember,
surfacemember_identifier))

multicurve =BNode ()
multiCurve = building.lod2TerrainIntersection.MultiCurve

graph.add ((building_-node, bldg.lod2TerrainIntersection , multicurve))
curvemembers = multiCurve. find_all (’curveMember ")
for curvemember in curvemembers:

linestring = BNode()

graph.add ((multicurve ,gml.curveMember, linestring))

poslist = curvemember. LineString . posList.text
graph.add ((linestring ,gml. posList ,rdflib.Literal (poslist)))

boundbys = building. find_all (’boundedBy ")

90

Improving the Interoperability Between City and Road Semantics

APPENDIX G. PYTHON CODE FOR CONVERTING CITYGML DATA TO RDF

for boundby in boundbys:
surface = list (boundby.children) [1]
surfaceType = surface.name

surface_id = surface [’ ’gml:id]

surface_node = rdflib.URIRef(mycitygml.tue.nl/city/building/
boundedBy/ +surfaceType+’’ + surface_id)

graph.add ((building_node , bldg.boundedBy, surface_node))

creationdate = surface.creationDate.text
graph.add ((surface_node ,core.creationdate ,rdflib. Literal(
creationdate)))

multisurface_.id = surface.lod2MultiSurface.MultiSurface[gml:id]

multisurface_node = rdflib.URIRef(mycitygml.tue.nl/city/building/
boundedBy/ +surfaceType+’/MultiSurface’ + multisurface.id)

graph.add ((surface_node ,bldg.lod2MultiSurface , multisurface_node))

surfaceMember = surface.lod2MultiSurface.MultiSurface.surfaceMember

polygon = surfaceMember.Polygon

polygon_id = polygon [’ ’gml:id’]

polygon_node = rdflib.URIRef(mycitygml.tue.nl/city/building/
boundedBy/ +surfaceType+’/MultiSurface /Polygon +polygon_id)

graph.add ((multisurface_node ,gml.surfaceMember , polygon_node))

linearring = surfaceMember.Polygon.exterior.LinearRing

linearring_id = linearring[’gml:id’]

linearring_node = rdflib.URIRef('mycitygml.tue.nl/city/building/
boundedBy/ +surfaceType+’/MultiSurface/Polygon/LinearRing '+
linearring_id)

graph.add ((polygon_node ,gml. exterior ,linearring_node))

poslist = linearring.posList.text
graph.add ((linearring_-node ,gml.posList ,rdflib.Literal (poslist)))

graph.serialize (destination="/Users/pc/Desktop/citygml2rdfnew . ttl’, format="turtle’

)

pass

Improving the Interoperability Between City and Road Semantics 91

Appendix H

Python code for converting
OKSTRA Data to RDF

@author: JerryZheng
from bs4 import BeautifulSoup

import rdflib

from pip.cmdoptions import allow_all_external
from rdflib.term import BNode

from numpy import poly

from builtins import str

from rdflib.plugins.sparql.operators import string

graph = rdflib.Graph(store="IOMemory’, identifier="okstraGraph’)

gml = rdflib.Namespace(” http://www.opengis.net/gml:”)
okstra = rdflib.Namespace(” http://schema.okstra.de/2016/okstra:")

graph.bind (’gml’, gml)
graph.bind (’okstra’,okstra)

bsoup = BeautifulSoup (open(”/Users/pc/Desktop/finalokstra.xml”), ’lxml-—xml”)
roadobject = bsoup.FeatureCollection
FeatureMembers = roadobject. find_all (’featureMember)

#Convert Abschnitt
for FeatureMember in FeatureMembers:
if FeatureMember. find (’Abschnitt’):
Abschnitt = FeatureMember. Abschnitt
Abschnitt_id = Abschnitt [gml:id’]
Abschnitt_-node = rdflib.URIRef(myokstra.tue.nl/Abschnitt/#’ + Abschnitt_id

graph.add ((Abschnitt_node, rdflib .RDF.type, rdflib.URIRef(http://schema.
okstra.de/2016/ Abschnitt ’)))

Name = list (Abschnitt. find_-all(’gml:name’))[0]. text

graph.add ((Abschnitt_-node, gml.name, rdflib.Literal (Name)))

zu_strasse_xlink = Abschnitt.zu_Strasse[xlink:href’]

zu_strasse_identifier = rdflib.URIRef('myokstra.tue.nl/Strasse/’ +
zu_strasse_xlink)

graph.add ((Abschnitt_-node, okstra.zu_Strasse, zu_strasse_identifier))

92 Improving the Interoperability Between City and Road Semantics

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

Liniengeometrie = BNode ()
graph.add ((Abschnitt_-node , okstra.Liniengeometrie ,Liniengeometrie))

curve = Abschnitt.Liniengeometrie.Curve

curve_id = curve[’'gml:id’]

curve_node = rdflib.URIRef(myokstra.tue.nl/Abschnitt/#’ 4curve_id)
graph.add ((Liniengeometrie ,gml. Curve, curve_node))

segment =BNode ()
graph.add ((curve_node ,gml.segments ,segment))

linestringsegment = BNode()
graph.add ((segment,gml.LineStringSegment , linestringsegment))

coordinate = curve.segments. LineStringSegment.coordinates.text
graph.add ((linestringsegment ,gml. coordinates ,rdflib. Literal (coordinate)))

laenge = Abschnitt.Laenge. text
graph.add ((Abschnitt_node , okstra.Laenge, rdflib.Literal (laenge)))

betriebsmerkmal = Abschnitt.Betriebsmerkmal. text
graph.add ((Abschnitt_-node , okstra.Betriebsmerkmal , rdflib. Literal (
betriebsmerkmal)))

abschnitts_Astnummer = Abschnitt. Abschnitts_Astnummer . text
graph.add ((Abschnitt_node , okstra.Abschnitts_Astnummer , rdflib. Literal (
abschnitts_Astnummer)))

abschnitts_Astbezeichnung = Abschnitt. Abschnitts_Astbezeichnung. text
graph.add ((Abschnitt-node , okstra. Abschnitts_Astbezeichnung ,rdflib.Literal (
abschnitts_Astbezeichnung)))

nummer_gehoert_zu_Strasse = Abschnitt. Nummer_gehoert_zu_Strasse
nummer_gehoert_zu_Strasse_class = nummer_gehoert_zu_Strasse [Objektklasse "]
nummer_gehoert_zu_Strasse_xlink = nummer_gehoert_zu_Strasse [xlink:href’]

nummer_gehoert_zu_Strasse_identifier = rdflib.URIRef('myokstra.tue.nl/’ +
nummer_gehoert_zu_Strasse_class +’/’+ nummer_gehoert_zu_Strasse_xlink)

graph.add ((Abschnitt_-node , okstra.Nummer_gehoert_zu_Strasse ,
nummer_gehoert_zu_Strasse_identifier))

Endet_null = Abschnitt.endet_bei_ NP

Endet_null_class = Endet_null[Objektklasse "]

Endet_-null_xlink = Endet_null[’xlink:href’]

Endet_null_identifier = rdflib.URIRef('myokstra.tue.nl/’ + Endet_-null_class
+ 7/’ 4+ Endet_null_xlink)

graph.add ((Abschnitt_-node , okstra.endet_-bei-NP , Endet_null_identifier))

Beginnt_null = Abschnitt.beginnt_bei_ NP

Beginnt_null_class = Beginnt_null[Objektklasse ’]

Beginnt_null_xlink = Beginnt_null[' xlink:href’]

Beginnt_null_identifier = rdflib.URIRef('myokstra.tue.nl/’ +
Beginnt_null_class + '/’ + Beginnt_null_xlink)

graph.add ((Abschnitt_-node , okstra.endet_-bei_NP , Beginnt_null_identifier))

seitenarm = Abschnitt.Seitenarm. text
graph.add ((Abschnitt_-node , okstra.Seitenarm ,rdflib.Literal (seitenarm)))

getrennt_Fahrbahn = Abschnitt. getrennt_verlaufende_Fahrbahn.text
graph.add ((Abschnitt_-node , okstra.getrennt_verlaufende_Fahrbahn ,rdflib .
Literal (getrennt_Fahrbahn)))

abschnittsfolgenummer = Abschnitt.Abschnittsfolgenummer. text
graph.add ((Abschnitt_-node , okstra. Abschnittsfolgenummer , rdflib . Literal(
abschnittsfolgenummer)))

Improving the Interoperability Between City and Road Semantics 93

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

#Convert Ast
if FeatureMember. find (’Ast’):

Ast = FeatureMember. Ast

Ast_id = Ast[’gml:id]

Ast_node = rdflib.URIRef(myokstra.tue.nl/Ast/# + Ast_id)

graph.add ((Ast-node, rdflib.RDF.type, rdflib.URIRef(http://schema.okstra.
de/2016/Ast’)))

Name = list (Ast. find-all(’gml:name’))[0]. text

graph.add ((Ast_-node, gml.name, rdflib.Literal (Name)))

zu_Strasse = Ast.zu_Strasse[xlink:href’]

zu_Strasse_identifier = rdflib.URIRef('myokstra.tue.nl/Strasse/’ +
zu_Strasse)

graph.add ((Ast_node , okstra.zu_Strasse, zu_Strasse_identifier))

Liniengeometrie = BNode ()
graph.add ((Ast_-node , okstra.Liniengeometrie , Liniengeometrie))

curve = Ast.Liniengeometrie.Curve

curve_-id = curve['gml:id’]

curve_node = rdflib.URIRef(myokstra.tue.nl/Ast/# +curve_id)
graph.add ((Liniengeometrie ,gml. Curve, curve_node))

segment =BNode ()
graph.add ((curve_node ,gml.segments ,segment))

linestringsegment = BNode()
graph.add ((segment,gml.LineStringSegment , linestringsegment))

coordinate = curve.segments.LineStringSegment.coordinates. text
graph.add ((linestringsegment ,gml. coordinates ,rdflib. Literal (coordinate)))

laenge = Ast.Laenge.text
graph.add ((Ast_node , okstra.Laenge, rdflib.Literal(laenge)))

betriebsmerkmal = Ast.Betriebsmerkmal. text
graph.add ((Ast_node, okstra.Betriebsmerkmal , rdflib.Literal (betriebsmerkmal))

abschnitts_Astnummer = Ast.Abschnitts_Astnummer. text
graph.add ((Ast_node , okstra.Abschnitts_Astnummer , rdflib. Literal (
abschnitts_Astnummer)))

abschnitts_Astbezeichnung = Ast.Abschnitts_Astbezeichnung. text
graph.add ((Ast-node , okstra. Abschnitts_Astbezeichnung ,rdflib.Literal (
abschnitts_Astbezeichnung)))

nummer_gehoert_zu_Strasse = Ast.Nummer_gehoert_zu_Strasse
nummer_gehoert_zu_Strasse_class = nummer_gehoert_zu_Strasse|[Objektklasse ']
nummer_gehoert_zu_Strasse_xlink = nummer_gehoert_zu_Strasse [’ xlink:href’]

nummer_gehoert_zu_Strasse_identifier = rdflib.URIRef('myokstra.tue.nl/’ +
nummer_gehoert_zu_Strasse_class + ’/’ + nummer_gehoert_zu_-Strasse_xlink

graph.add ((Ast_-node , okstra.nummer_gehoert_zu_Strasse ,
nummer_gehoert_zu_Strasse_identifier))

endet_null = Ast.endet_bei_NP

endet_null_class = endet_null [’ Objektklasse]

endet_null_xlink = endet_null[xlink:href’]

endet_null_identifier = rdflib.URIRef(myokstra.tue.nl/’ 4+ endet_null_class
4+ 7/’ 4+ endet_null_xlink)

graph.add ((Ast_node , okstra.endet_bei_NP ,endet_null_identifier))

beginnt_null = Ast.beginnt_bei NP
beginnt_null_class = beginnt_null[Objektklasse ’]
beginnt_null_xlink = beginnt_null [’ xlink:href’]

94

Improving the Interoperability Between City and Road Semantics

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

beginnt_null_identifier = rdflib.URIRef('myokstra.tue.nl/’ +
beginnt_null_class + ’/’ + beginnt_null_xlink)
graph.add ((Ast_node , okstra.beginnt_bei_ NP ,rdflib.Literal (beginnt_null_class

graph.add ((Ast_node , okstra.beginnt_bei_ NP ,beginnt_null_identifier))

#Convert Netzknoten
if FeatureMember. find (’Netzknoten ’):
Netzknoten = FeatureMember.Netzknoten
Netzknoten_id = Netzknoten [gml:id’]
Netzknoten_node = rdflib.URIRef(myokstra.tue.nl/Netzknoten/#’ +
Netzknoten_id)

graph.add ((Netzknoten_node, rdflib .RDF.type, rdflib.URIRef(http://schema.
okstra.de/2016/Netzknoten’)))

Name = list (Netzknoten. find_all(’gml:name’))[0]. text
graph.add ((Netzknoten_node ,gml.name, rdflib.Literal (Name)))

punktgeometrie = BNode()
graph.add ((Netzknoten_node , okstra.Punktgeometrie ,punktgeometrie))

point = Netzknoten.Punktgeometrie.Point

point_id = point['gml:id’]

point_node = rdflib.URIRef('myokstra.tue.nl/Netzknoten/#’ + point_id)
graph.add ((punktgeometrie ,gml. Point , point_node))

Pos = point.pos. text
graph.add ((point_node ,gml.pos, rdflib. Literal (Pos)))

numerierungsbezirk = Netzknoten.Numerierungsbezirk. text
graph.add ((Netzknoten_node , okstra.Numerierungsbezirk ,rdflib. Literal (
numerierungsbezirk)))

nummer = Netzknoten.Nummer. text
graph.add ((Netzknoten_node , okstra.Nummer, rdflib . Literal (nummer)))

knotenart = Netzknoten.Knotenart. text
graph.add ((Netzknoten_node , okstra.Knotenart ,rdflib. Literal (knotenart)))

Hat_Nullpunkts = Netzknoten.find_-all (hat_Nullpunkt’)
for Hat_Nullpunkt in Hat_Nullpunkts:
Hat_Nullpunkt_xlink = Hat_Nullpunkt [’ xlink:href’]
Hat_Nullpunkt_identifier = rdflib.URIRef(myokstra.tue.nl/Nullpunkt/’ +
Hat_Nullpunkt_xlink)
graph.add ((Netzknoten_node , okstra.hat_Nullpunkt ,
Hat_Nullpunkt_identifier))

#Convert Nullpunkt
if FeatureMember. find (’Nullpunkt ’):
Nullpunkt FeatureMember. Nullpunkt
Nullpunkt_id = Nullpunkt [’ gml:id "]
Nullpunkt_node = rdflib.URIRef(myokstra.tue.nl/Nullpunkt/#’ 4+ Nullpunkt_id
)

graph.add ((Nullpunkt_node, rdflib.RDF.type, rdflib.URIRef(http://schema.
okstra.de/2016/Nullpunkt ’)))

Name = list (Nullpunkt. find_-all(’gml:name’))[0]. text
graph.add ((Nullpunkt_node, gml.name, rdflib.Literal (Name)))

punktgeometrie = BNode()
graph.add ((Nullpunkt_node , okstra.Punktgeometrie , punktgeometrie))

Improving the Interoperability Between City and Road Semantics 95

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

point = Nullpunkt.Punktgeometrie.Point

point_id = point [’ ’gml:id]

point_node = rdflib.URIRef(’myokstra.tue.nl/Nullpunkt/#’ 4+ point_id)
graph.add ((punktgeometrie ,gml. Point , point_node))

Pos = point.pos.text
graph.add ((point_-node ,gml.pos, rdflib. Literal (Pos)))

Zusatz = Nullpunkt.Zusatz. text
graph.add ((Nullpunkt_node , okstra.Zusatz ,rdflib. Literal (Zusatz)))

Nullpunktart = Nullpunkt.Nullpunktart.text
graph.add ((Nullpunkt_-node , okstra.Nullpunktart ,rdflib.Literal (Nullpunktart))

Beginn_von_Abschnitt_oder_Asts = Nullpunkt. find_all(’

Beginn_von_Abschnitt_oder_Ast’)

for Beginn_von_Abschnitt_oder_Ast in Beginn_von_Abschnitt_oder_Asts:

Beginn_von_Abschnitt_oder_Ast_class = Beginn_von_Abschnitt_oder_Ast|[’
Objektklasse ']

Beginn_von_Abschnitt_-oder_-Ast_xlink = Beginn_von_Abschnitt_-oder_Ast [’
xlink : href’]

Beginn_von_Abschnitt_oder_Ast_identifier = rdflib.URIRef(myokstra.tue.
nl/’+ Beginn_von_Abschnitt_oder_Ast_class +’/ '+
Beginn_von_Abschnitt_-oder_Ast_xlink)

graph.add ((Nullpunkt_node , okstra.Beginn_von_Abschnitt_oder_Ast ,
Beginn_von_Abschnitt_oder_Ast_identifier))

Ende_von_Abschnitt_oder_Asts = Nullpunkt.find_all(’
Ende_von_Abschnitt_oder_Ast’)
for Ende_von_Abschnitt_oder_Ast in Ende_von_Abschnitt_oder_Asts:
Ende_von_Abschnitt_oder-Ast_class = Ende_von_Abschnitt_oder_Ast [’
Objektklasse ’]
Ende_von_Abschnitt_oder_Ast_xlink = Ende_von_Abschnitt_oder_Ast [’ xlink:
href’]
Ende_von_Abschnitt_oder_Ast_identifier = rdflib.URIRef(myokstra.tue.nl
/’+ Ende_von_Abschnitt_-oder_Ast_class +’/ '+
Ende_von_Abschnitt_oder_Ast_xlink)
graph.add ((Nullpunkt_node , okstra.Ende_von_Abschnitt_-oder_Ast
Beginn_von_Abschnitt_oder_Ast_identifier))

in_Netzknoten = Nullpunkt.in_Netzknoten

in_Netzknoten_xlink = in_Netzknoten[xlink:href’]

in_Netzknoten_identier = rdflib.URIRef(myokstra.tue.nl/Netzknoten/’ +
in_Netzknoten_xlink)

graph.add ((Nullpunkt_node , okstra.in_Netzknoten ,in_Netzknoten_identier))

hat_Nullpunktorts = Nullpunkt. find_all(’hat_Nullpunktort ’)
for hat_Nullpunktort in hat_Nullpunktorts:
hat_Nullpunktort_xlink = hat_Nullpunktort [’ xlink:href’]
hat_Nullpunktort_identifier = rdflib.URIRef(myokstra.tue.nl/
Nullpunktort/’ + hat_Nullpunktort_xlink)
graph.add ((Nullpunkt_node , okstra.hat_Nullpunktort ,
hat_Nullpunktort_identifier))

#Convert Nullpunktort
if FeatureMember. find (’Nullpunktort ’):
Nullpunktort = FeatureMember. Nullpunktort
Nullpunktort-id = Nullpunktort[' gml:id ’]
Nullpunktort-node = rdflib.URIRef(myokstra.tue.nl/Nullpunktort/#’ +
Nullpunktort_id)

graph.add ((Nullpunktort_node, rdflib .RDF.type, rdflib.URIRef(http://schema
.okstra.de/2016/Nullpunktort ’)))

bei_Strassenpunkt = BNode()
graph.add ((Nullpunktort_node , okstra.bei_Strassenpunkt, bei_Strassenpunkt))

96 Improving the Interoperability Between City and Road Semantics

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

Strassenpunkt = BNode()
graph.add ((bei_Strassenpunkt ,okstra.Strassenpunkt ,Strassenpunkt))

Station = Nullpunktort.bei_Strassenpunkt.Strassenpunkt.Station.text
Auf_Abschnitt_oder_Ast = Nullpunktort.bei_Strassenpunkt.Strassenpunkt.
auf_Abschnitt_oder_Ast
Auf_Abschnitt_oder_Ast_class = Auf_Abschnitt_oder_Ast[’Objektklasse]
Auf_Abschnitt_oder_Ast_xlink = Auf_Abschnitt_oder_Ast[’ xlink:href’]
Auf_Abschnitt_oder_Ast_identifier = rdflib.URIRef('myokstra.tue.nl/ +
Auf_Abschnitt_oder_Ast_class +’/’+Auf_Abschnitt_oder_Ast_xlink)
graph.add ((Strassenpunkt , okstra.Station ,rdflib.Literal (Station)))
graph.add ((Strassenpunkt ,okstra.auf_Abschnitt_oder_Ast_class,
Auf_Abschnitt_oder_Ast_identifier))

Bei_Nullpunkt = Nullpunktort.bei_Nullpunkt

Bei_Nullpunkt_xlink = Bei_Nullpunkt [’ xlink:href’]

Bei_Nullpunkt_identifier = rdflib.URIRef(myokstra.tue.nl/Nullpunkt/’ +
Bei_Nullpunkt_xlink)

graph.add ((Nullpunktort_node , okstra.bei_Nullpunkt , Bei_Nullpunkt_identifier)

#Convert Strasse

if FeatureMember. find (’Strasse’):
Strasse = FeatureMember. Strasse
Strasse_id = Strasse[gml:id’]

Strasse_.node = rdflib.URIRef('myokstra.tue.nl/Strasse/#’ + Strasse_id)

graph.add ((Strasse_node ,rdflib .RDF.type, rdflib.URIRef('http://schema. okstra
.de/2016/Strasse ’)))

Name = list (Strasse.find_all(’gml:name’)) [0]. text
graph.add ((Strasse_node, gml.name, rdflib.Literal (Name)))

strassenbezeichnung = Strasse.hat_Strassenbezeichnung. Strassenbezeichnung
Strassenbezeichnung = BNode()
graph.add ((Strasse_node ,okstra.hat_Strassenbezeichnung ,Strassenbezeichnung)

strassenklasse = strassenbezeichnung.Strassenklasse.text
strassennummer = strassenbezeichnung.Strassennummer. text

graph.add ((Strassenbezeichnung ,okstra.Strassenklasse ,rdflib.Literal (
strassenklasse)))

graph.add ((Strassenbezeichnung , okstra.Strassennummer , rdflib . Literal (
strassennummer)))

if strassenbezeichnung.find(’Zusatzbuchstabe’):
zusatzbuchstabe = strassenbezeichnung.Zusatzbuchstabe.text
graph.add ((Strassenbezeichnung , okstra.Zusatzbuchstabe ,rdflib. Literal (
zusatzbuchstabe)))

hat_AoA_zugeordnets = Strasse.find_all(hat_-AoA_zugeordnet)
for hat_AoA_zugeordnet in hat_AoA_zugeordnets:
hat_AoA_zugeordnet_class = hat_AoA_zugeordnet[’ Objektklasse]
hat_AoA _zugeordnet_xlink = hat_AoA_zugeordnet [’ xlink:href’]
hat_AoA_zugeordnet_identifier = rdflib.URIRef(’myokstra.tue.nl/ +
hat_AoA_zugeordnet_class +’/ ’+hat_AoA_zugeordnet_xlink)
graph.add ((Strasse_node ,okstra.hat_AoA_zugeordnet,
hat_AoA_zugeordnet_identifier))

hat_Strassenbezugsobjekts = Strasse.find_all(hat_Strassenbezugsobjekt’)
for hat_Strassenbezugsobjekt in hat_Strassenbezugsobjekts:
hat_Strassenbezugsobjekt_class = hat_Strassenbezugsobjekt[Objektklasse

']

Improving the Interoperability Between City and Road Semantics 97

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

hat_Strassenbezugsobjekt_xlink = hat_Strassenbezugsobjekt [’ xlink:href’]
hat_Strassenbezugsobjekt_identifier = rdflib.URIRef(myokstra.tue.nl/ +
hat_Strassenbezugsobjekt_class +’/’+hat_Strassenbezugsobjekt_xlink

graph.add ((Strasse_node , okstra.hat_Strassenbezugsobjekt ,
hat_Strassenbezugsobjekt_identifier))

#Convert Anzahl Fahrstrifen:

if FeatureMember. find (’Anzahl_Fahrstreifen’):
Anzahl_Fahrstreifen = FeatureMember. Anzahl_Fahrstreifen
Anzahl_Fahrstreifen_.id = Anzahl_Fahrstreifen [gml:id’]

Anzahl_Fahrstreifen_.node = rdflib.URIRef('myokstra.tue.nl/
Anzahl_Fahrstreifen/#’ + Anzahl_Fahrstreifen_id)

graph.add ((Anzahl_Fahrstreifen_node , rdflib .RDF. type, rdflib . URIRef("http://
schema. okstra.de/2016/ Anzahl_Fahrstreifen’)))

hat_Strecke = Anzahl_Fahrstreifen.hat_Strecke

hat_Strecke_class = hat_Strecke[Objektklasse]

hat_Strecke_xlink = hat_Strecke[xlink:href’]

hat_Strecke_identifier rdflib . URIRef('myokstra.tue.nl/ +
hat_Strecke_class +’/’+hat_Strecke_xlink)

graph.add ((Anzahl_Fahrstreifen_node , okstra.hat_Strecke,
hat_Strecke_identifier))

Fahrstreifen_Gegenrichtung = Anzahl_Fahrstreifen.Fahrstreifen_Gegenrichtung
.text

graph.add ((Anzahl_Fahrstreifen_node ,okstra.Fahrstreifen_Gegenrichtung ,
rdflib. Literal (Fahrstreifen_-Gegenrichtung)))

Fahrstreifen_Richtung = Anzahl_Fahrstreifen.Fahrstreifen_Richtung.text
graph.add ((Anzahl_Fahrstreifen_node , okstra.Fahrstreifen_Richtung ,rdflib .
Literal (Fahrstreifen_Richtung)))

Fahrstreifen_beide_Richtungen = Anzahl_Fahrstreifen.
Fahrstreifen_beide_Richtungen . text

graph.add ((Anzahl_Fahrstreifen_node , okstra.Fahrstreifen_beide_Richtungen ,
rdflib. Literal (Fahrstreifen_beide_Richtungen)))

#Convert Bahnigkeit:

if FeatureMember. find (’Bahnigkeit ’):
Bahnigkeit = FeatureMember. Bahnigkeit
Bahnigkeit_-id = Bahnigkeit [gml:id "]

Bahnigkeit_node = rdflib.URIRef(myokstra.tue.nl/Bahnigkeit/#’ +
Bahnigkeit_id)

graph.add ((Bahnigkeit_-node , rdflib .RDF.type,rdflib . URIRef('http://schema.
okstra.de/2016/Bahnigkeit ’)))

hat_strecke = Bahnigkeit.hat_Strecke

hat_strecke_class hat_strecke [Objektklasse]

hat_strecke_xlink = hat_strecke[' xlink:href’]

hat_strecke_identifier = rdflib.URIRef('myokstra.tue.nl/ +
hat_strecke_class 4’/ ’+hat_strecke_xlink)

graph.add ((Bahnigkeit_node , okstra.hat_Strecke ,hat_strecke_identifier))

Kennzeichen_Bahnigkeit = Bahnigkeit.Kennzeichen_Bahnigkeit.text
graph.add ((Bahnigkeit_-node , okstra.Kennzeichen_Bahnigkeit ,rdflib. Literal (
Kennzeichen_Bahnigkeit)))

#Convert Strecke:

if FeatureMember. find (' Strecke ’):
Strecke = FeatureMember. Strecke
Strecke_id = Strecke[gml:id’]

98 Improving the Interoperability Between City and Road Semantics

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

Strecke_node = rdflib.URIRef('myokstra.tue.nl/Strecke/#’ + Strecke_id)

graph.add ((Strecke_node ,rdflib .RDF.type, rdflib.URIRef('http://schema.okstra
.de/2016/ Strecke ’)))

zu_Streckenobjekt = Strecke.zu_Streckenobjekt

zu_-Streckenobjekt_class = zu_Streckenobjekt[Objektklasse ’]

zu_Streckenobjekt_xlink = zu_Streckenobjekt [’ xlink:href’]

zu_Streckenobjekt_identifier = rdflib.URIRef(myokstra.tue.nl/ +
zu_Streckenobjekt_class +’/’4+zu_Streckenobjekt_xlink)

graph.add ((Strecke_node , okstra.zu_-Streckenobjekt ,
zu_Streckenobjekt_identifier))

Textfeld = Strecke. Textfeld. text
graph.add ((Strecke_node , okstra. Textfeld ,rdflib.Literal (Textfeld)))

entlang_Streckenkomponente = Strecke.entlang_Streckenkomponente

entlang_Streckenkomponente_class = entlang_Streckenkomponente [’ Objektklasse
']

entlang_Streckenkomponente_xlink = entlang_-Streckenkomponente [’ xlink:href’]

entlang_Streckenkomponente_identifier = rdflib.URIRef(myokstra.tue.nl/ '+
entlang_Streckenkomponente_class +’/ +entlang_Streckenkomponente_xlink)

graph.add ((Strecke_node ,okstra.entlang_Streckenkomponente ,
entlang_Streckenkomponente_identifier))

#Convert Querschnittstreifen:
if FeatureMember. find (' Querschnittstreifen ’):
Querschnittstreifen = FeatureMember. Querschnittstreifen
Querschnittstreifen_id = Querschnittstreifen | gml:id’]
Querschnittstreifen_-node = rdflib.URIRef(myokstra.tue.nl/
Querschnittstreifen/#’ + Querschnittstreifen_id)
graph.add ((Querschnittstreifen_node , rdflib .RDF. type, rdflib . URIRef(http://
schema. okstra.de/2016/ Querschnittstreifen’)))

Hat_strecke = Querschnittstreifen.hat_Strecke

Hat_strecke_class = Hat_strecke [Objektklasse’]

Hat_strecke_xlink = Hat_strecke [xlink:href’]

Hat_strecke_identifier = rdflib.URIRef(' myokstra.tue.nl/ +
Hat_strecke_class +’/’+Hat_strecke_xlink)

graph.add ((Querschnittstreifen_node ,okstra.hat_Strecke
Hat_strecke_identifier))

x_-Wert_von_Station_links = Querschnittstreifen.x_Wert_von_Station_links

x-Wert_von_Station_links_uom = x_Wert_von_Station_links [uom’]

x_-Wert_von_Station_links_number = x_Wert_von_Station_links. text

x-Wert_von_Station_links_value = x_Wert_von_Station_links_number +
x_Wert_von_Station_links_uom

graph.add ((Querschnittstreifen_node , okstra.x_-Wert_von_Station_links , rdflib .
Literal (x_-Wert_von_Station_links_value)))

x_Wert_von_Station_rechts = Querschnittstreifen.x_Wert_von_Station_rechts
x-Wert_von_Station_rechts_.uom = x_Wert_von_Station_rechts [uom’]
x_-Wert_von_Station_rechts_.number = x_Wert_von_Station_rechts.text
x_Wert_von_Station_rechts_value = x_Wert_von_Station_rechts_number +

x_-Wert_von_Station_rechts_uom
graph.add ((Querschnittstreifen_node ,okstra.x_Wert_von_Station_rechts ,rdflib
.Literal (x-Wert_von_Station_rechts_value)))

x_Wert_bis_Station_links = Querschnittstreifen.x_Wert_bis_Station_links

x-Wert_bis_Station_links_uom = x_Wert_bis_Station_links [uom’]
x_Wert_bis_Station_links_number = x_Wert_bis_Station_links.text
x_-Wert_bis_Station_links_value = x_Wert_bis_Station_links_number +

x_Wert_bis_Station_links_uom
graph.add ((Querschnittstreifen_node , okstra.x_Wert_bis_Station_links ,rdflib.
Literal (x_.Wert_bis_Station_links_value)))

x_Wert_bis_Station_rechts = Querschnittstreifen.x_Wert_bis_Station_rechts

Improving the Interoperability Between City and Road Semantics 99

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

x_-Wert_bis_Station_rechts_uom = x_Wert_bis_Station_rechts [’uom’]
x_-Wert_bis_Station_rechts_number = x_Wert_bis_Station_rechts.text
x_Wert_bis_Station_rechts_value = x_Wert_bis_Station_rechts_number +

x_-Wert_bis_Station_rechts_uom
graph.add ((Querschnittstreifen_node ,okstra.x_Wert_bis_Station_rechts ,rdflib
.Literal (x-Wert_bis_Station_rechts_value)))

mittlere_Breite = Querschnittstreifen. mittlere_Breite

mittlere_Breite_.uom = mittlere_Breite ['uom’]

mittlere_Breite_number = mittlere_Breite.text

mittlere_Breite_.value = mittlere_Breite_number 4+ mittlere_Breite_uom

graph.add ((Querschnittstreifen_node , okstra.mittlere_Breite ,rdflib.Literal(
mittlere_Breite_value)))

Streifenart = Querschnittstreifen. Streifenart. text
graph.add ((Querschnittstreifen_node , okstra. Streifenart ,rdflib. Literal(
Streifenart)))

unscharfe_Breite = Querschnittstreifen.unscharfe_Breite.text
graph.add ((Querschnittstreifen_node ,okstra.unscharfe_Breite ,rdflib. Literal(
unscharfe_Breite)))

tatsaechliche_Laenge = Querschnittstreifen.tatsaechliche_Laenge
tatsaechliche_Laenge_uom = tatsaechliche_Laenge[uom’]
tatsaechliche_Laenge_number = tatsaechliche_Laenge.text
tatsaechliche_Laenge_value = tatsaechliche_Laenge_number +

tatsaechliche_Laenge_uom
graph.add ((Querschnittstreifen_node , okstra.tatsaechliche_Laenge ,rdflib.
Literal (tatsaechliche_Laenge_value)))

tatsaechliche_Flaeche = Querschnittstreifen.tatsaechliche_Flaeche
tatsaechliche_Flaeche_uom = tatsaechliche_Flaeche [uom’]
tatsaechliche_Flaeche_number = tatsaechliche_Flaeche.text
tatsaechliche_Flaeche_value = tatsaechliche_Flaeche_number +

tatsaechliche_Flaeche_uom
graph.add ((Querschnittstreifen_node ,okstra.tatsaechliche_Flaeche ,rdflib.
Literal (tatsaechliche_Flaeche_value)))

#Convert Teilabschnitt:
if FeatureMember. find (’Teilabschnitt ’):

Teilabschnitt = FeatureMember. Teilabschnitt

Teilabschnitt_id = Teilabschnitt [gml:id]

Teilabschnitt_.node = rdflib.URIRef(myokstra.tue.nl/Teilabschnitt/#’ +
Teilabschnitt_id)

graph.add ((Teilabschnitt_-node ,rdflib .RDF. type, rdflib . URIRef(http://schema.
okstra.de/2016/ Teilabschnitt’)))

if Teilabschnitt.find(’in_Strecke ’):
in_Strecke = Teilabschnitt.in_Strecke
in_Strecke_class = in_Strecke [’ Objektklasse]
in_Strecke_xlink = in_Strecke [’ xlink:href’]
in_Strecke_identifier = rdflib.URIRef(myokstra.tue.nl/Strecke/ +
in_Strecke_xlink)
graph.add ((Teilabschnitt_node ,okstra.in_Strecke ,in_Strecke_identifier))

beginnt_bei_SP = BNode ()
graph.add ((Teilabschnitt_.node , okstra.beginnt_bei_SP, beginnt_bei_SP))

strassenpunkt = BNode()
graph.add ((beginnt_bei_SP ,okstra.Strassenpunkt ,strassenpunkt))

station = Teilabschnitt.beginnt_bei_SP.Strassenpunkt.Station.text

Auf_abschnitt_oder_Ast = Teilabschnitt.beginnt_bei_SP.Strassenpunkt.
auf_Abschnitt_oder_Ast

Auf_abschnitt_oder_Ast_class = Auf_abschnitt_oder_Ast [’ Objektklasse]

Auf_abschnitt_oder_Ast_xlink = Auf_abschnitt_oder_Ast[xlink:href’]

100

Improving the Interoperability Between City and Road Semantics

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

Auf_abschnitt_oder_Ast_identifier = rdflib.URIRef('myokstra.tue.nl/ +
Auf_abschnitt_oder_Ast_class +’/’+Auf_abschnitt_oder_Ast_xlink)

graph.add ((strassenpunkt ,okstra.Station ,rdflib. Literal(station)))

graph.add ((strassenpunkt ,okstra.auf_Abschnitt_oder_Ast
Auf_abschnitt_oder_Ast_identifier))

endet_bei_SP = BNode()
graph.add ((Teilabschnitt_-node , okstra.endet_bei_SP, endet_bei_SP))

StrassenPunkt = BNode()
graph.add ((endet_bei_SP , okstra.StrassenPunkt , StrassenPunkt))

station = Teilabschnitt.endet_bei_SP.Strassenpunkt.Station.text
Auf_abschnitt_oder_ast = Teilabschnitt.endet_bei_SP.Strassenpunkt.
auf_Abschnitt_oder_Ast
Auf_abschnitt_oder_ast_class = Auf_abschnitt_oder_ast [Objektklasse]
Auf_abschnitt_oder_ast_xlink = Auf_abschnitt_oder_ast[xlink:href’]
Auf_abschnitt_oder_ast_identifier = rdflib.URIRef(myokstra.tue.nl/ +
Auf_abschnitt_oder_ast_class +’/’+Auf_abschnitt_oder_ast_xlink)
graph.add ((StrassenPunkt ,okstra.Station ,rdflib. Literal (station)))
graph.add ((StrassenPunkt ,okstra.auf_Abschnitt_oder_Ast ,
Auf_abschnitt_oder_ast_identifier))

Auf_Abschnitt_Oder_Ast = Teilabschnitt.auf_Abschnitt_oder_Ast
Auf_Abschnitt_Oder_Ast_class = Auf_Abschnitt_Oder_Ast[Objektklasse "]
Auf_Abschnitt_Oder_Ast_xlink = Auf_Abschnitt_Oder_Ast[’ xlink:href’]
Auf_Abschnitt_Oder_Ast_identifier = rdflib.URIRef(myokstra.tue.nl/ +
Auf_Abschnitt_Oder_Ast_class +’/ '+Auf_Abschnitt_Oder_Ast_xlink)

graph.add ((Teilabschnitt_-node ,okstra.auf_Abschnitt_oder_Ast ,
Auf_Abschnitt_Oder_Ast_identifier))

if Teilabschnitt.find(in_Netzbereich’):

in_Netzbereich = Teilabschnitt.in_Netzbereich

in_Netzbereich_class = in_Netzbereich[Objektklasse]

in_-Netzbereich_xlink = in_Netzbereich [’ xlink:href’]

in_Netzbereich_identifier = rdflib.URIRef(myokstra.tue.nl/ +
in_-Netzbereich_class+’/’+in_Netzbereich_xlink)

graph.add ((Teilabschnitt_node ,okstra.in_Netzbereich ,
in_Netzbereich_identifier))

beginnt_bei_SP = BNode ()
graph.add ((Teilabschnitt_.node , okstra.beginnt_bei_SP, beginnt_bei_-SP))

Strassenpunkt = BNode()
graph.add ((beginnt_bei_SP , okstra.Strassenpunkt , Strassenpunkt))

station = Teilabschnitt.beginnt_bei_SP.Strassenpunkt.Station.text
Auf_abschnitt_oder_Ast = Teilabschnitt.beginnt_bei_SP.Strassenpunkt.
auf_Abschnitt_oder_Ast
Auf_abschnitt_oder_Ast_class = Auf_abschnitt_oder_Ast[Objektklasse ']
Auf_abschnitt_oder_Ast_xlink = Auf_abschnitt_oder_Ast[xlink:href’]
Auf_abschnitt_oder_Ast_identifier = rdflib.URIRef(myokstra.tue.nl/ +
Auf_abschnitt_oder_Ast_class +’/’+Auf_abschnitt_oder_Ast_xlink)
graph.add ((Strassenpunkt , okstra.Station ,rdflib. Literal(station)))
graph.add ((Strassenpunkt ,okstra.auf_Abschnitt_oder_Ast ,
Auf_abschnitt_oder_Ast_identifier))

endet_bei-SP = BNode()
graph.add ((Teilabschnitt_-node , okstra.endet_bei_SP , endet_bei_SP))

StrassenPunkt = BNode()
graph.add ((endet_bei_SP , okstra.Strassenpunkt , StrassenPunkt))

station = Teilabschnitt.endet_bei_SP . Strassenpunkt.Station.text

Improving the Interoperability Between City and Road Semantics 101

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

Auf_abschnitt_.oder_ast = Teilabschnitt.endet_bei_SP.Strassenpunkt.
auf_Abschnitt_oder_Ast

Auf_abschnitt_oder_ast_class = Auf_abschnitt_oder_ast [Objektklasse]

Auf_abschnitt_oder_ast_xlink = Auf_abschnitt_oder_ast [’ xlink:href’]

Auf_abschnitt_oder_ast_identifier = rdflib.URIRef('myokstra.tue.nl/ +
Auf_abschnitt_oder_ast_class +’/’+Auf_abschnitt_oder_ast_xlink)

graph.add ((StrassenPunkt ,okstra.Station ,rdflib. Literal (station)))

graph.add ((StrassenPunkt , okstra.auf_Abschnitt_oder_Ast,
Auf_abschnitt_oder_ast_identifier))

Auf_Abschnitt_Oder_Ast = Teilabschnitt.auf_Abschnitt_oder_Ast
Auf_Abschnitt_Oder_Ast_class = Auf_Abschnitt_Oder_Ast[’ Objektklasse ']
Auf_Abschnitt_Oder_Ast_xlink = Auf_Abschnitt_-Oder_Ast [’ xlink:href’]
Auf_Abschnitt_Oder_Ast_identifier = rdflib.URIRef(myokstra.tue.nl/ '+
Auf_Abschnitt_Oder_Ast_class +’/’+Auf_Abschnitt_Oder_Ast_xlink)

graph.add ((Teilabschnitt_node ,okstra.auf_Abschnitt_oder_Ast ,
Auf_Abschnitt_Oder_Ast_identifier))

if Teilabschnitt.find(’zu_Streckenobjekt ’):

zu_Streckenobjekt = Teilabschnitt.zu_Streckenobjekt

zu_Streckenobjekt_class = zu_Streckenobjekt [Objektklasse]

zu_Streckenobjekt_xlink = zu_Streckenobjekt [xlink:href’]

zu_Streckenobjekt_identifier = rdflib.URIRef(myokstra.tue.nl/ +
zu_-Streckenobjekt_class+’/ '+zu_Streckenobjekt_xlink)

graph.add ((Teilabschnitt_node , okstra.zu_Streckenobjekt ,
zu_Streckenobjekt_identifier))

beginnt_bei_SP = BNode ()
graph.add ((Teilabschnitt_-node , okstra.beginnt_bei_-SP, beginnt_bei_SP))

Strassenpunkt = BNode()
graph.add ((beginnt_bei_SP ,okstra.Strassenpunkt , Strassenpunkt))

station = Teilabschnitt.beginnt_bei_SP.Strassenpunkt.Station.text
Auf_abschnitt_oder_Ast = Teilabschnitt.beginnt_bei_SP.Strassenpunkt.
auf_Abschnitt_oder_Ast
Auf_abschnitt_oder_Ast_class = Auf_abschnitt_oder_Ast [’ Objektklasse]
Auf_abschnitt_oder_Ast_xlink = Auf_abschnitt_oder_Ast[’xlink:href’]
Auf_abschnitt_oder_Ast_identifier = rdflib.URIRef('myokstra.tue.nl/ +
Auf_abschnitt_oder_Ast_class +’/’+Auf_abschnitt_oder_Ast_xlink)
graph.add ((Strassenpunkt , okstra.Station ,rdflib. Literal(station)))
graph.add ((Strassenpunkt ,okstra.auf_Abschnitt_oder_Ast ,
Auf_abschnitt_oder_Ast_identifier))

endet_bei_SP = BNode()
graph.add ((Teilabschnitt_-node , okstra.endet_bei_SP, endet_bei_SP))

StrassenPunkt = BNode()
graph.add ((endet_bei_SP , okstra.Strassenpunkt , StrassenPunkt))

station = Teilabschnitt.endet_bei_SP . Strassenpunkt.Station.text
Auf_abschnitt_oder_ast = Teilabschnitt.endet_bei_SP.Strassenpunkt.
auf_Abschnitt_oder_Ast
Auf_abschnitt_oder_ast_class = Auf_abschnitt_oder_ast [Objektklasse]
Auf_abschnitt_oder_ast_xlink = Auf_abschnitt_oder_ast[xlink:href’]
Auf_abschnitt_oder_ast_identifier = rdflib.URIRef(myokstra.tue.nl/ 4
Auf_abschnitt_oder_ast_class +’/’+Auf_abschnitt_oder_ast_xlink)
graph.add ((StrassenPunkt , okstra.Station ,rdflib. Literal (station)))
graph.add ((StrassenPunkt ,okstra.auf_Abschnitt_oder_Ast ,
Auf_abschnitt_oder_ast_identifier))

Auf_Abschnitt_Oder_Ast = Teilabschnitt.auf_Abschnitt_oder_Ast
Auf_Abschnitt_Oder_Ast_class = Auf_Abschnitt_Oder_Ast[Objektklasse "]
Auf_Abschnitt_Oder_Ast_xlink = Auf_Abschnitt_Oder_Ast[’ xlink:href’]
Auf_Abschnitt_Oder_Ast_identifier = rdflib.URIRef(myokstra.tue.nl/ 4
Auf_Abschnitt_Oder_Ast_class +’/ '+Auf_Abschnitt_Oder_Ast_xlink)

102

Improving the Interoperability Between City and Road Semantics

APPENDIX H. PYTHON CODE FOR CONVERTING OKSTRA DATA TO RDF

graph.add ((Teilabschnitt_node ,okstra.auf_Abschnitt_oder_Ast ,
Auf_Abschnitt_Oder_Ast_identifier))

graph.serialize (destination="/Users/pc/Desktop/okstra2rdfnew.ttl’, format=’turtle’)

Improving the Interoperability Between City and Road Semantics 103

Appendix 1

Python code for parsing and
CityGML file and constructing
geometric reference

@author: JerryZheng

from bs4 import BeautifulSoup
import numpy as np

from pip.cmdoptions import allow_all_external
from numpy import poly

from builtins import str

from itertools import count

soup = BeautifulSoup (open(”/Users/pc/Desktop/Datalinking files/data model/
LoD2.295.5629_.1_NW.gml”), ’lxml—xml’)
city = soup.CityModel

avg_geo_coords = dict ()
with open(’csv.csv’, mode="w’) as f:
cityObjectMembers = city . find_all(’cityObjectMember)
for cityObjectMember in cityObjectMembers:
building = cityObjectMember.Building
building_id = building [’ ’gml:id]
#building_node = "mycitygml.tue.nl/city/building/’ + building_id
if building.find (’roofType’):

groundsurfaces = building. find_all (’GroundSurface’)
for groundsurface in groundsurfaces:
surfaceMember = groundsurface.lod2MultiSurface.MultiSurface.
surfaceMember
polygon = surfaceMember.Polygon
linearring = polygon.exterior.LinearRing
poslist = linearring.posList.text

float_poslist = [float(e) for e in poslist.split(” 7)]

x = np.mean(float_poslist [0::3])

y = np.mean(float_poslist [1::3])

z = np.mean(float_poslist [2::3])

#poslist_csv = poslist.replace(’ 7, 7,7)

f.write(building_id + ’, + str(x) + ’, + str(y) + ’, + str(z) +
\n’)

104 Improving the Interoperability Between City and Road Semantics

Appendix J

Python code for parsing CityGML

and OKSTRA geometric reference
CSYV file and translating to RDF
statements

import csv as csv

import numpy as np

import pandas as pd

import math

import rdflib

from rdflib.plugins.sparql.operators import string
from test.test_functools import decimal

graph = rdflib .Graph(store="IOMemory’, identifier="Graph’)

gml = rdflib .Namespace(” http://www.opengis.net/gml:”)

sf = rdflib.Namespace(” http://www.opengis.net/ont/sf#")

geo = rdflib.Namespace(” http://www.opengis.net/ont/geosparql#”’)

bldg = rdflib.Namespace(” http://www.opengis.net/citygml/building /1.07)
okstra = rdflib .Namespace(” http://schema.okstra.de/2016/okstra:”)

road = pd.read_csv (r”/Users/pc/Desktop/Abschnitt.csv”)

roadbranch = pd.read_csv(r”/Users/pc/Desktop/ast.csv”)

building = pd.read_-csv(r”/Users/pc/Desktop/geolink/buildingref2wkt.csv”)
rposref = road.loc [:,["WKI"]]

roaddata = road.values
roadbranchref = roadbranch.loc [:,["WKI”]]
roadbranchdata = roadbranch.values

bposref = building.loc [:,["WKI"]]
buildingdata = building.values
graph.bind (’geo’ ,geo)

graph.bind (’sf’,sf)

graph.bind (’bldg’, bldg)
graph.bind (’okstra’,okstra)

#with open(’closestroad.csv’, mode="w’) as f:
print (roaddata)
for i in range(len(buildingdata)):
rowl = buildingdata [i]
building-WKT = rowl [0]
building_id = rowl [3]
asbuilding_WKT = str (building-WKT)
Xi = float (rowl[1])
Yi = float (rowl[2])

HHFH 3

Improving the Interoperability Between City and Road Semantics 105

APPENDIX J. PYTHON CODE FOR PARSING CITYGML AND OKSTRA GEOMETRIC
REFERENCE CSV FILE AND TRANSLATING TO RDF STATEMENTS

#
#

for

for

xi = str(Xi)
yi = str(Yi)
building_node = rdflib.URIRef(mycitygml.tue.nl/city/building/’ + building_id)
buildingrefpoint_-node = rdflib.URIRef(mycitygml.tue.nl/city/building/RefPoint’
+ building_id)
graph.add ((building_-node , geo.hasGeometry , buildingrefpoint_node))
graph.add ((buildingrefpoint_node ,rdflib .RDF.type, sf.Point))
graph.add ((buildingrefpoint_node ,geo.asWKT, rdflib . Literal (building. WKT
datatype=geo.wktLiteral)))
j in range(len(roaddata)):

row2 = roaddatalj]
road-WKT = row2[0]
road_id = row2[1]

road_-node = rdflib.URIRef('myokstra.tue.nl/Abschnitt/#’ + road-id)

roadrefpoint_node = rdflib.URIRef(myokstra.tue.nl/Abschnitt/RefPoint#’" +
road_id)

graph.add ((road_node , geo.hasGeometry ,roadrefpoint_node))

graph.add ((roadrefpoint_-node ,rdflib .RDF.type, sf.LineString))

graph.add ((roadrefpoint_node ,geo.asWKT, rdflib . Literal (road WKT, datatype=geo.
wktLiteral)))

k in range(len (roadbranchdata)):

row3 = roadbranchdata [k]

roadbranch. WKT = row3[0]

roadbranch_id = row3[1]

roadbranch_node = rdflib.URIRef(myokstra.tue.nl/Ast/#’ 4+ roadbranch_id)

roadbranchrefpoint_node = rdflib.URIRef(’myokstra.tue.nl/Ast/RefPoint#’ +
roadbranch_id)

graph.add ((roadbranch_node , geo.hasGeometry ,roadbranchrefpoint_node))

graph.add ((roadbranchrefpoint_node ,rdflib .RDF.type, sf.LineString))

graph.add ((roadbranchrefpoint_node , geo.asWKT, rdflib . Literal (roadbranch. WKT,
datatype=geo.wktLiteral)))

graph.serialize (destination="/Users/pc/Desktop/geometry.ttl’, format="turtle’)

106

Improving the Interoperability Between City and Road Semantics

Appendix K

Java code for merging CityGML
RDF graph and OKSTRA graph
with geometric reference RDF
graph

import org.apache.jena.rdf.model.x;
import org.apache.jena.util.FileManager;

import java.io.x;
import org.apache.log4j.BasicConfigurator;
public class geolink {
static final String inputFilePathl = 7 /Users/pc/Desktop/okstra2rdfnew . ttl”;

static final String inputFilePath2 = 7 /Users/pc/Desktop/testgeobuilidngnew . ttl1”;
static final String inputFilePath3 7 /Users/pc/Desktop/citygml2rdfnew . tt1”;

public static void main(String args|[]) throws FileNotFoundException{

//create 2 models from OKSTRA rdf file and CityGML rdf file

Model modell = ModelFactory.createDefaultModel () .read (inputFilePathl);
Model model2 = ModelFactory.createDefaultModel () .read (inputFilePath2);
Model model3 = ModelFactory.createDefaultModel () .read (inputFilePath3);

//put all the triples inside a created new model
Model integration = ModelFactory.createDefaultModel () ;
Model [] models = {modell ,model2,model3};

for (Model part: models) {
integration .add(part);

}

//model out put

OutputStream out = new FileOutputStream (new File(”/Users/pc/Desktop/
geolinkednew . tt17));

integration.write (out,”TURTLE”) ;

}

Improving the Interoperability Between City and Road Semantics 107

Appendix L

Python code for finding the
CityGML building and their
closest OKSTRA road section

import csv
import numpy as np
import pandas as pd

result = pd.read_csv(’/Users/pc/Downloads/query—result —5.csv)
resultlist = list (zip(result[’a’],result[’b’],result [distance’]))
resultdict={}

for item in resultlist:
a = item [0]
b = item [1]
dist = item [2]
if not resultdict.get(a):
resultdict [a]=[]
res = (b, dist)
resultdict [a].append(res)
mindist={}
for a, tuple in resultdict.items():
distset = np.array ([item[1] for item in tuple])
array = [item [0] for item in tuple]
index_min = np.argmin(distset)
b_value = array[index_-min]
mindist [a]=(b_value ,min(distset))
print (mindist)

df = pd.DataFrame(mindist)
df.to_csv(’mindis.csv’,index= False)

108 Improving the Interoperability Between City and Road Semantics

Appendix M

Python code for link the

CityGML building and OKSTRA

road section

import csv as csv

import rdflib

from rdflib.plugins.sparql.operators import string
import pandas as pd

graph = rdflib.Graph(store=’IOMemory’, identifier="Graph’)
co = rdflib.Namespace(”http://citygmlinteokstra.tue.nl/”)
graph.bind(’co’,co)

dataset = pd.read_csv(r”/Users/pc/Desktop/mindis.csv”)
data = dataset.values

dataref = dataset.loc [:,[” building”]]
for i in range(len(data)):

row = data[i]

building = row[0]

section = row[1]

building_node = rdflib.URIRef(building)
section_-node = rdflib.URIRef(section)
graph.add ((building_node ,co.hasclosestroadsection ,section_node))

graph.serialize (destination="/Users/pc/Desktop/closestroadsection . ttl’

turtle ”)

Improving the Interoperability Between City and Road Semantics

109

Appendix N

Python code for merging
CityGML and OKSTRA RDF
graphs and geometry RDF graph

from rdflib import Graph
gl = Graph()
gl.parse(’/Users/pc/Desktop/geolinked . ttl’, format="turtle”)

g2 = Graph()
g2.parse(’/Users/pc/Desktop/closestroadsection. ttl’, format="turtle”)

g3 = Graph()
g3.parse(’/Users/pc/Desktop/closestdistance.ttl’, format="turtle”)

graph = gl + g2 + g3

graph.serialize (destination="/Users/pc/Desktop/linked . ttl’, format=’turtle’)

110 Improving the Interoperability Between City and Road Semantics

	Contents
	List of Figures
	List of Tables
	Introduction
	Research Background
	Problem Statement
	Research Questions
	Research Goals
	Research Design
	Theoretical Research
	Experimental Implementation

	Report Outline

	Preliminaries,Literature Summary and Related Work
	CityGML
	OKSTRA
	Semantic Web
	Introduction of Semantic Web
	OWL and RDF
	The Linked Data Approach
	SPARQL

	Literature Summary and Related Work
	Role and advantages of Semantic Web in AECO/FM industry
	Related Works

	Summary

	Methodology
	Integration Method
	Process Map of Experimental Implementation
	Data Preparation
	Data Transformation
	Data Linking
	Query Development

	Transformation of the Data
	Data Preparation
	Instance Data Resource Acquisition and Introduction
	OKSTRA Data Processing

	Data Transformation
	Constructing Ontologies for the XML Files of the Implementation
	Data Conversion: from data-XML to RDF

	Summary

	Data Linking
	Link the RDF Graphs of OKSTRA and CityGML
	Ontology Mapping and Linking Definition
	Data Linking

	Query the Integration Result
	Query Topic Selection
	Query and Result

	Conclusions, Recommendation and Future Work
	Conclusions
	Limitation and Discussion
	Recommendations
	Practical Recommendations
	Scientific Recommendations and Future Work

	Bibliography
	Appendices
	Cities around the world with open CityGML data sets
	Python code for parsing OKSTRA data
	Python code for finding Netzknoten in the target area
	XML Schema List for converting OKSTRA Schema to OWL
	Adapted CityGML Ontology for Experiment
	Adapted OKSTRA Ontology for Experiment
	Python code for converting CityGML Data to RDF
	Python code for converting OKSTRA Data to RDF
	Python code for parsing and CityGML file and constructing geometric reference
	Python code for parsing CityGML and OKSTRA geometric reference CSV file and translating to RDF statements
	Java code for merging CityGML RDF graph and OKSTRA graph with geometric reference RDF graph
	Python code for finding the CityGML building and their closest OKSTRA road section
	Python code for link the CityGML building and OKSTRA road section
	Python code for merging CityGML and OKSTRA RDF graphs and geometry RDF graph

