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SUMMARY

For several years now, there has been a growing interest in accomplishing higher levels of
cycling in cities, since a lot of cities struggle with severe problems of air pollution, noise,
congestions and parking problems as a result of high, and sometimes even growing levels, of
motorized traffic. Cities are more and more recognizing what cycling brings to a city besides
the fact that it is an effective way of addressing the major issues behind the high level of
dependency on private cars. Many cities are working on making their urban environments
more bicycle-friendly to encourage their residents to cycle. Recent literature has illustrated
that the focus of all efforts concerning the promotion of cycling must be the improvement of
cyclists perceived safety and comfort levels.

One aspect in particular appears to strongly influence these levels, namely the pavement
surface conditions. Cyclist perceive the pavement surface conditions by way of bicycle
vibrations that are transmitted from the surface. Besides the vibrations directly associated
with the pavement surface structure, the vibrations are typically caused by two different types
of pavement issues, namely by cracked roads and coarse roads. The former refers to one or
multiple successive impacts due to cracks, potholes or tree root damages. The latter refers to
a continuous random vibrations due to worn pavement surfaces.

Currently, these pavement conditions are assessed through visual inspections, which is a
resource inefficient manner, as these inspections are costly, time consuming and labor-
intensive. Moreover, it is a subjective approach, making it dependable on the knowledge and
experience of the inspectors. Thus, given the growing interest of making the bicycle a
competitive transportation mode and that governmental authorities only have limited funds
for the operations and maintenance of the bicycle infrastructure, a more resource efficient
manner is needed for obtaining objective asset conditions data regarding bicycle pavement
surfaces in order to stimulate people to start using the bicycle.

This research therefore introduces a new system for collecting this bicycle asset condition data
and is called ‘Bicycle Infrastructure Monitoring System’ (BIMS). BIMS will collect the asset
condition data on the basis that pavement surface condition can be manifested in terms of
vibrations transmitted to the cyclist. The system aims to objectively assess the pavement
surface conditions by measuring these vibraitons with the sophisticated sensors embedded in
modern day smartphones. By collecting this vibration data in combination with location data
from cyclists’ smartphones, BIMS will be able to continuously monitor the asset condition data
regarding bicycle pavement surfaces. The valuable information resulting from BIMS will help
road managers to make more efficient use of their limited resources in relation to operation
and maintenance, renewal and auditing of the bicycle environment.

This research first presents a strong foundation for BIMS by elaborating on all the sub-
processes involved and what these sub-processes entail, based on the knowledge acquired
from the literature review. Basically for BIMS five sub-processes can be distinguished: ‘Input’,
‘Pre-Process’, ‘Process’, ‘Evaluation’, and ‘Output’. These sub-processes are depicted in a
process flow diagram which provides a better comprehensive understanding of the general
flow of information and the actions involved of each sub-processes.
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This research further focuses particularly on the feasibility of BIMS assessment component.
For the assessment, BIMS intends to use an already existing method of dynamic comfort
mapping introduced by Bil et al. (2015) for converting the vibration measurement’s outcome
into a dynamic comfort index (DCI). The functionality and feasibility of this method is already
proven in the study of Bil et al. (2015). However, since this research differs in using data from
smartphones located in cyclist’s trousers instead of an accelerometer mounted to the front
fork of a bicycle to assess the bicycle pavement surface conditions, the original formula for
the computation of the DCl is altered and is referred to as DClsum. Furthermore, based on the
insights of both the study of Bil et al. (2015) and the literature, several other aspects are
discussed in how they should be dealt with as they concern the methodology’s outcome,
namely cyclist’s weight, bicycle characteristics, data collection from multiple cyclists, and
pedaling movement of the cyclist. This study then researches this assessment component on
the basis of two studies.

First, a case study is conducted which examines if the current sensor quality is sufficient in
order to provide reliable data for BIMS. This case study specifically tested only the sensors
relevant for the data collection of BIMS, namely the accelerometer for the vibration data and
the GPS receiver for the location data. These sensors are tested on their accuracy, sensitivity
and consistency. This evaluation is based on five tests, where three tests focus on the
smartphones’ accelerometer and two tests on the smartphones’ GPS receiver. In total the
sensors of three smartphones of different brands and ages are tested in order to provide a
general impression of the overall smartphone sensor quality. The test results show that
smartphones’ accelerometers are capable of measuring accelerations with high level of
precision, as for the accelerometers considerable low sensitivities and accuracies are observed
with high consistencies. In addition, the test results show that smartphones’ GPS receiver can
provide GPS data with an acceptable level of accuracy.

Next, a field experiment is undertaken in order to prove the feasibility of assessing the
pavement surface conditions based on smartphone data. In addition, since the original
method of dynamic comfort mapping is altered, the field experiment re-examines the
functionality and feasibility of this method based on smartphone-data. Based on vibration
data collected from three test riders, the field experiment applies the altered method to four
road segments in the city center of Eindhoven, the Netherlands. In order to evaluate the
performance of the dynamic comfort mapping method based on smartphone data, it is
compared to DCl-values derived in the study of Bil et al. (2015). From this comparison, it seems
that the smartphone-based method does not performs similarly as the original method, since
in general the DClsum values are observed to be 0.2 to 0.3 lower than the comparative DCI
values. However, even though smartphone-based method performs worse in comparison with
the original method, the results of the field experiment show that it is possible to distinguish
different pavement surfaces, and of different qualities based on vibrations data collected from
smartphones. In addition, based on the strong correlations found between the data sets of
the test riders, the experiment achieves to illustrate the workability of combining data
gathered from multiple cyclists. Regarding the method of dynamic comfort mapping, more
detailed research is necessary in order for BIMS to adopt this method. This study may be seen
as a first step towards more objective and sophisticated methods to collect asset condition
data regarding the bicycle environment.
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SAMENVATTING

Sinds enkele jaren is er een groeiende interesse in het bereiken van hogere niveaus van fietsen
in steden, aangezien veel steden worstelen met ernstige problemen van luchtverontreiniging,
lawaai, verkeersopstoppingen en parkeer problemen als gevolg van de hoge, soms zelfs
groeiende niveaus van gemotoriseerd verkeer. Steden erkennen steeds meer wat fietsen voor
een stad kan betekenen, naast het feit dat het een effectieve manier is om de belangrijkste
problemen aan te pakken die te maken hebben met de hoge afhankelijkheid van
personenauto’s. Veel steden werken eraan hun stadsomgeving fietsvriendelijker te maken om
hun inwoners aan te moedigen om te gaan fietsen. Recente literatuur heeft aangetoond dat
de focus van alle inspanningen met betrekking tot het aanmoedigen van fietsgedrag moet
liggen op het verbeteren van de veiligheid- en comfort-niveaus van fietsers.

Een aspect in het bijzonder blijkt deze niveaus sterk te beinvloeden, namelijk de condities van
het wegdekoppervlak. De fietser ervaart namelijk de condities van het wegdek aan de hand
van de fietstrillingen die worden overgebracht vanuit het wegoppervlak. Naast de trillingen
die direct verband houden met de oppervlaktestructuur van de verharding, worden de
trillingen meestal veroorzaakt door twee typische soorten wegdekschades, namelijk door
beschadigde wegen en ruwe wegen. De eerste verwijst naar een of meerdere opeenvolgende
klappen (of trillingen) als gevolg van scheuren, kuilen of boomwortelbeschadigingen. De
laatste verwijst naar de continue willekeurige trillingen als gevolg van versleten wegdekken.

Op dit moment worden de wegdek condities beoordeeld aan de hand van visuele inspecties
wat een inefficiénte strategie is, aangezien deze inspecties duur, tijdrovend en
arbeidsintensief zijn. Daarbij is het een subjectieve methodiek die afhankelijk is van de kennis
en ervaring van de inspecteurs. Dus gezien de groeiende interesse om de fiets een
competitieve transportmodus te maken en dat overheidsinstanties slechts beperkte middelen
hebben voor het beheer en onderhoud van fietsinfrastructuur, is er een efficiéntere manier
nodig om objectieve data te verzamelen met betrekking tot de oppervliakken van de
fietsverhardingen om mensen te stimuleren om de fiets te gaan gebruiken.

Dit onderzoek introduceert daarom een nieuw system voor het verzamelen van deze asset
conditie data genaamd ‘Bicycle Infrastructure Monitoring System’ (BIMS). Het systeem doelt
erop om objectief de conditie van verhardingsoppervlakken te beoordelen door de trillingen
te meten die je ervaart tijdens het fietsen met de geavanceerde sensoren die zijn geintegreerd
in huidige smartphones. Door deze trillingsdata te verzamelen in combinatie met GPS-data
van smartphones van alledaagse fietsers, kan BIMS continu data verzamelen en monitoren
met betrekking tot de condities van de verhardingsoppervlakken van fietspadden. De
waardevolle informatie die voortvloeit uit BIMS zal wegbeheerders helpen om hun beperkte
middelen efficiénter te gebruiken met betrekking tot het beheer en onderhoud, vernieuwing
en auditing van de fietsomgeving.

Dit onderzoek presenteert eerst een sterke basis voor BIMS door alle betrokken sub-
processen te beschrijven en aan te duiden wat ze inhouden. In principe zijn er voor BIMS vijf
sub-processen te onderscheiden: ‘Input’, ‘Pre-Process’, ‘Process’, ‘Evaluation’, en ‘Output’.
Deze sub-processen worden afgebeeld in een processtroomdiagram wat een goed overzicht
biedt van de algemene informatiestroom en de betrokken acties van elke sub-proces.
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Dit onderzoek richt zich verder in het bijzonder op de haalbaarheid van BIMS
beoordelingscomponent. BIMS zal hiervoor gebruik maken van een bestaande methode
genaamd ‘dynamic comfort mapping’ geintroduceerd door Bil et al. (2015). Deze methode zal
gebruikt worden om de resultaten van de trillingsmeeting om te zetten in een ‘dynamic
comfort index’ (DCI). De functionaliteit en haalbaarheid van deze methode is al aangetoond
in de studie van Bil et al. (2015). Aangezien dit onderzoek verschilt in het gebruiken van data
verzamelt met een smartphone vanuit de broek, in plaats van een accelerometer die op de
voorvork van een fiets is bevestigd, om de condities van de fietsverhardingen te beoordelen,
is de originele formule voor het berekenen van de DCI gewijzigd en wordt DClsum genoemd.
Verder, gebaseerd op de inzichten van zowel de studie van Bil et al. (2015) en de literatuur,
worden er ook verschillende aspecten besproken in hoe ze moeten worden aangepakt
aangezien ze betrekking hebben op de uitkomst van de methode, namelijk het gewicht van de
fietsers, de fietskenmerken, data verzameling van meerdere fietsers en trapbeweging van de
fietser. Deze studie onderzoekt de beoordelingscomponent op basis van twee studies.

Als eerste wordt een case study uitgevoerd die onderzoekt of de huidige sensorkwaliteit
voldoende is om BIMS te voorzien met betrouwbare data. Deze case studie testte specifiek
alleen de sensoren die relevant zijn voor de data verzameling van BIMS, namelijk de
accelerometer voor de trillingsdata en de GPS-ontvanger voor de locatie-data. Deze sensoren
worden geévalueerd op nauwkeurigheid, gevoeligheid en consistentie. Deze evaluatie is
gebaseerd op vijf testen, waarbij drie testen gericht zijn op de accelerometer en twee testen
op de GPS-ontvanger van de smartphones. In totaal worden de sensoren van drie
smartphones getest om een algemene indruk te geven van de smartphonesensor kwaliteit.
De testresultaten tonen aan dat de accelerometers van smartphones in staat zijn om
versnellingen te meten met een hoge mate van nauwkeurigheid, aangezien aanzienlijke lage
gevoeligheden en nauwkeurigheden worden waargenomen met hoge consistenties voor de
accelerometers. Daarnaast laten de testresultaten van de GPS-ontvanger zien dat
smartphones GPS data kunnen aanleveren met acceptabele nauwkeurigheden.

Vervolgens wordt een veldexperiment uitgevoerd om de haalbaarheid aan te tonen dat de
condities van verhardingen kan worden beoordeeld aan de hand van smartphone-data.
Daarbij aangezien de oorspronkelijke methode van ‘dynamic comfort mapping’ is gewijzigd,
heronderzoekt het veldexperiment de functionaliteit en haalbaarheid van deze methode. Op
basis van trillingsdata verzameld van drie testrijders past het veldexperiment de gewijzigde
methode toe op vier wegsegmenten in het stadcentrum van Eindhoven. Om de prestaties van
de methode op basis van de smartphone data te evalueren, wordt deze vergeleken met DCI-
waarden berekend in de studie van Bil et al. (2015). Uit deze vergelijking blijkt dat de
smartphone gebaseerde methode niet op dezelfde manier functioneert als de oorspronkelijke
methode, aangezien de DClsum waardes over het algemeen 0,2 tot 0,3 lager zijn dan de
vergelijkbare DCl-waardes. Hoewel de op smartphone gebaseerde methode slechter presteert
in vergelijking met de originele methode, tonen de resultaten van het veldexperiment aan dat
het mogelijk is om verschillende types en kwaliteiten verhardingen te onderscheiden op basis
van trillingsdata verzameld met de smartphones. Daarbij toont het veld experiment aan dat
de data van meerdere fietsers gecombineerd kan worden aangezien sterke correlaties
gevonden worden tussen de datasets van de testrijders. Met betrekking tot de methode is
meer gedetailleerd onderzoek nodig voordat het kan worden toegepast door BIMS. Deze
studie kan worden gezien als een eerste stap in de richting van meer objectieve en
geavanceerde methoden voor het verzamelen van data over condities van de fiets omgeving.
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ABSTRACT

There has been a growing interest in making cycling a competitive mode of transport, as it is
a healthy, environmental friendly alternative and cities are coping with severe problems
resulting from the high levels of motorized traffic. In the process of bicycle facility planning,
tackling issues regarding cyclist’ comfort and safety levels is of utmost importance in order to
stimulate and promote cycling as a transportation mode. Especially poor pavement surface
conditions appears to strongly affect these levels. The pavement surface conditions are
currently assessed through visual inspections, which is an subjective and outdated approach
that does not tackle maintenance issues in a resource efficient manner. Since the condition of
bicycle surfaces can be manifested in terms of bicycle vibrations, a Bicycle Infrastructure
Monitoring System (BIMS) is proposed, which intends to objectively assess the bicycle
pavement surface conditions by measuring these bicycle vibrations with the sophisticated
sensors embedded in modern day smartphones. By collecting this vibration data in
combination with location data from cyclists’ smartphones, BIMS will be able to continuously
monitor the asset condition data regarding bicycle pavement surfaces. The valuable
information resulting from BIMS will help road managers to make more efficient use of their
limited resources in relation to operation and maintenance, renewal and auditing of the
bicycle environment. This study presents a strong foundation for BIMS by describing all the
processes involved and what they entail. This study has further focused particularly on the
feasibility of BIMS assessment component, by first conducting a case study which examined if
the current sensor quality is sufficient in order to provide reliable data for BIMS. Based on five
tests, this case study has shown that smartphones’ motion sensors are capable measuring
accelerations with a high level of precision and that the location sensors provide GPS data with
an acceptable level of accuracy. Next, a field experiment was undertaken in order to prove the
feasibility of assessing the pavement surface conditions based on smartphone data, and to
examine if an already existing method of dynamic comfort mapping can be used for converting
the vibration measurement’s outcome into a dynamic comfort index (DCl). The field
experiment has demonstrated that it is possible to distinguish different pavement surfaces,
and of different qualities based on vibrations data collected from smartphones. Regarding the
method of dynamic comfort mapping, more detailed research is necessary in order for BIMS
to adopt this method. This study may be seen as a first step towards more objective and
sophisticated methods to collect asset condition data regarding the bicycle environment.
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1 INTRODUCTION

Governmental agencies and researchers emphasizes the necessity to shift more towards a
sustainable urban mobility (European Commision, 2017; Ministry of Infrastructure and the
Environment, 2016; Neirotti et al., 2014; Wefering et al., 2013). The negative effects of high
levels of CO, emissions, noise emissions, and poor air quality have to be regulated and
minimized. The major issue behind these problems is the high level of dependency on the use
of private cars. One way to approach this manner is to encourage alternative transport modes
such as alternative fuel vehicles, carpooling, and cycling (Accenture, 2014). Cycling is, in
contrast to the other transport modes, a healthy, environmentally friendly alternative, which
also contributes towards improving citizens’ quality of life and urban livability, and it
strengthens the economy (Accenture, 2014; European Commision, 2017; Fishman, 2016;
Gossling, 2016; Hull & O’Holleran, 2014). It is an efficient way for urban areas to use expensive
and scarce space in urban areas (Fishman, 2016). Cities are embracing cycling for its potential
to what it brings to a city and many of them are actively working on integrating cycling and
making the urban environment more bicycle-friendly.

However, these promised benefits are unlikely to persuade the society to start cycling. One
important factor, which deems to influence the mode-choice is the perceived level of safety
and comfort of the bicycle in traffic (Heinen et al., 2010; Van Overdijk et al., 2017). A lot of
people are concerned about the safety risks associated with cycling. Gotschi et al. (2016)
mention that these risks “play a greater role for the individual, as they affect crash victims
immediately, and deter potential cyclists from riding”. The perceived level of safety and
comfort is mainly determined by the bicycle infrastructure offered to cyclists (Ayachi et al.,
2015; DiGioia et al., 2017; Fishman, 2016; Schaap et al., 2015; Wegman et al., 2012). Thus,
providing a bicycle-friendly environment, which accommodates safe and comfort bicycling,
can and will increase the attractivness of using bicycles as a significant mode of transport (Joo
& Oh, 2013; Schepers et al., 2017).

From a recent study conducted by Van Overdijk (2016), one aspect in particular of the bicycle
infrastructure seems to be one of the most influential factors of the perceived level of cycling
comfort and safety, namely the pavement surface condition of the bicycle infrastructure. The
pavement surface condition strongly influences the bicycle route-comfort, and thus the
perceived level of safety, as there is an indirect connection between the perceived level of
comfort and safety (Van Overdijk, 2016). Cyclist perceive the pavement surface conditions by
way of bicycle vibrations that are transmitted from the surface. Irregularities and unevenness
due to edges of tiles or cobllestones, tree root damages, sagging, or uneven joints are the
main cause of these bicycle vibrations (Champoux et al., 2007; KOAC WMD, 2002). Thus, a
poor pavement surface conditions manifests itself in terms of vibrations induced to the cyclist.

1.1 PROBLEM DEFINITION

One of the fundamentals for providing bicycle-friendly environments, that accommodates
safe and comfort cycling, is to assess the current network. This in order to determine where
maintenance and/or improvements are necessary (Joo & Oh, 2013). Since pavement surface
conditions is identified to strongly influence route-comfort, assessing the current bicycle
network on these conditions is crucial in order to stimulate people to use the bicycle.
Currently, the basis of assessing the bicycle pavement conditions in order to determine if
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maintenance is necessary, is through visual inspections. Unfortunately, the literature does not
provide adequate information regarding the details of this type of inspection. Therefore, three
interviews were conducted with experts in the domain of road management of bicycle
infrastructure. The interviews provided extra information regarding the policy and frequency
of these inspections, and the decision-making procedure of planning maintenance. The design
structure of the interview can be found in appendix I.

1.1.1 EXPERT INTERVIEWS

The visual inspections are mostly conducted by foot or car driving at crawl speed, and
sometimes even with high definition video footage. The latter is favorable in the case of busy
roads, where the normal inspection approach would lead to obstruction or congestion of
passing traffic. During these inspections, all the road sections (cycle path, footpath, car lane
etc.) of a particular segment are inspected simultaneously. Only with isolated bicycle paths a
focused inspection is conducted. The visual inspections evaluate each road segment on
surface defects (e.g. cracks, raveling, potholes, sagging, tree root damages) by means of
severity and dimensions for each 100 meters. Next, based on the severity and dimension of a
particular damage, a particular maintenance measure is advised.

These inspections however, are not the triggering attribute on the decision if maintenance is
necessary. The final call is made by a road manager. He/she performs a ‘measure assessment’
in which he/she assesses each advised maintenance measure resulting out of the visual
inspections and decides whether or not maintenance measures will be executed. Ideally, each
measure would be executed. However, due to governmental authorities only having limited
funds, priorities must be made about which road has to be maintained first. The reasons for
these priorities can differ per governmental authority. It can for instance that an authority
simply governs that first the main roads with the busiest traffic flows are maintained. It also
can be based on future spatial plans. Thus, overall the visual inspections can be seen as a first
round evaluation indicating which roads need maintenance and what kind of maintenance,
where after the road managers makes a second round evaluation based on his/her limited
funds, priorities and vision.

Furthermore, governmental authorities conduct on average the visual inspection for closed
pavements (asphalt and concrete) once a year and for open pavements (tiles and
cobblestones) once every two or three years. The higher inspection frequency of the closed
pavements is because when there is a damage and it is not intervened at the right moment, it
will result in heavier and more costly maintenance measures, which is less the case with open
pavements.

1.1.2 DETAILED PROBLEM DEFINITION

From the previous section, it can be noticed that the current practice of visual inspections is a
resource inefficient approach for assessing the bicycle pavement surface. These inspections
are costly, as they are conducted at crawl speed, making them are very time consuming and
labor-intensive. In addition, the visual inspection is dependable on the knowledge and
experience of the inspectors, as it is a subjective approach for assessing the pavement surface
conditions. Thus, given the growing interest of using bicycle as a transportation mode, a more
resource efficient manner for obtaining objective asset condition data regarding bicycle
pavement surfaces is needed to be able to maintain and improve the current quality of the
bicycle environment with the limited funds of governmental authorities. This in order to
stimulate people to start using the bicycle.
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INTRODUCTION

The current study therefore proposes a new system for collecting bicycle asset condition data
and is reffered to as ‘Bicycle Infrastructure Monitoring System’ (BIMS). BIMS will collect the
asset condition data on the basis that pavement surface conditions can be manifested in terms
of vibrations transmitted to the cyclist. More specific, the system intends to measure the
bicycle vibrations in order to objectively assess the surface pavement conditions. This
approach is not new, as several researchers already have measured these vibrations to
objectively describe the properties of pavement surfaces (Bil et al., 2015; Holzel et al., 2012;
Olieman et al., 2012). However, they all measured the level of vibrations using Instrumented
Probe Bicycle (IPB), which is a bicycle equipped with multiple sensors that in particular
measures both bicycle position and acceleration. This systems concept aims at using a more
recent fast emerging technique for measuring the vibrations experienced while cycling,
namely the sensors present in modern-day smartphones. Smartphone are currently a
symphony of different sensors capable of measuring valuable data from the physical world
and its intersection with human behavior (Johnston & Robinson, 2015). More and more
researchers are acknowledging the opportunities that arise from using the smartphone
sensors for collectively sensing the urban environment (Allmendinger et al., 2017; Azzoug &
Kaewunruen, 2017; Novakova & Pavlis, 2017).

Furthermore, the system intends to collect the smartphone data from every-day cyclists using
crowdsourcing techniques. Based on the data generated by these cyclists, BIMS will
continuously monitor the bicycle pavement surface conditions. This enables road managers
to schedule maintenance more efficiently and reduce the costs of it, since they will be able to
faster spot poor pavement surface conditions, and act more rapidly on abrupt damages. In
addition, the system uses an objective approach to assess the pavement surface conditions,
which will ensure consistency in the assessment. Moreover, the system also provides
opportunities to obtain more valuable information then only about the pavement surface, like
intensity of traffic flows, sections speeds, or origin-destination information. In the long run
this system will improve cyclists’ perceived comfort and safety levels, as the quality of the
bicycle pavement surfaces will be maintained and even improved. In comparison with the
other similar methods, a great advantage of this system over the other similar methods is that
it uses already available sources to generate the data, which makes it easy transferable in
contrast to acquiring an IPB.

1.2 BICYCLE INFRASTRUCTURE MONITORING SYSTEM

Since this study is a component of a larger concept, this section will provide a more
comprehensive understanding of the total concept of the ‘Bicycle Infrastructure Monitoring
System’ (BIMS). BIMS concept proposed in this study will continuously collect and monitor
asset condition data regarding the bicycle infrastructure’s pavement surface conditions based
on vibration data collected by cyclists’ smartphones using crowdsourcing techniques, for the
benefit of improving cyclists’ comfort and safety levels on the road. The system is mainly
designed to aid road managers in operations and maintenance of their bicycle infrastructure
with its output. Road managers only have to provide the bicycle network and corresponding
quality condition threshold values as input for the system, and it will provide the road
managers with up to date information about the pavement surface conditions of the bicycle
network based on the data collected by cyclists. In addition, the system will indicate which
segments exceed the defined quality condition threshold values. A schematic process
flowchart of the suggested BIMS concept is depicted in figure 1.1.
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Figure 1.1: Schematic process flow diagram BIMS Concept

Fundamental for this system is the manner of how the asset condition of the bicycle
infrastructure is assessed, namely by measuring the transmitted vibrations experienced while
cycling with the cyclist’s smartphones. The vibration data will be collected using a an
application installed on a mobile phone. Using crowdsourcing techniques the data from all the
cyclists participating will be collected. This data is then processed and converted into an index,
indicating the pavement surface condition. In addition, the derived indexes will be linked to
cyclist’s GPS positioning.

The system’s output will not only be valuable for road managers, but also for cyclists. From
the study of Van Overdijk (2016), cyclists appear to rate route-comfort as an important
deterrent of using the bicycle as a transportation mode. Since cyclist perceive route-comfort
primarily by the means of transmitted vibrations and the GPS position is linked to the vibration
data, the system’s output can be used to map comfort levels of cycling routes. This will enable
cyclists to pro-actively plan the most comfortable route to their destinations.

Besides that the system will preserve the high quality of the bicycle environment. It will also
contribute to several other aspects. From an economic perspective, the system will reduce
the cost of operations and maintenance, as it could partly replace the visual inspection of the
bicycle pavement surfaces, and aid road managers to plan their maintenance operations more
efficiently. In addition, instead of developing new expensive resources, BIMS solely uses
already existing resources.

Out of a social perspective, BIMS will promote public participation, as it relies on every-day
cyclist to be the target group for collecting the data. From an environmental perspective, the
system will indirectly contribute to a more sustainable environment. It enhances the bicycle
infrastructure offered to the society which will stimulate them of using the bicycle as a
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sustainable transportation mode. Moreover, if the system would accomplish to replace the
visual inspection, no more vehicular traffic will be necessary for monitoring the bicycle
pavement surface conditions.

1.3 RESEARCH OBJECTIVE

The objective of this study is to create a foundation for BIMS, that is capable of collecting,
analyzing and monitoring asset condition data regarding the bicycle environment’s pavement
surface conditions. In general, the system intends to address the issues related to operations
and maintenance of the bicycle pavement surfaces, which will become more important given
the growing interest of the bicycle as a sustainable transportation mode inside a city. Road
managers will gain the most of a system like BIMS, since it will monitor the bicycle pavement
surface conditions and will help them to faster spot poor surface qualities, to schedule
maintenance more efficiently, and to act more rapidly on abrupt damages to road surfaces.

The main objective of this research is to demonstrate the technical feasibility of the
assessment of pavement surface conditions based on vibration data collected via cyclists’
smartphones for BIMS. This report therefore first evaluates the current quality of modern-day
smartphone sensors in order to ensure that the current quality is sufficient for BIMS, and since
few is known about the accuracy, sensitivity and consistency of smartphone sensors. Next,
this study proposes a method for the assessment and proves its feasibility. Furthermore, this
study aims to present of what can be achieved using big data of available resources and the
opportunities that arise with it, instead of continuously developing new resources.

1.3.1 RESEARCH QUESTIONS
Out of the problem definition and research objectives resulted the following main research
question:

“Can the pavement quality be indicated with a set of individual vibration measurements
using internal smartphone sensors, and is it possible to convert these measurements into a
surface quality index, for the benefit of collecting asset condition data regarding the bicycle
pavement quality?”

In order to support the main research question, the following sub-questions have been
defined:

1. How is pavement and its condition related to cyclists’ level of comfort and safety
according to literature?

2. Which factors influence the vibrations transmitted from the pavement surface to
the cyclist?

3. What is the current practice for assessing the bicycle environments’ pavement
surface condition?

4. What are state-of-the art bicycle monitoring technologies for collecting asset
condition data regarding the bicycle environments?

5. How reliable is the smartphone as a data collection tool for BIMS?
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6. What are the benefits and drawbacks of the smartphone-based vibration
measurement for determining the pavement surface condition compared to the
current practices?

7. How can the results of this research be implemented in operations and
maintenance plans of road managers?

1.3.2 LIMITATIONS

The scope of the BIMS introduced in this research is limited to assess and monitor the bicycle
environment on pavement surface conditions. If the assessment of the pavement surface
conditions is combined with other aspects concerning the perceived levels of comfort and
safety of bicycle infrastructure (e.g. traffic volumes, driving directions, presence of median
barriers, etc.), a proper and total assessment can be conducted of the bicycle environment.

Furthermore, this study particularly is limited to only investigating the assessment component
of BIMS. In addition, this study is limited to the assumption of cyclists’ smartphones being
located in their trousers. In practice this location might differ per cyclist, or even per trip.

1.4 RESEARCH DESIGN & THESIS OUTLINE

The literature study that is conducted in order to gain knowledge about the research subject
and associated aspects is described in Chapter 2. A clear overview of the outcomes of previous
studies and experiments will be provided. This review will serve as an inception report prior
to the further development of this study and it will be used to answer the first, second, third
and fourth sub-research question.

In chapter 3 the research approach of this report is discussed. The aspects, as a result of the
literature review concerning bicycle monitoring technologies, are used to design a more
detailed process flow diagram for BIMS than the diagram depicted in figure 1.1 of section 1.2.
This diagram will provide a more comprehensive understanding of the systems’ underlying
concept by addressing all the sub-processes involved in the system. The research approach
will discuss the cycling comfort assessment method, which is intended to be employed by
BIMS. The method is based on the dynamic comfort mapping method introduced by Bil et al.
(2015). Due to one principal difference of data to be collected via smartphones located in
cyclists’ trousers instead of an accelerometer mounted to the bicycle, the method needs to
be adjusted on multiple aspects. These aspects are covered in the research approach.
Furthermore, this chapter discusses how the method of dynamic comfort mapping is
researched and tested, as the new aspects affect its outcome in some sort. This study
researches BIMS assessment component on the basis of two studies.

First a case study is conducted to examine if the current sensor quality of smartphones is
sufficient to be used as data collection tool for the cycling comfort assessment method. The
total design, execution and results of the case study will be discussed in Chapter 4 of this study.
The outcome of the case study is used to answer the fifth sub-research questions. Next, a field
experiment is conducted in order to prove the feasibility of using the dynamic comfort
mapping method based on data collect via smartphones. In chapter 5 of this report the
elaboration of this field experiment is described. The experience gained from this experiment
together with the acquired knowledge of the literature review are used to answer the sixth
and seventh sub-research question.
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Chapter 6 presents the conclusion, discussion and recommendations of this study. In the
conclusion the main and sub research questions are answered based on the findings of this
study. Next, the discussion critically evaluates the cycling comfort assessment method on
multiple aspects. In addition, the case study as well as the field experiment are evaluated on
elements which could have been done better or differently. Finally and foremost, this report
presents the recommendations regarding future research topics as well as recommended
future practical developments concerning BIMS.

The stages presented in this report provide an excellent workflow of handling and processing
information for this report, and the overall outcome provides a strong foundation for further
development of the proposed BIMS concept.
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2 LITERATURE REVIEW

2.1 INTRODUCTION

For several years now, there has been a growing interest of making urban environments more
bicycle-friendly to encourage their residents to cycle (Fishman, 2016), as a lot of cities are
struggling with severe problems resulting from the high levels of motorized traffic (Docherty,
2003; Fishman, 2016; Gossling, 2016; Lyons, 2016; Pucher et al., 2010). As a logical result, this
will lead to an increase in topics concerning bicycle asset management (Calvey et al., 2015).
One major part of this is the maintenance and operations of bicycle pavement surfaces. As a
strong knowledge bases for this research as well as for future research, this chapter provides
a review of the current literature concerning the collection of asset condition data of bicycle
tracks’ pavement surfaces and related aspects. First, relevant studies are reviewed with regard
to the influence of pavement on cyclists’ comfort and safety levels, followed by studies with
regard to the vibrations experienced as a cyclist. Next, an overview is provided of recent
bicycle monitoring technologies for the benefit bicycle asset management. This chapter will
end with a general conclusion of the findings in the literature review.

2.2 PAVEMENT CONDITIONS

This section will narrow down the scope from comfort and safety aspects of bicycle
infrastructure to the importance of pavement conditions on not only safety and comfort
aspects of cycling, but also on route choice behavior. First, a brief explanation will be
presented on the factors influencing the choice of pavement type by road managers.

2.2.1 ASPECTS INFLUENCING PAVEMENT CHOICE

As is well known, asphalt and concrete are the most comfortable pavements to cycle on, it
provides the smoothest ride. So why aren’t all bicycle paths finished with an asphalt or
concrete pavement? A study by Kiwa KOAC, a Dutch testing and consultancy company in the
field of mobility infrastructure and former KOAC WMD (2002), presented the factors
influencing the pavement choice by road managers. According to this study, a road
designer/manager determines his/her choice of pavement type on more aspects than the
user-preference, or in this case the cyclist. The costs associated with the construction,
management and maintenance play an important role in the decision process, which is mainly
affected by the load bearing capacity and sediment sensitivity of the subsurface, and the
traffic load. Moreover, road managers should also take maintenance vehicles, emergency
services and crossing heavy traffic into account. Furthermore, the pavement choice must fit
within the sustainable policies of the Netherlands, the risk of damage caused by tree roots
should be considered, and the possible presence of underground systems, such as sewers,
cables and/or pipelines. Finally, the aesthetic aspects might also be of influence, for example
in the case of historic centers. In this case, more traditional pavements (e.g. cobblestones) are
preferred as they better fit in the environment.

2.2.2 PAVEMENT IN RELATION TO COMFORT

Holzel et al. (2012) mention in their research on cycling comfort on different road surfaces
that bicycle infrastructure must offer comfortable cycling, which requires smooth rolling at
the lowest possible energy input. They state that the roll smoothness of a bikeway is related
to the rolling resistance which is strongly influenced by the pavement surface type and in
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which condition it is. For instance, a brick road is much rougher than an asphalt road, and thus
will have a higher rolling resistance, which stands for higher energy inputs. The higher energy
inputs will have a negative influence on comfort levels. A simple example, cyclists in general
do not like to ascend a slope due to the high energy input it requires. Hotze et al. (2012)
investigated the effects of four different road surfaces (asphalt, concrete slabs, cobblestones,
self-binding gravel) on cycling comfort. They included hardly used surfaces, and worn surfaces
which really needed maintenance. Some main conclusions of their research are that asphalt
is the most comfortable surface to cycle and concrete slabs is a good alternative. Another
conclusion was that the riding quality or comfort is negatively linear dependent from
increasing velocities, meaning that with increasing velocities the ride quality decreases. Similar
results are observed in the Studies of KOAC WPM (2002), Niska and Sjorgen (2014), and Ayachi
et al. (2015). However, the study by Niska and Sjorgen (2014) revealed that cyclists found a
gravel surface more comfortable than concrete slabs, even if the gravel surface was more
uneven. Cyclists indicated that the persistent rhythmic vibrations due to the concrete slab
joints were experienced as uncomfortable.

A recent study by Blauw (2016) commissioned by the ANWB on recreational biking in the
Netherlands examined how recreational cyclists experience their trip(s) in the Netherlands.
This research presents several improvements for the bikeways in Utrecht in the field of safety
and comfort. 49% of the participating cyclists indicated the comfort of the bikeways as a point
of improvement. This involves in particular bumps, tree roots, holes and pits in the road
surface. Note that this only include the recreational cyclists and their trips account for 21% of
all trips made by bike (Schaap et al., 2015). Utilitarian cyclists might evaluate comfort less
important, because the bicycle is mainly used as a transport mode to ride from A to B, and
where recreational cycling is more about the comfort, ease and environment of cycling. Kang
& Fricker (2013) acknowledge this statement by indicating in their literature review that
bicyclist’s preferences for their bike trip differ according to their purpose (e.g., recreation vs.
commuting), riding skill (e.g., experienced vs. inexperienced) and sex.

Calvey et al. (2015) conducted a research on cyclists’ perceptions of satisfaction and comfort.
They state that comfort is a subjective term as individuals evaluate what comfortable is or not
based on their own opinion. The personal comfort is in relation to cycling infrastructure
directly affected by how important they rate particular variables. For instance, if an individual
considers the pavement condition to be extremely important when they cycle, then ultimately
the bikeway quality will affect how comfortable they feel when cycling. One crucial finding out
of the research of Calvey et al. (2015) on user importance and comfort perception in relation
to cycling infrastructure was that the two most important variables (‘Path is free from debris’
and ‘Path is free from surface defects’) are both maintenance issues and thus related to
pavement conditions.

Where Calvey et al. (2015) describe comfort level more as a subjective term, KOAC WPM
(2002) describe it more as an ’intrinsic’ property of the pavement type. They support this
statement by indicating that the same ranking of the pavement types is observed when
considering damages to the surface as when considering no damages to the surface. Although,
the differences between the open and closed pavements slightly decreases, meaning that the
comfort level of closed pavements proportionally deteriorate more due to damages than open
pavements.
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2.2.3 PAVEMENT IN RELATION TO SAFETY

Pavement conditions is at first sight associated with cyclists’ comfort due to the transmitted
vibrations. However, it could also play an important role on cyclists’ safety as the organization
Bicycle Network (2017) indicates on an article on their webpage about surface smoothness.
When riders are exposed to extreme vibrations due to undulations, bumps and/or rough
surfaces, it can get hazardous for cyclists directly. For instance, riders can lose control of their
bike due to these extreme vibrations and crash, or they could be forced to ride elsewhere on
a less safe (and less comfortable) bikeway. Another consequence of poor pavement conditions
is that riders sometimes avoid these paths by cycling on the road instead of the designated
bike-part (in mixed traffic situations), which increases the risk of being hit by a motorized
vehicle.

According to Ormel and Schepers (2009) 74% of all bicycle accidents are single-bicycle
accidents, which are accidents where no other road user is involved (e.g. falling off a bicycle,
hitting a pothole or leaving the road). Almost half of these single-bicycle accidents is partly
caused by infrastructure (e.g. collisions with sidewalk, slippery surfaces, gutters, slots, poles
and pits) (Schepers, 2008). In addition, a research conducted by the Dutch organization
VeiligheidNL (2012) on bicycle accidents in the Netherlands in which they try to get more
insight in the nature, size, underlying causes and the consequences of bicycle accidents, they
found that approximately 30% of the accidents is partly caused by the road conditions.
Moreover, the proportion of accidents caused by road conditions due to poor road conditions
is 22%.

Another interesting finding was recently made by Baetslé and Poorter (2015) at the University
of Gent. They researched the influence of pavement quality on the viewing habbits of kids and
adults. According to this research, it appears that cyclists cycling on a poor quality bikeway
look on average 63% of the time at the surface, which is more than twice as much than a
bikeway of good quality. Although paying attention to the road sounds good at first sight, it
also means that cyclists pay much less attention to other road users. This can lead to
hazardous situation to be noticed later, or even too late, by cyclists.

2.2.4 PAVEMENT IN RELATION TO BICYCLE USE

Some studies investigated the deterrents of using the bicycle as a transportation mode and
found some interesting findings on the relation between pavement and bicycle use. A study
by Parkin et al. (2008) on bicycle determinants for cycling to work found that pavement quality
was negatively correlated with the number of residents in an area cycling to work. The higher
the defects of a pavement score, the lower the cycle proportion to work. This confirms the
view that poorly maintained roads are a deterrent to cycling. Parkin et al. (2008) uses the same
clarification as Holzel et al. (2012) for this phenomenon, namely that cycling on a poorly road
surface is less pleasant and also takes a greater amount of energy to traverse. Another study
by Winters et al. (2011) on motivators and deterrents of bicycling found that unsafe surfaces
have a strong deterrent effect when deciding to cycle. They also state that cyclists are more
likely to use the bicycle due to good road surfaces. Thirdly, a study by Transport for London
(2008) on business case on cycling in London found that after resurfacing a bikeway, the
number of cyclists doubled. Hence, as Transport for London (2008) also notes, this increase is
partly due to the total growing share of cyclists in London.
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2.2.5 PAVEMENT IN RELATION TO ROUTE CHOICE BEHAVIOR

At first, it was assumed that cyclists always choose the shortest route, though more recent
literature emphasize that comfort aspects regarding cycling should also be taken into
account (Heinen et al., 2010). Out of these comfort aspects the effect of pavement
conditions have for long be neglected on route choice behavior of cyclists (Heinen et al.,
2010; Landis, 1994). However, recent studies have presented evidence of the importance of
pavement conditions on cyclist route choice behavior (Landis et al., 1997; Pucher et al.,
2010; Van Overdijk, 2016; Van Overdijk et al., 2017). The bad condition of a bikeway is a
deterrent for a cyclist to ride on it, because the lack of suitable surface for cycling decrease
the sense of security, which forces the cyclists to choose an alternative route (Segadilha &
Sanches, 2014).

Van Overdijk (2016) recently conducted a study on the influences of comfort aspects on route-
and mode choice decisions of cyclists in the Netherlands. Where many literature articles
emphasize that travel time as the most important route-choice aspects (Stinson & Bhat, 2003),
illustrates van Overdijk (2016) that several other comfort aspects were found to be more
important and influential on route-choice behavior. At first, the presence of a cycling facility
was most important, followed by a smooth pavement. Moreover, this research shows that
cyclists are prepared to choose a 4 minute longer route on a trip of 15 minutes for a higher
quality pavement. Stinson and Bhat (2003) found that travel time to be most important,
Although they added that separate paths, smooth pavements and less crossings were
preferred.

2.3 VIBRATIONS EXPERIENCED AS A CYCLIST

The pavement conditions also influence the ‘ride’” or ‘trip’ quality of a cyclist in terms of
transmitted vibrations. Giubilato and Petrone (2012), and Bil et al. (2015) confirm this by
stating that cyclists perceive the pavement conditions by way of bicycle vibrations transmitted
from the surface, and that this is among the most important causes of discomfort. As
vibrations increases, comfort decreases. The characteristics of the bike (e.g. mass, tire
pressure, stiffness and suspension of frame, suspension saddle) determine to which extent
the vibrations are transmitted to the cyclist’s body due to irregularities in the road (KOAC
WMD, 2002).

2.3.1 DYNAMIC COMFORT

Champoux et al. (2007) established two different definitions of road bike comfort to
discriminate between two types of comfort, namely ‘static comfort’ and ‘dynamic comfort’.
Static comfort is related to a person’s perception of the bike at rest, such as the bike size or
selection of proper components (e.g. saddle, shape handlebar, etc.). It also refers to
positioning and the flexibility of the cyclist, and his or her ability to adapt. On the other hand,
dynamic comfort relates to the perceived vibrations transmitted towards the cyclist. Most
studies focused on the dynamic comfort since it is related to the transmitted vibrations which
can be a significant cause of discomfort (Champoux & Drouet, 2012; Lépine et al., 2014, 2015;
Wojtowicki et al., 2001).

However, most of the previous studies were specifically analyzing the influence of design
components on the vibration level perceived by the cyclist, and in addition, helping
manufactures in designing better bicycles frame materials to improve cyclist’'s comfort
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(Vanwalleghem et al., 2012). Some examples are the insertion of rubber into the frame,
application of a frame material with a higher damping capacity, or implementation of flexible
zones in the frame. Although it should be noted that most of these design improvements are
applied to racing bicycles. These are all attempts to improve shock (vibration) absorption
capacity of the bicycle. Other studies tried to develop force transducers (e.g. instrumented
pedals, stems and seat posts) or excitation techniques, which are mainly studies that try to
understand and measure the vibrations induced to the cyclist (Lépine et al., 2015). In addition,
the latter two subjects support the research on bicycle characteristics that could reduce the
vibrations induced to the cyclist.

2.3.2 THEENTITY OF VIBRATIONS

Thus besides an irregular road surface, the bicycle also plays an important role in the entity of
the vibration transmitted while cycling. According to Giubilato & Petrone (2012), the
transmission of vibrations depends on geometry, mass, inertia and structural characteristics
of bicycle components, such as frame, seat post, saddle, fork, stem or handlebar. Hence the
large proportion of research regarding the improvement of improve bicycle components on
cycling comfort. Vanwalleghem et al. (2012) conducted a study on the evaluation of bicycle
dynamics and its relation with cyclist’s comfort. They found that out of the three locations a
cyclist makes contact with the bicycle (handlebar, saddle and pedals), the most discomfort is
experienced near the handlebar and the saddle when riding over a rough surface
(Vanwalleghem et al., 2012).

Vibrations are oscillatory motions, which can occur in different forms. Currently there exist 3
different metrics in the literature to quantify the vibration induced to a cyclist: acceleration,
transmitted force and adsorbed power (Pelland-Leblanc et al., 2014). All three are adequate
to evaluate comfort when cycling, although acceleration is the most frequently used (Giubilato
& Petrone, 2012; Olieman et al., 2012). It is also used in the whole-body vibration standards,
such as 1SO02631, ISO5349 and BS6841. These standards relate comfort to the acceleration
level at the contact points between man and machine (bicycle) near the feet, seat-surface and
back, only ISO5349 is for hand-arm vibrations. The vibrations are simply evaluated based on
the higher the accelerations, the less comfort the human encounters. According to Van den
Berg and Groenendijk (2009), the human body is very sensitive to vibration in the range of 3
to 16 Hz. Lower or higher frequencies are more easily tolerated.

2.3.3 ROAD TRANSMITTED VIBRATIONS

As already discussed, the aim of most studies is to define the properties of bicycle
components, or to investigate the effect of vibrations on cycling performance. However,
studies examining the vibrations that road surfaces transmit towards cyclist is scarce. Section
2.3.1 already discussed the studies of KOAC WPM (2002), Holzel et al. (2012), and Niska and
Sjorgen (2014) in which it was concluded what the most comfortable pavements are. These
studies however base their analysis on the vibrations properties of these pavements types,
meaning that the pavements are characterized by the amount vibrations they transmit to the
cyclist. More specific, these studies measure the amount of vibrations a particular road surface
transmit to the cyclist, which subsequently are used to characterize the level of comfort. The
more vibrations are transmitted, the less comfort is experienced.

Champoux et al. (2007) defines that there are two typical road pavement issues that cause
two different types of excitation (vibration energy transferred to the rider), namely cracked
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roads and coarse roads. A cracked road contains cracks, tree roots and/or potholes which are
sufficiently spaced to allow the transmitted vibration of the bike to (mostly) vanish between
events. The excitation from a cracked road can be considered as a series of successive impacts.
A coarse road, on the other hand, transmits a continuous random excitation to the bike. This
includes asphalt, concrete or cobblestone roads with a rough but uniform surface structure.
Kiwa KOAC, former KOAC WMD (2002), uses a similar approach where the cracked roads are
referred to as irregularities and unevenness due to edges of tiles or cobblestones, tree root
damages, sagging, uneven connections, traffic threats and so on. And the coarse roads is
referred to as the texture or roughness of the pavement type, such as the broom structure of
concrete or surface texture of asphalt, cobblestones or concrete tiles. Another road pavement
condition can be added based on the study of Niska and Sjorgen (2014). As already discussed
in section 2.3.2, a persistent rhythmic vibrations due to slab joints are considered
uncomfortable. The excitation of this kind of road characterizes itself as persistent and
rhythmic.

2.4 BICYCLE MONITORING TECHNOLOGIES

Closely linked to these pavement issues (cracks, potholes, sagging, roughness etc.) is the
operations and maintenance of cycling tracks pavement conditions (Pucher et al., 2010).
Calvey et al. (2015) is one of the few which investigated respondents altitude regarding issues
related to the cycle path surface in the form of a survey. They found that overall the issues
that are directly linked to the pavement surface which could have been prevented with proper
maintenance (e.g. roughness, potholes, root damage, broken up surface), appear to be of
greater importance for cyclists. Respondents appeared to find general maintenance and
upkeep to be important.

The current method of assessing cycle-path pavement condition in order to decide if
maintenance is necessary is through direct visual inspections (Calvey et al., 2015;
Douangphachanh et al., 2013). These inspections are costly and subjective as they are very
time consuming and labor-intensive. Several researchers emphasize the need for more
intelligent (smart) manners for the acquisition of asset condition data regarding cycling
infrastructure and pavement quality (Bil et al., 2015; Joo & Oh, 2013; Yamaguchi et al., 2015).
Especially since the importance of bicycle transportation is increasing.

There has been a lot of attention paid to the acquisition of asset condition data regarding
infrastructure such as motorways, railways and trunk roads, but almost no attention has been
paid regarding cycling infrastructure and pavement quality (Calvey et al., 2015; Pucher et al.,
2010). For vehicular traffic there exist various traffic monitoring and surveillance technologies,
and procedures to collect asset condition data, which provide useful information and data to
the governmental agencies for operation and maintenance planning and design purposes
(Pearson, 2012). For instance, highway managers established methods, procedures and
associated equipment to collect skid resistance, surface roughness and deflection data. Again,
such extensive methods for monitoring and collecting asset condition data regarding cycling
facilities are either not available, or not at one’s disposal due to high costs of such methods or
equipment (Mohanty et al., 2014).
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2.4.1 SENSOR TECHNOLOGIES FOR INFRASTRUCTURE

One opportunity that arises to respond to this underdeveloped domain is with currently
available sensor technologies. The use of sensors and detection technologies in civil
infrastructure is a growing subject in recent literature due to rapid transformation of sensors
into high-performance measurement devices capable of measuring, gathering, and recording
data about the environments in which the devices find themselves (Wang et al., 2014). The
availability of powerful new sensors have helped the society with verifying design
assumptions, tracking structural performance over a structure’s lifecycle, and rapidly
identifying unsafe structural conditions originating from damage and deterioration. Wang et
al. (2014) describes that the adoption of sensing systems to monitor infrastructural project
has undergone three phases: First sensors were used in case studies to assess structure with
revolutionary design concepts; Next, sensors were used more widely to monitor structures
exposed to extreme loads to determine structural performance; and currently, the sensors
are used to generate reliable data to assess the structural health of a system monitored, such
as a bridge, road, pipeline, dam, or other vital sources.

The latest advances of sensor technologies are at the beginning of being applied in civil
infrastructure, construction, and maintenance. The current strategies of evaluating roadway
conditions is through localized visual inspections, which are as discussed time consuming,
labor-intensive, and highly subjective, and, in addition, are not performed regularly, require
traffic blockage to execute (Mednis et al., 2011; Mohan et al., 2008; Wang & Birken, 2014).
These strategies are not suited for the current need and are causing problems in scheduling
and implementing maintenance and repair operations. Wang & Birken (2014) describes this
need as the critical need to make the right roadway repairs in the right place and at the right
time. The advancing sensor technology offers a great opportunity to cost-effectively monitor
the roadway condition of a road network system, and, in addition, provide up-to-date
information for maintenance activity prioritization. It can be expected that besides the need
for cost-effective and efficient monitoring and maintenance techniques for road network
systems increases, it will also increase for bicycle network systems, since bicycle
transportation is globally increasing.

One technology on which the advancing sensor technology is applied are Instrumented Probe
Bicycles (IPB), which are simple bicycles equipped with sensors able to measure and collect
data about bicycle-related subjects (Mohanty et al., 2014). The bicycles can be equipped with
sensors like bicycle position, acceleration, potentiometer, lateral distance sensor, a laser
pointer or a camera (Bil et al., 2015). The IPB as research tool is an emerging technology in the
bicycle-related research, and can be applied on a large variety of research domains. It can be
applied to estimate bicycle or cyclists’ behavior, to monitor or evaluate bicycle environments
or to assist in developing prediction models for bicycle safety, comfort or mobility. The next
part of this section will discuss three examples which use the recent sensor technologies and
IPB’s for their research (see table 2.1).

The first study of Olieman et al. (2012) focused on the vibrations by bicycle, which is also called
the dynamic comfort (see section 2.3.1). They measured the level of vibration at four places
on the bike (front wheel axel, rear wheel axel, stem and seat post) using accelerometers.
These places where strategical chosen to measure both the input and output of the frame and
fork, to then establish a transfer function. It seems that the vibrations are distributed in less
than 5 milliseconds through the frame. Additionally, it was also investigated to which extent
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the vibrations induced to the bicycle where affected by the road surface, speed, wheels and
tire pressure. Their research shows that road surface has a significant impact on the vibrations
induced to the bicycle, as expected. Asphalt being a smooth surface transmits less vibrations
than a rough small cobbles. Furthermore, increasing speeds seems to proportionally increase
the transmitted vibrations, thus reducing comfort. Almost the same applies to increasing tire
pressures, with the exception that this influence seems to be asymptotical. Different
wheelsets did not seemed to affect the entity of the vibration, which is contrary of the general
belief.

Table 2.1: Example studies using recent sensor technologies and IPB's

Authors Sensors Utilized Application
(Olieman et al., 2012) Accelerometers Testing dynamic comfort bicycle
GPS receiver, Accelerometer, Evaluation of bicycle environment in

h, 201
(o & O, 200815} and Gyro-sensor terms of safety and mobility

Objectively describing vibration

(Bil et al., 2015) GPS receiver and Accelerometer .
properties of pavement surfaces

The second study of Joo & Oh (2013) proposed a novel method to monitor the bicycle
environment with an instrumented probe bicycle (IPB) equipped with a GPS receiver,
accelerometer, and gyro sensor. An IPB is in this study defined as a common bicycle equipped
by several technologies which measure both bicycle position and acceleration. Other sensors
which are often included are a potentiometer, a lateral distance sensor, a laser pointer and/or
a camera (Bil et al., 2015). Next, the data generated from the IPB is used as input for the
method to evaluate the performance of the bicycle environments on safety and mobility, and
to translate it to a bicycling monitoring index (BMI). The safety is defined as a cycling stability
index (CSI) which is derived from multiple predictors from the IPB data and from the perceived
safety data obtained from a questionnaire. The mobility performance is simply expressed in
speed and is derived from the GPS receiver. The index from both the safety and mobility is
than expressed in a BMI by applying a fault tree analysis (FTA). Finally, the method was applied
to demonstrate the feasibility of the implementation. The intention of Joo & Oh (2013) was to
incorporate the method/software in public bicycle sharing systems, especially since the most
recent bicycle-sharing systems have smart technologies included. In addition, they state that
the method is capable of providing more valuable information besides the BMI, such as bicycle
counts, section speeds, origin-destination information, hazardous segments and poor
segments. However, more extensive analysis and input data is needed to derive more reliable
BMI values.

Bil et al. (2015) conducted a study of a new method of objective bicycle vibration
measurements to describe the vibrational properties of different pavement types. This study
was a follow up of another study of Bil et al. (2012) that proposed a method for cycling-track
mapping, which has been applied to the Czech cycling trails. The objective of the new method
was to contribute to the current cycling-track mapping by adding a robust and objective
vibration measurements in the form of dynamic comfort index (DCl), which is able to spot local
extremes as well as aggregated values of a segment. The DCl is calculated per second from the
measured values of acceleration. These values, or vibration data, are measured with an
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accelerometer attached to the front fork of the bicycle. Next, a GPS receiver is used to
determine the movement and position of the bicycle so the DCI can be linked to the GPS
position. With this geo-referenced data it is possible to map the DCI. Bil et al. (2015) also
researched to which extent the DCl values are dependent on cyclist’s speed and bicycle type,
and if the DCI values matched the subjective comfort evaluation of cyclists. First, increasing
cyclist’s speed was found to negatively influence the DCI values and the overall range. They
therefore decided to maintain a speed of 15 km/h as standard for the measurements.
Secondly, three different bicycles (mountain, racing and touring bicycle) were tested and it
did not appeared to significantly influence the DCI values. Lastly, a close relationship was
found between the objective DCI and the subjective comfort evaluation of cyclists. A major
benefit of this method is that it is effortlessly transferable in contrast to the present-day IPB,
which is an advanced piece of technology that can be rather complicated and expensive to
reproduce. Another advantage of this kind of approach is that it is objective and therefore
does not rely on individuals, as the current visual inspection does.

2.4.2 CROWDSOURCING TECHNIQUES FOR INFRASTRUCTURE

Another opportunity which can easily be combined with the latest sensor technologies is the
use of crowdsourcing techniques. Crowdsourcing is a relative new term, being firstly
introduced by Jeff Howe (2006) in a Wired magazine Article. Jeff Howe defined crowdsourcing
as ‘a company or institution taking a function once performed by employees and outsourcing
the work through an open call to online communities’. A perfect early example is Treadless,
which had the basic idea to put out some defined work to a community and then the
community members are able to compete to win the project (Nehls, 2015). There are many
more examples in which individuals compete to provide ideas, solutions and/or information
to important business, social, policy, scientific and technical challenges (Brabham, 2013).

Over the years crowdsourcing has emerged to be used in multiple applications. One more
recent one is using the concept of crowdsourcing for the acquisition of information or input
related to infrastructure voluntarily from (local) (road)users (Migue Figliozzi & Blanc, 2015). In
many cases smartphone applications are used to ‘crowdsource’ information about
infrastructure maintenance, enforcement requests, and safety issues. The next section will
review several recent examples of platforms for crowdsourcing data, and are outlined in table
2.2. Note that the examples will be restricted to crowdsourcing platforms related bicycle
infrastructure.

Table 2.2: Example studies using crowdsourcing platforms to acquire data regarding bicycle infrastructure

Year of Initial Deployment
Name . . Source
Introduction Location
ORcycle 2014 Oregon (Miguel Figliozzi, 2015)
Fiets Telweek 2015 The Netherlands (Scheper et al., 2016)
PING 2017 Brussels (Bike Citizens & Mobiel 21, 2017)

ORcycle was released in November 2014 and makes use of a crowdsourced platform on which
citizens of Oregon can voluntarily provide bicycle-related safety reports about their bicycle
infrastructure. The reports contain feedback regarding crashes, safety, or infrastructure
issues. The app offers several options to describe the safety problem, such as ‘pavement
condition’, ‘narrow bike lane’, ‘high traffic speed’, and ‘parked vehicles’. A user may also
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upload a photo to clarify the situation. Besides the safety reports, the app will also record and
display your bicycle trips. Since its release, ORcycle has collected over 400 safety reports from
citizens all over the state of Oregon (Blanc & Figliozzi, 2017). The Oregon Department of
Transportation (ODOT) collects and handles these safety reports, and are published in an
online mapping application available to all the public on the ORcycle website. Transport
planners of Oregon state use this application to better design and upgrade bicycle facilities.

The Fiets Telweek originating from the Netherland had as objective to collect as much data as
possible in a week about the bicycle movements in the Netherlands and to visualize the bike
network. Since 2015, the Fiets Telweek event has been organized once a year. During this
week, people could easily contribute to this project by just downloading the application prior
to the week, and to let it record their bicycle trips. This project was (legit) titled as ‘The Largest
Bicycle Research Ever In The Netherlands’ (Scheper et al., 2016). The first week resulted in
approximately 38.000 active participants which together cycled almost 400.000 bicycle trips.
These trips accounted for more than 1.2 million bicycle-kilometers and were visualized in an
online mapping application. The data of these weeks gives governments, for example, the
ability to pinpoint bottlenecks in their environment, evaluate the construction of a new
bikeways, or to better balance bicycle-related measures that promote bicycle traffic. This
project was the first step for the Netherlands to a new level of bicycle monitoring.

PING is a recent introduced crowdsourcing engagement commissioned by Bike Citizens. Bike
Citizens is a company founded in 2011, and started business with a simple bike navigation app
and smartphone mount. Nowadays, the company focuses more on cycling promotion, app
technology, and data analysis for cities. The PING-project is for the first time introduced in
Brussels as a pilot-project. The project gives the ability to citizens to directly mark unsafe or
unsatisfying traffic situations by pushing their PING button, which is a simple Bluetooth-
enabled device that maps the marked spots indicated by the user. When cyclists have reached
their destination they can give feedback on their marked PING points in the Bike Citizens app
by matching it with different categories, such as road surface, sight, infrastructural design,
traffic light etc.. Finally, the marked locations and feedback are reviewed and set to be
analyzed. The project started with a pilot of 1,000 citizens of Brussels that all received a PING
button.

2.4.3 SMARTPHONE SENSOR TECHNOLOGIES FOR INFRASTRUCTURE

Another emerging and relatively new technique which can easily combines the new sensor
technologies and crowdsourcing techniques, is the smartphone. The modern day smartphone
includes different sensors capable of measuring valuable data from the physical world and its
intersection with human behavior (Johnston & Robinson, 2015). Each new model of
smartphone contains more sensors than its older versions raging from barometers to
luxometers. Johnston & Robinson (2015) describe in their online article about the opportunity
of applying ‘sensor repurposing’ in smartphones, meaning that sensors are repurposed from
their original purpose in a phone. For instance, the battery temperature sensor can be used
to measure outdoor ambient temperature when combining data from many devices (Fitchard,
2015). The great advantage for researchers to use sensor repurposing is that it can reduce the
capital expenditures drastically, as it allows repurposing of existing sources (sensors) instead
of investing and deploying new ones.
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Research regarding smartphone sensors is not entirely new. However, the focus has mainly
been on activity recognition (Bayat et al., 2014; Botzheim et al., 2013), and not on using these
sensors as advanced measuring tool. Yet, researchers do emphasize the great potential of
using these sensors to infer information (Akhavian & Behzadan, 2016). Especially since almost
all individuals in the modern day world carry a smartphone on a daily basis. This is confirmed
by Johnston & Robinson (2015) stating that crowdsourcing techniques allow these scaled
networks to be built. Smartphone users will be able to form a part of a social laboratory, acting
as surveyors that constantly record data about the environments they find themselves.

Recording data about the conditions of bicycle infrastructure is an example of what is capable
with smartphone sensors and crowdsourcing techniques. This section will provide a review of
the studies which use the smartphone as an measurement tool to gather and record data
related to the condition of bicycle infrastructure, or more specifically the pavement
conditions.

The first study is conducted by Kobana et al. (2014). They propose a method to detect road
damage by cyclists equipped with a smartphone positioned in their trousers. The purpose of
this study was to reduce the cost of maintenance by introducing a new method of detecting
road damages. Due to the positioning of the smartphone in a cyclist’s trouser, the collected
acceleration signal can be categorized in the vibrational signal due to the road condition and
the pedaling signal due to the movement of the cyclist. An Independent Component Analysis
(ICA) is applied to the raw acceleration data in order to separate the vibration signal from the
pedaling signal. Such an analysis is a computational method for estimating source signals from
multiple mixed signals. The higher frequency signal from the road can be distinguished from
the pedaling signal with this analysis. After the road signal is extracted, the road signal is
classified in one of the four road conditions with an algorithm.

The second study is conducted by Niska & Sjogren (2014) for the Swedisch Transport
Administration (VTI). Their intention was to use the technology present in smartphones and
crowdsourcing techniques to gather data from cyclists using the bicycle network, in order to
indicate the smoothness/evenness of the pavement surface. A mobile application developed
by the VTl is evaluated in this study focusing on repeatability and practical usefulness, mainly
through field studies. One important difference with the study of Kobana et al. (2014) is that
in de study of Niska & Sjogren (2014) the phone is attached to the handlebars. Their field
studies show different acceleration values varying from one measurements to another
however, based on these values, it is possible to distinguish between different pavement types
and quality. Another finding from this study is that it is hard to capture local irregularities since
the measurements highly depend on the cyclist’s lateral positioning on the cycle path. The
results of the field studies were also compared to cyclist’s subjective comfort in relation to
surfacing, and the measurements in general correspond to cyclists opinion. Based on this
comparison, an classification was made indicating the level of comfort. Acceleration values
above 0.75 are indicated as uncomfortable (red level), values lower than 0.5 as comfortable
(green level) and in between as neutral (yellow level). However, the results showed to be
affected by speed, phone type, tire pressure and cyclist weight to be influencing the
acceleration values.
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The third and last study is conducted by Yamaguchi et al. (2015). This study proposed and
developed, just like the previous two, a smartphone based system to estimate the road profile
by only measuring the vertical acceleration values of a city cycle. The road profile is estimated
as the vertical displacement of the tire. Yamaguchi et al. (2015) apply a slightly different
approach to their measuring system than Kobana et al. (2014) and Niska & Sjogren (2014).
Besides using a smartphone attached to the handlebars, a cyclometer, also known as a bicycle
computer, is included that enables them to track and measure a cyclist’s performance while
cycling. For this study, the cyclometer is used to calculate the running distance with more
accuracy and smaller error than distance estimation based on GPS data. The study first
examines the vibration characteristics, and state that these characteristics are affected by
road path, bicycle structure, smartphone holder, ride speed and tire pressure. For both the
bicycle structure and smartphone holder the eigenfrequency is estimated, for the speed a
calibration formula is proposed. Next, an algorithm is proposed to eliminate low frequency
noise and transform the smartphone measured acceleration to front or rear tire displacement.
In addition, a smartphone holder location correction is proposed, since the location is not right
above the front tire. Finally, the proposed method was tested and validated by an experiment.
The method resulted in a 16% error of the maximum values of the estimated road profiles. In
addition, cracks were clearly detected through profile estimation.

2.5 CONCLUSION

This chapter started with a comprehensive review of current literature on pavement
conditions regarding comfort, safety, bicycle use and route-choice of cyclists. By summarizing
the findings of sections 2.2, the first sub research question (see section 1.3.1) can be
answered. What is striking in the reviewed literature of this section is that the terms ‘safety’
and ‘comfort’ are often linked to each other, but it is never substantiated how. Only a few
studies make a link between the two terms, stating that these two subjects are ‘closely
related’ or ‘go hand in hand’. It seems that ‘safety’ is used more as an objective term, which
can be substantiated. It can be expressed in the risks associated to, in this case, characteristics
of the cycling tracks, and cyclist’s exposure to these risks. ‘comfort’, on the other hand, is both
a subjective and objective term, as it is related to both cyclists’ perceived safety and to the
ease of cycling. Cyclists’ opinion will differ on what they perceive comfortable or not, and
which factors influence these comfort levels. Meanwhile the ease of cycling is a general fact,
as some pavement surfaces are scientifically proven to be more convenient to cycle on than
others. Based on these findings, the relation between the two terms can therefore be
described as such that cycling comfort not only represents the ease of cycling, but also the
subjective safety levels of cyclists. Nevertheless, for the remainder of this study, when
referring to cyclists’ level of comfort, the relation to the ease of cycling is intended. Based on
this terminology, a more appropriate answer can be given on the first sub research question.

Next, the chapter provided a compressive review of current literature on the vibrations
experienced as a cyclist and the factors affecting these vibrations. The findings (section 2.3)
can be used to answer the second sub research question. What can be concluded is that in
particular there are two types of vibrations experienced by cyclist due to the pavement
surface. First, the vibrations due to the general vibration properties of the surface, and
secondly due to surface defects, such as cracks, tree roots, potholes e.g.. Furthermore, the
findings of section 2.3 will also be used to identify which factors need to be considered for
BIMS.
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Further, in order to answer the third and fourth sub question of section 1.3.1, an analysis was
conducted on the bicycle monitoring technologies. It can be concluded that there is indeed a
growing interest in innovations concerning bicycle asset management, as many discussed
technologies have been developed quite recently. Most of them tackle the issue of bicycle
maintenance currently being conducted in a resource inefficient manner. The studies
discussed in section 2.4.3 use a similar approach as this study to address these issues, namely
by using smartphones to assess the pavement surface quality and crowdsourcing technique
to collect the relevant data. The findings of these studies showed that, in addition to the
aforementioned influencing factors (the bicycle and its characteristics, the cyclist him- or
herself, and the road surface) also the pedal movement can influence the smartphone-based
vibration measurement when the smartphone is located inside cyclists’ trousers.
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3 RESEARCH APPROACH

3.1 INTRODUCTION

As already mentioned in section 2.4, research concerning traffic monitoring and surveillance
technologies has received a lot of attention in existing literature, as they provide useful
information and data to governmental agencies for operation and maintenance planning and
design purposes. The focus however of these researchers is mainly on the collection of asset
condition data regarding vehicular traffic. Technologies with the focus on bicycle traffic, is still
relatively new. Given the growing interest of promoting the bicycle as a sustainable
transportation mode inside a city, technologies such as BIMS will become more of interest.
Moreover, as mentioned they will improve the perceived safety and comfort levels of cyclist,
as the technologies helps governmental agencies (road managers) to maintain or even
improve their bicycle environment.

Out of the literature review of chapter 2, a lot of knowledge was acquired regarding research-
related topics and associated aspects. Based on this knowledge, a more detailed process flow
diagram is designed for the BIMS platform than depicted in figure 1.1 of section 1.2. The
diagram provides a better comprehensive understanding of all the sub-processes involved in
BIMS.

Next, the cycling comfort assessment method for BIMS will be discussed. BIMS bases its
assessment method on a dynamic comfort mapping method introduced by Bil et al. (2015).
The original method is first extensively reviewed, followed by a description of how and why
this particular assessment method is employed by BIMS. Additionally, some extra aspects
resulting out of the literature review are discussed which should be considered before the
method is adopted for BIMS as they affect the method or system in some sort. These elements
following out of the literature include the bicycle and cyclist characteristics, data collection
from multiple cyclists and pedal movement of the cyclists.

As mentioned in section 1.4, this assessment method is researched and tested based on two
studies. First a case study in the form of an explorative study is conducted. The study will
elaborately test and analyze the sensor quality of three different smartphones, as the
literature relevant to smartphone sensor qualities is minuscule and the data collection via
smartphones a crucial component of BIMS is. The main objective of the case study is to
examine if the smartphone can be used as a reliable tool for measuring bicycle vibrations and
deriving location. Secondly, a field experiment will be conducted in the form of a Proof of
Concept (POC). The experiment will demonstrate the feasibility of BIMS fundamental
component of using the smartphone as a data collection tool for assessing the pavement
surface condition of a bike segment. The research approach will only describe briefly what
these studies exactly entail, how and why they are set up, and what they aim to achieve. The
complete description of the objectives, execution and analysis of both the case study and field
experiment are described separately in chapters 4 and 5 respectively.

As both the case study and the field experiment rely on sensor data from the smartphone and
this data needs to be retrieved using a smartphone-app, this research approach will end with
the description of the selection process of a data collection app. There are a lot of applications
available in the Google Play store capable of reading, logging and analyzing smartphone sensor
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data. This section will therefore describe the process for selecting the best suited application
for the data collection of this research. At first, several applications will be evaluated against
predefined primary and secondary requirements. The app used for the data collection must
at least comply with the primary requirements, and the secondary requirements contain
elements which are recommended. After this evaluation, the remaining apps will be evaluated
on their interface, performance, and usability. The best suited application will be chosen and
used for the remainder of the study as data collector.

3.2 PROCESS FLOW DIAGRAM BIMS

The basic concept of BIMS is to collect vibration data via smartphones and crowdsourcing
techniques, and convert it to an index to monitor the pavement surface condition of the
bicycle network. The system’s output is intended to improve cyclists’ safety and comfort and
aid road managers with planning operations and maintenance of their bicycle infrastructure.
The process flow diagram of the BIMS platform is depicted in figure 3.1 related to the sub-
processes of the system. Five sub-processes of the system can be distinguished: ‘Input’, ‘Pre-
Process’, ‘Process’, ‘Evaluation’, and ‘Output’. Each sub-process is an action which consists of
one or multiple activities, and generates a result for the successive sub-processes. As this
study merely researches some components of BIMS, this diagram is used to indicate to which
components the case study and field experiment of this report contribute.

The first sub-process ‘Input’ concerns the data collection for BIMS. As discussed, the asset
condition of the bicycle pavement surfaces will be determined based on vibration data
collected via the sensors of cyclists’ smartphones. A tool in the form of a smartphone-
application will collect the raw data from the smartphone sensors. The raw data will consist
of linear acceleration values - measured from the accelerometer, gyroscope and
magnetometer — and GPS coordinates corresponding to these acceleration values. The raw
data will be exported, ready to be pre-processed.

After the system’s input-data is collected, it will be pre-processed, which basically means that
the raw data will be prepared for further processing. The ‘Pre-Process’ consists of a two basic
steps in which the data is transformed to an understandable and desired format. The first step
is data cleansing in which the data is cleansed, like resolving the inconsistencies in the data,
eliminating outliers, and/or smoothing the noisy data. Next step is the data integration, which
will combine and aggregate the data as an incorporated form and structure for further
processing. This sub-process results in the refinement of the input-data.

The third sub-process includes the ‘Process’ of deriving the asset condition data of the bicycle
network from the refined data. This concept will represent the asset condition data in the
form of a dynamic comfort index (DCl) introduced by Bil et al. (2015). The DCl is calculated
from the measured values of acceleration, and since also GPS data is collected, the DCl can be
linked to a GPS position. The DCI will identify the condition of a bicycle segment with a number
ranging from zero to one, where an index of one represents a very smooth surface, and an
index of zero very irregular surface.

The next sub-process is the ‘Evaluation’, which logically means evaluating the DCl values. The
index values will be categorized into different levels of quality. Each level indicates the
pavement surface condition of a particular road segment. The index values will also be
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checked against threshold values to make sure it meets established standards. This process of
proactively checking data is called data monitoring (Informatica, 2017). A Data Monitoring
Tool will support this process. The threshold values of the tool can be created and edited as
preferred or needed. If the index values exceed the established standards, an alert can be sent
to an administrator. Thus, the categorization together with the Data Monitoring Tool with
evaluate the index values, and provide a good overview of the overall quality of the bicycle
pavement surfaces.

The final sub-process provides the final ‘Output’ of the system. This sub-process focusses on
the representation of the previous evaluations. For the index values exceeding threshold
values, an alert or notification is send to the road manager. The road manager can then
perform a measurement test in order to define the appropriate maintenance measures
concerning that particular segment. Ideally this follows out of the index values. However this
can be rather difficult, since the index values do not make a distinction between different
defects and each defect is handled differently as was discussed in the interview findings of
section 1.1.1. Further, the categorized levels will be mapped in a GIS (Geographical
Information Systems) environment based on the GPS position linked to the data. This will give
a direct overview of the bicycle network’s surface conditions. The different levels of quality
can, for instance, be mapped in different colors, where a color corresponds to a certain level.
This will not only indicate which pavement surface conditions are poor, but also which
surfaces might need attention in the future.

A great advantage of this system over the current approach of visual inspections, is that the
surface quality of the bicycle network will be monitored continuously by every-day cyclists
instead of yearly. It is a more resource efficient manner of tackling the maintenance issues,
which were found to be important by cyclists in the study of Calvey et al. (2015) discussed in
section 2.4. The continuous information provided by the system will aid road managers to
faster spot poor surface qualities, to schedule maintenance more efficiently, and to act more
rapidly on abrupt damages to road surfaces.

Bicycle Infrastructure Monitoring System (BIMS)
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Figure 3.1: BIMS Process flow diagram
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3.3 CYCLING COMFORT ASSESSMENT METHOD

As mentioned, this study mainly researches the assessment component of BIMS. When put
into context with BIMS process flow diagram of figure 3.1, this component mainly concerns
the ‘Input’, ‘Pre-Process’, and ‘Process’ of BIMS. The fundamental method of BIMS for
assessing bike segments on pavement surface will be based on the dynamic comfort mapping
method of Bil et al. (2015), since their study is in a lot of aspects similar to BIMS assessment
component. Both, for instance, intend to use the bicycle to assess the pavement surface
condition based on a vibration measurement. This section will therefore elaborately review
the dynamic comfort mapping method of Bil et al. (2015). First, since the method was briefly
described in section 2.4.1, it is elaborated upon, followed by what lessons can be learned from
their study, and finally based on the literature findings there will be described what aspects
need to be considered and how they are dealt with regarding the method before it can be
implemented for BIMS.

3.3.1 DynaMic COMFORT INDEX

For the computation of the vibration data to a particular index, BIMS intends to use the
dynamic comfort mapping method introduced by Bil et al. (2015) as a basis. The method was
first introduced in the Czech Republic as an objective (quantitative) way of cycling track
mapping. It is capable of objectively describing the vibration properties of pavement surface
on a particular bicycle segment. These properties are then used to indicate the cycling comfort
in the form of a ‘Dynamic Comfort Index’ (DCl). The DCI represent the inverse value of the
energy contained in the signal of acceleration, and is calculated using the following formula:

-1
DCI = < E {‘zl(al.z)) wherei =1,2,..,n (1)

Where a; is the measured acceleration value of measurement i and n is the number of
measurements during a specific time period. Bil et al. (2015) calculated the DCI for every single
second, however it can also be calculated over a longer time period. The DCI value ranges
between zero and one, and is indirectly related to the power of acceleration (or vibrations).
Thus, high DCI’s identify more comfortable bike segments with less and smaller, and low DCI’s
represent less comfortable bike segment with large vibrations. By linking GPS data to each
corresponding index value, the data can be easily visualized on a map.

The development of the dynamic comfort mapping method was not merely a theoretical
study. It has already been applied to the historical center of the city of Olomouc, Czech
Republic, and therefore proving the functionality and feasibility of this method. The vibration
data was collected using an ordinary bicycle mounted with a GPS device and an accelerometer.
figure 3.2 depicts an example of how the DCl is visualized on a map. Logically, the DCI values
are categorized by color into different levels, where the red segments represent low DCI
values and green segments high DCI values. This is also an possibility of how it can be
represented for BIMS.
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Figure 3.2: Representation of Dynamic Comfort Index in the city of Olomouc
Source: Transport Research Centre (CDC) http://www.cyklokomfort.cz/en/ (2017)

Lessons Learned

The study of Bil et al. (2015) did not only introduce the method of dynamic comfort mapping,
but they also researched how some factors relate to the DCI, such as speed, bicycle type and
also the subjective comfort evaluation by cyclists. Therefore, the lessons learned from their
study relevant to BIMS will be briefly described, so they can be taken into account in the
assessment methodology.

Firstly, during testing they examined to what extend the DCl values are influenced by speed.
A decrease in the DCI values and the overall DCI range was experienced with increasing
speeds. It is natural that on the same segment, cyclists are exposed to less vibrations if they
cycle slower. Moreover, the dispersion of the DCl values rose with increasing speeds. The DCI
values regarding cycle path with significant steepness should therefore be handled with care
or even excluded. Eventually, they decided to maintain a speed of 15 km/h as a standard pace
for testing. Partly due to the difficulty to maintain a steady pace at higher velocities and at
lower speeds it is unsafe because of instability issues of the bike. In addition, for this study
and experiment, lower speeds could be dangerous regarding other cyclists, as one might not
expect somebody cycling at low speeds.

Secondly, they tested to what extent the DCI depends on bicycle type by testing three different
types on multiple segments. They included a racing, touring and mountain bicycle, and all
bikes were cycled by the same rider. No significant difference was found between the derived
DCI values from the different bicycle types, which is contradicting of what is found in the
literature, as it showed that bicycle characteristics influence how the vibrations are
transmitted to the cyclist. Although it should be noted that in the study of Bil et al. (2015) an
accelerometer is mounted to the front fork of the bicycle in order to measure the bicycle
vibrations. This location is very near the front wheel were the vibrations are measured first.
From these wheels the vibrations are then transmitted through the rest of the bicycle. This
most likely explains why no difference was found between bicycle types.
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Thirdly, they researched the performance of the DCI method by validating if the derived DCI
values represent the subjective comfort evaluation of cyclists. Based on a group of 43
volunteers and 11 sections on which they cycled their bike, a close relationship with a
correlation coefficient of -0.93 was observed between the objective DCI values and their
subjective perceptions. Therefore, they concluded that the DCI can easily interpreted as the
level of vibrations experienced while cycling. Also here, it is important to note that the
volunteers mostly consisted out of experienced cyclist, and are therefore most probably also
cycling enthusiasts. This might give biased results as they will have a stronger opinion
regarding bicycle vibrations and cycling comfort, as the research of Ayachi et al. (2015) shows.

3.3.2 ADAPTATION ASSESSMENT METHOD FOR BIMS

Although there are a lot of similarities between the DCl assessment method of Bil et al. (2015)
and the intended BIMS assessment component, there is one principal difference,
unfortunately, which makes it impossible to directly adopt their method to BIMS and justify
it. Namely, BIMS will rely on vibration data to be collected from cyclist’s smartphones located
in their trousers, not from an accelerometer mounted to the front fork of its bicycle. Normally,
the DCl computation only includes linear acceleration readings of the z-axis of the
accelerometer for the vibration data, since this axis is perpendicular towards the road surface
and its orientation remains fixed during the measurements. However, in the case of BIMS, the
position of the smartphone can vary per cyclist and per trip. It is rather complicated to
estimate how the smartphones of cyclists are positioned while they are cycling. Therefore,
this study proposes an alteration to DCI formula to disregard the smartphone’s position during
the measurement.

It is important to note that the alteration does not change the basic principle of the formula.
It should still represent the inverse value of the energy contained in the signal of acceleration
after the alternation, so the alteration will only change which acceleration values of the
accelerometer will be included in the DCI-formula.

To disregard the orientation of the smartphone, the linear acceleration values of all three axes
of the smartphone’s accelerometer should be included, as the readings of all three axes
represent all acceleration-forces, excluding gravity, applicable to the smartphone. An
additional benefit of including the values of all three axes is that also lateral evasive
maneuvers will be recorded. Normally, when cyclists encounter damages to the road surface
during their trip, they circle around it to avoid it, as the study of Wijlhuizen (2014) revealed.
This means that if the method of Bil et al. (2015) was used, this damage was missed, since only
the z-axis of the accelerometer is recorded. When including readings of all three axes, also the
sudden lateral movements will be recorded, which will result in lower DCI values indicating
that something is wrong at that particular spot.

From the three axes acceleration readings, the resultant acceleration a; ,,,, (or vector sum)
will be calculated for each measurement i, which stands for a vector quantity (acceleration)
which is equivalent to the combined effect of two or more component vectors acting at the
same point (Galbis & Maestre, 2012). Moreover, since the axes are seen as vectors and all the
vector angels are perpendicular to each other, the resultant linear acceleration a; .y, is
calculated using the Pythagoras’ theorem with the following formula:
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— 2 2 2
Aixyz = \/ai‘x +af, +a?, (2)

Where a; , is the acceleration value of the x-axis, a;,, the acceleration value of the y-axis, and
a;, the acceleration value of the z-axis of measurement i. Note that the resultant
acceleration a; ,,,, is computed per datapoint. For the DCI formula, the acceleration value q;
of formula (1) will be simply replaced with the resultant acceleration a; 4. The DCI formula
therefore looks as follows:

1

-1
DClgym = ( - i aiz'xyz)> wherei =12, ..,n (3)

The new DCI formula will be referred to as DClsum to prevent confusion. This formula will be
used in the field experiment of chapter 5, where it will be applied to multiple segments to
evaluate its performance. Out of the results of the experiment it will be decided if the DCI
method can be adopted in this format.

3.3.3 ADDITIONAL ASPECTS

Besides the smartphone orientation, there are several additional aspects which should be
considered as they concern the outcome of the DClsum methodology for BIMS: cyclist’s weight,
bicycle characteristics, data collection from multiple cyclists, and pedaling movement of the
cyclist. The next sections will discuss what these elements imply and how they will be dealt
with or examined for the system.

Cyclist’s weight

Firstly, the weight of cyclists should be taken into account, since the DClI’s of a particular
segment will be calculated from data sets of multiple cyclists. It can be expected that the
weight of the cyclist directly influence the vibration measurement, as the measurement is
done out of cyclists’ trousers. The weight of the cyclist was already identified in the literature
study to slightly affect the entity of vibrations, and therefore the outcome of the vibration
measurements, but indirectly. The study of Olieman et al. (2012) namely revealed that tire
pressure influences how the vibrations are transferred to the rider and since weight influences
tire pressure, it therefore indirectly impacts the entity of the vibration. Yet the impact of
weight is also applicable to the vibration measurement with the fixed accelerometer. With the
smartphone-based vibration measurement, however the bicycle vibrations are directly
transferred by the cyclist’s body to the smartphone, since the smartphone measures out of
the cyclist’s trouser. In contrast, the fixed accelerometer measures the bicycle vibrations
directly, since it is fixed to the bicycle.

Even though the weight of the cyclist is likely to influence the entity of the measured
vibrations, the derived DClI’s can still be useful as for BIMS it is expected that if the population
generating the data is large enough, the noise effect of weight will be averaged out.
Nevertheless, the influence of cyclist’s weight to the smartphone-based vibration
measurement is examined during the field experiment of chapter 5 by comparing the data of
multiple riders over the same segments.
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Bicycle characteristics

Secondly, the characteristic of the bicycle itself must be taken into account, as the literature
of section 2.3 showed that the bicycle components influence how the vibrations are
transmitted to the cyclists. There exists a lot of different bicycle types with different
characteristics which likely all have a slightly different effect on how the vibrations are
transmitted through the bicycle. Striking is that in the study of Bil et al. (2015) it was concluded
that bicycle type does not have an significant effect on the measured vibrations. This can
however most likely be explained by the fact that in their study the vibrations were measured
near the front fork, where the surface vibrations can be noticed first. For BIMS assessment
method, on the other hand, the vibrations are measured in cyclists’ trousers near the saddle,
where the surface vibrations are transmitted through the frame of the bicycle.

Therefore, it is expected that the characteristics of the bicycle affect the recorded vibrations
and thus also the calculated DClI’s. Just like the cyclist’s characteristics, it is expected that if
the community generating the data for BIMS is large enough, the influence of the bicycle and
its component can be neglected, as their noise effect on the DCI’s will be eventually averaged
out. Due to the previous stated and the limited time period of this study, the influence of
bicycle type is not examined during the field experiment. All the measurements during the
experiment will therefore be conducted cycling only one specific bicycle.

Data collection from multiple cyclist

Thirdly, for BIMS the intention is to continuously collect the data from multiple cyclists and
their smartphones in order to monitor the bicycle pavement surfaces. This entails that the
DCl's of a particular segment will be calculated from data sets of multiple cyclists. It is
therefore of great importance that the computation of the DCI’s based on these sets are
consistent over a specific segment.

In the method of Bil et al. (2015) this aspect is of less interest since they calculate the DCI’s of
a particular segment based on one recording. They calculated the DCI’s for every second of
this recording, regardless of the speed of the rider. Each time when new data is generated
these values are simply substituted. In the case of BIMS, the data will be continuously
collected making the approach of calculating the DCI for every second inconvenient as the
locations linked to this second will vary from cyclist to cyclist.

It is therefore suggested for BIMS to calculate the DCI over fixed distance-intervals. For
instance, calculating the DCl values for each road segment of 10 meters. This will better ensure
the consistency of the DCI computation, as the vibration data of cyclists can simply be
allocated to a distance-interval or section based on the linked GPS data. Thus, instead of
including all the acceleration values of a single second for the DCI, the acceleration values over
a particular section will be included. An additional benefit of this approach is that it will be
easier to refer to a specific section. The field-experiment of chapter 5, will examine multiple
scales for these distance intervals to finally select the most suitable scale for the DCI
assessment method.

Pedaling movement

Fourthly, it is expected that the pedaling movement of the cyclist will have a slight influence
on the measurement outcome, since the smartphone-based measurement will be conducted
from the cyclist’s trouser pocket. The study of Kobana et al (2014) discussed in section 2.4.3
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with the similar approach of using smartphones located in cyclists’ trousers for assessing the
road surface quality, also acknowledged the pedal movement influences the measured
vibration signal. The smartphone will not follow the exact same pedal movement as the
cyclists’ feet does, but more an up and down movement. This movement is schematically
depicted in figure 3.3. Pedaling is a relatively slow movement and since acceleration
represents the rate at which the velocity of a movement changes, the acceleration force will
also be relatively low. However, the pedaling movement is still a motion produced by a specific
acceleration-force, and could therefore influence the vibration outcome. On average, cyclist
pedal with a rate of approximately 60 rpm, which means that the smartphone’s motion
follows the same rate. This motion could be traced back in the cyclist’s generated vibration
data.

Figure 3.3: Schematic representation of the motion a smartphone makes while
cycling

Therefore, this study proposes a variant to the DClsum formula. Since the pedaling movement
as well as the smartphone movement is very slow and acceleration represent the rate at which
the movement changes, an alteration to the resultant acceleration formula (2) is proposed.
Instead of including on acceleration value of each axis for the resultant acceleration of one
data point, the difference in acceleration values of two consecutive points of each axis will be
used to calculate the resultant acceleration. If the smartphone movement is slow, than the
change in acceleration will also be low, and it will be not or barely noticeable with the new
computation of the resultant acceleration. The new computation of the DCI will be referred
to as DClgir, and its formula together with the formula for the new resultant acceleration are
as follows:

2 2 2
ai,xyz = \/(ai—l,x - ai,x) + (ai—l,y - ai,y) + (ai—l,z - ai,z) (4)

-1
DClyifr = < /%Zﬁo(aiz‘xyz)) wherei =12, ..,n (5)
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The alteration to the resultant acceleration a; ,,, Wwill not influence the basis of the formula,
which is that it represents the inverse value of the energy contained in the signal of
acceleration. The difference between formula (2) and (4) is also depicted schematically in
figure 3.4. The signal in figure 3.4 represents the acceleration motion of the pedal movement
of the smartphone depicted in figure 3.3. The left side of the figure indicates how formula (2)
includes the acceleration values for the calculation of the resultant acceleration, and the right
side how formula (4) includes these values. As on can see, the pedal movement will be less
noticeable when calculated with formula (4) instead of formula (2). Note that this schematic
representation is only from one axis.
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Figure 3.4: Schematic representation of the difference how the resultant acceleration is calculated on the
basis of formula (2) and (4)

A possible additional benefit of the DClgi# over formula (3), is that it will represent local
extremes more clearly, as the differences in acceleration between two consecutive points are
squared. Normally, when a local extreme or shock is recorded it is characterized with a peak
(or local maxima) directly followed by a local minima or the other way around. If the two
consecutive points are on the local maxima and minima, the resultant acceleration a; ,,, will
represent the peak-to-peak value in the case of formula (4). In the case of formula (2), the
values of the maxima and minima will be included separately. This phenomenon is depicted
schematically in figure 3.5, where on the left it can be seen that the values of the maxima and
minima are included separately, and on the right that the resultant acceleration is represented
as the peak-to-peak value. The performance of this variant on the DClsym formula will be tested
and evaluated during the field experiment of Chapter 5. It will be compared to the DCl values
computed with formula (3).
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Figure 3.5: Schematic representation of the difference motion a smartphone makes while cycling

3.4 CASE STUDY — SMARTPHONE SENSORS EVALUATION

Although a lot of researchers acknowledge that modern-day smartphones are equipped with
advanced sensors (Akhavian & Behzadan, 2016; Ferreira et al., 2017; Johnston & Robinson,
2015; Schirmer & Hopfner, 2013), only a hand full of researchers looked at the full capabilities
of these smartphone sensors (Allmendinger et al., 2017; Azzoug & Kaewunruen, 2017;
Novakova & Pavlis, 2017), and an even smaller portion really tested them (Amick et al., 2013;
Khoo Chee Han et al.,, 2014; Noury-Desvaux et al., 2011). Since BIMS relies on the data
collected from cyclist’s smartphone sensors for the assessment of the bicycle pavement
surfaces, it is essential to know if the current smartphone sensors are capable of providing
this kind of data. In addition, it is important to ensure that the data quality is consistent over
different smartphones, since the system will collect data from multiple cyclists with different
brands smartphones. Therefore, this case study aims to research if the quality of the current
smartphone sensors is sufficient for providing reliable data for BIMS. The case study in the
form of an explorative study will test the sensor quality of three smartphones of different
brands and ages. This will provide a general overview of what the current quality standard is
for smartphone sensors.

The sensors will extensively be tested and analyzed based on five tests. These tests will
evaluate sensors’ accuracy, sensitivity and consistency. In this research, the accuracy is
defined as the degree to which a sensor conforms to the correct value, sensitivity as the
smallest amount of change that can be detected by a measurement, and consistency as the
way in which sensors are able to produce similar results on the same test.

The case study will only focus on the smartphone sensors that are relevant to the data
collection of the system, which are the accelerometer and linear accelerometer for the
vibration data and GPS receiver for the location data. The accelerometer and linear
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accelerometer of the smartphone should be able to provide reliable data regarding the
transmitted vibrations experienced while cycling, and the GPS receiver should link reliable
location data to these values. These sensors will be evaluated based on five tests, each test
focuses on one particular sensor. Two are focused on the accelerometer, one on the linear
accelerometer and two on the GPS receiver. The tests are listed below:

e Test 1 Sensitivity Accelerometer — Accelerometer

e Test 2 Freefall motion — Accelerometer

e Test 3 Controlled Acceleration — Linear Acceleration
e Test 4 GPS Accuracy — GPS Receiver

e Test 5 GPS Distance Accuracy — GPS Receiver

Note that the linear accelerometer measures the same accelerations as the accelerometer,
with the exception that the linear accelerometer also uses the gyroscope and the
magnetometer to negate the effects of the earths gravitational field (Khoo Chee Han et al.,
2014).

3.5 FIELD EXPERIMENT-PROOF OF CONCEPT

The prevalence of smartphones is rapidly restructuring the perception of researchers
regarding data collection in which individuals can collectively sense the urban environment
using smartphone data streams (Allmendinger et al., 2017; Fernee et al., 2012; Matarazzo et
al., 2017; Novakova & Pavlis, 2017). BIMS also relies on this technique of crowdsourcing the
smartphone data streams in order to collect asset condition data of the bicycle pavement
surfaces. The asset condition data is converted out of vibration data collected from multiple
cyclists via their smartphones. Previous section discussed a case study examining if the current
smartphone sensor quality is at all sufficient for collecting vibration and location data, and
whether the sensor quality is equivalent between multiple devices. This field experiment will
be a follow up on the case study. It will examine BIMS’s fundamental component of using a
smartphone-based vibration measurement to indicate the pavement surface quality of a
bicycle segment.

The main objective of this field experiment is to serve as Proof-of-Concept (POC) of BIMS
assessment component. It will demonstrate that it is feasible to indicate the pavement surface
condition with a smartphone-based vibration measurement. The dynamic comfort mapping
method of Bil et al. (2015) will be used for this field experiment. With a small alteration as
discussed in section 3.3.2, the method will be applied to multiple segments in the city center
of Eindhoven to evaluate its performance.

Furthermore, the experiment will research the elements discussed in section 3.3.3. It will
evaluate if the variant on the DCI proposed in formula (4) and (5) is better in distinguishing
pavement surface conditions of particular segments, than the original DCl specified in formula
(3). Further, the field experiment will examine what the most suitable distance-interval
configuration is on which the DCI should be calculated. Finally, the influence of the cyclist’s
weight will be researched on the DCl outcome by comparing the data generated by three
cyclists. The results of the experiment should not only illustrate the feasibility of BIMS but also
the best configuration for its assessment method.
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3.6 DATA COLLECTION APP

As discussed in section 1.2, BIMS intends to use an application installed on smartphones to
collect the relevant data of the motion and location sensor. However, due to the lack of
expertise and limited time window of this study, an app offered by the Google Play store is
used for reading and collecting the raw sensor data for both the case study and the field
experiment. Moreover, as this study is a research study, the app requires some features that
can be adapted throughout this study, like for instance sampling speed. The app for BIMS
requires these features to be constant in order to ensure that the data is collected
consistently.

The Google Play store offers a large variety of apps which are capable of reading, logging and
analyzing raw sensor data from smartphones. This section will evaluate multiple apps on a set
of predefined requirements, to eventually select the most suitable one for the data collection
for the remainder of this study.

3.6.1 SMARTPHONE APP REQUIREMENTS

There exist a large variety of apps capable of reading, logging and/or analyzing data from
smartphone sensors. The basis of these apps is much alike. They all use the Android sensor
framework to access the sensor platform and acquire raw sensor data (Android Developers,
2017b). The biggest difference between the apps lies in the interface and what kind of options
are offered to the user regarding data recording and exporting. The apps will be evaluated
based on a set of predefined requirements in order to select the best suitable app for the data
collection of this research. These requirements can be categorized into primary and secondary
requirements, and are depicted in Table 3.1. An app should at least comply with the primary
requirements for it to be used for the data collection.

The primary requirements can be further broken down into sensor, recording, and exporting
requirements. The sensor requirements concerns which sensors should be supported by the
app. Since, the case study and field experiment require readings from the accelerometer,
linear acceleration and GPS receiver, the app must at least support these three sensors. The
recording requirements relate to specific recording features. At first the app should support
multi-records, which are recordings of multiple sensors simultaneously, since the app should
be able to record linear acceleration and GPS simultaneously for the field experiment.
Secondly, the sampling frequency should be adjustable and constant over time, since data
samples with inconsistent sampling frequencies are not comparable. Thirdly, the recording
should include a timestamp of some sort, since some analyses of chapter 4 rely on data in
specific time intervals. The last primary requirements are related to the exportation of the raw
sensor data. The raw sensors data should be exportable as a csv- or txt-file for further analysis.
In addition, the app should save these data files locally and/or be able to export them to an
online platform. The secondary requirements include app features which are desirable but not
mandatory. These features are the ability to manually alternate the data filename, configure
recording time, show device sensor information, and include a keep-screen-on-function.
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Table 3.1: App Requirements

Type Requirement

Accelerometer

Sensors Linear acceleration
GPS position
. Date - time
Primary Recording Multi-record

Requirements

Adjust recording frequency

Format as csv- or txt-file

Exporting Save data-files locally

Export to e-mail or Google Drive

Manually configure filename
5econdary Additional Keep—screen—on function
Requirements | features Configure recording time

Device Sensor Info

3.6.2 SELECTION OF SMARTPHONE APP

In total, 11 apps were included in the selection process. These apps were mainly selected from
the Google Play store with the exception of the ‘FietsComfort’ app developed by SGS Intron.
This app was obtained directly via the company, and had to be installed manually. The other
apps can be downloaded for free in the Google Play store. For some apps a small payment is
required to remove advertisements or to enable all the app features, such as export features.
Table 3.2 list all the apps included for the evaluation. The table also indicates the app’s
developer, availability in the Google Play store, and what the associated costs are.

Based on the requirements depicted in Table 3.1, an evaluation matrix was constructed for
evaluating the apps listed in table 3.2. The matrix, depicted in table 8.1 of appendix Il, simply
indicates for each app whether it meets a requirement or not. As mentioned before, if an app
does not meet all the primary requirements, it is not suited for the data collection of the
remainder of this research. Out of all the apps, only the following apps satisfy the primary
requirements: ‘AndroSensor’, ‘Physics toolbox Suite’, ‘Sensor Record (a)’, and ‘Sensor Record
(b)’. Most of the apps which failed to meet the primary requirements did not include recording
or exporting features. The remaining four apps were tested on their interface, performance
and usability. From these remaining apps, the ‘Sensor Record (a)’ app crashed when trying to
export a csv-file and the ‘Sensor Record (b)’ provided an intractable csv-format.

Eventually, the ‘AndroSensor’ app was chosen instead of the ‘Physics toolbox Suite’ app based
on some legitimate reasons. Firstly, the sampling frequency of the ‘Physics toolbox Suite’ app
could only be adjusted to four fixed sensors rates, and in addition, these were represented
textually as can be seen in figure 3.6. For the ‘AndroSensor’ app, the sampling frequency can
be set to any value ranging from 0.001 Hz to 200 Hz. Secondly, the data files retrieved from
‘Physics toolbox Suite’ app often contained errors when recording multiple sensors.
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Available in
# App Developer Google Costs App
Play store

1. AndroSensor Fiv Asim € 0,99 (Optional)
2. FietsComfort SGS Intron X Free

3. Physics Toolbox Suite | Vieyra Software Free

4. Raw Sensor Data AJB Tech Free

5. Sensor Data Vipul Lugade € 5,49 (Optional)

6. Sensors Record (a) Martin Golpashin Free
7. Sensors Record (b) mrwojtek Free
8. Sensor Tracker Bicasoft Technologies Free

9. Sensors toolbox EXA Tools € 0,69 (Optional)
10. Sensors Multitool Wered Software Free
11. Sensors Toolbox Galaxy Developers Free

Sensor Collection Rate

Fastest
Collect sensor data as frequently as allowable for this device

Game
Collect sensor data at a rate suitable for games

ul

Collect sensor data as infrequently as allowable for this
device

Normal
Collect sensor data at a rate suitable for screen orientation
changes

Figure 3.6: Cropped screenshot of 'Physics Tool
Suite'

3.7 CONCLUSION

This chapter provided an extensive overview of the steps that will be taken in the research
process of this study. At first, the chapter presented an elaboration of the sub-processes
involved in the intended BIMS on the basis of the knowledge acquired in the literature review
of chapter 2. Based on these sub-processes a process flow diagram was designed indicating
the general flow of information and the actions involved of each sub-processes. This diagram
can serve as foundation for further development of BIMS. For this study, the diagram is used
to indicate to which processes this study contribute, as this study will mainly focus on BIMS
assessment component.

Next, the method for the assessing the bicycle pavement surfaces based on smartphone
vibrations data is elaborately discussed. This method used the dynamic comfort mapping
method introduced by Bil et al. (2015) as a basis for this assessment. Their method objectively
represents the measured bicycle vibrations by computing these vibrations into a dynamic
comfort index (DCI). Since the data collection of this study slightly differed from their study,
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the original formula for the computation of the DCI needed to be modified. Further, based on
the insights of both the study of Bil et al. (2015) and the literature, several aspects were
discussed in how they should be dealt with as they concern the methodology’s outcome.

In this study the assessment method will be researched and tested based on two studies. First
a cases study will be conducted in which the current quality of smartphones’ motion and
location sensors will be extensively examined on the basis of five tests. Secondly, a field
experiment will be undertaken in which the feasibility of assessing the bicycle pavement
surfaces based on smartphone data will be demonstrated.

The chapter ended with describing the selection process of a smartphone application for
recording and collecting the sensor data from the smartphones for both the case study and
the field experiment. Multiple applications were evaluated based on a set of predefined
requirements, and based on their performance and usability. Eventually, the AndroSensor-
app was selected to best suit this research needs.
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4 CASE STUDY

This section elaborately describes how each of the five tests regarding the smartphone sensors
is conducted, analyzed and evaluated. First, the objectives of this case study are defined. Then,
since a lot of overlap exist for all test, some general aspects regarding data collection are
described. Next, for each test is described which test method is used and what its scope is,
followed by a description of the test setup and how the data is collected, and finally a
description of how the data is analyzed.

4.1 OBJECTIVES

The main objective of this case study is to evaluate if the smartphone can be used as a reliable
measurement tool, and therefore mainly concerns the ‘Input’ process of the process flow
diagram as depicted in figure 4.1. This case study will base this evaluation on five tests which
test and analyze the sensor quality of three different smartphone. The tests aim to evaluate
the accuracy, sensitivity, and consistency of the sensors relevant for the BIMS, which are the
accelerometer, linear accelerometer and the GPS receiver. Further, with the evaluation of
three smartphones of different brands and ages, this case study aims at providing a general
impression of what the current sensor quality standard is for modern day smartphones and
that the qualities do not differ much between devices, in order to illustrate that it is feasible
to collect data from multiple smartphones for BIMS.

Bicycle Infrastructure Monitoring System (BIMS)
Case Study

ACTION

e Collecting Data

ACTIVITY

e Collect Data
Smartphone
Sensors

RESULTS

¢ Rough Data

Figure 4.1: Case Study in context with BIMS process flow diagram

4.2 GENERAL ASPECTS DATA COLLECTION

The data for this case study will be collected from three smartphones: Oneplus5, Google Nexus
and HTC M9. Table 4.1 contains all the relevant specifications regarding the smartphones and
their sensors. The information regarding the smartphone sensors is retrieved using the
AndroSensor app, as discussed in section 3.6. It is expected that the OnePlus 5 sensors will be
of better quality than the other smartphone sensors, since it is the newest smartphone and
therefore used less intensively. Further, it is important to state that at the time of testing only
the Google Nexus 6p had the new Android 8 Oreo as mobile operating systems. The OnePlus
5 and HTC M9 still both used the Android 7 as operating system.

TU/e CONSTRUCTION MANAGEMENT & ENGINEERING 46 | Page



Note that the GPS receiver is not included in the table, since no information regarding this
sensor could be found. Current smartphones all contain very basic GPS receiver chips (Bauer,
2013). The performance of the GPS receiver logically depends on the chip, but also on which
type of smartphone and its operating platform to a considerable extent (Korpilo et al., 2017).
Other factors which do not directly affect the performance, but do affect the GPS position
accuracy are environmental characteristics (terrain, built structure, tree canopy), (space)
weather conditions, and if present the application deriving the GPS position (Bauer, 2013;
Korpilo et al., 2017; Noury-Desvaux et al., 2011).

Furthermore, notice that the type of linear accelerometers is not mentioned for the
smartphones. The linear accelerometer is a so-called software-based sensor, which means
that they derive their data from one or more of the hardware-based sensors. As discussed in
the previous section, the linear acceleration derives its data from the accelerometer,
gyroscope and the magnetometer, which all are hardware-based sensors. Moreover, since it
mainly derives its data from the accelerometer, it has the similar range and resolution as the
accelerometer. The GPS receiver, on the other hand is both a hardware- and software-based
sensor, since it determines location with its chip and assisting location technologies named
Cell ID and Wi-Fi (Korpilo et al., 2017).

Table 4.1: Smartphone Sensor Characteristics

Accuracy/Resolution

0.0023956299 m/s?

0.0023942017 m/s?

Device Oneplus5 (A5000) | Google Nexus 6p HTC M9
Release Date June 2017 September 2015 March 2015
Operating System Android 7 Android 8 Android 7
Accelerometer BMI160 BMI160 Accelerometer Sensor
Vendor BOSCH Bosch hTC Corp.
Range 39.22661 m/s? 78.4532012939 m/s? 39.2266 m/s?

0.01 m/s?

Linear Accelerometer

Linear Accelerometer

Linear Acceleration

Linear Acceleration

Vendor
Range

Accuracy/Resolution

QTl
39.22661 m/s?

0.0023956299 m/s?

Google
78.4532012939 m/s?

0.0023942017 m/s?

hTC Corp.
39.2266 m/s?

0.01 m/s?

4.2.1 ANDROSENSOR-APP SETTINGS

As described in section 3.6, the smartphone sensor data will be collected using the
AndroSensor app, which can be downloaded for free in the Google Play store. First, it is
important to state that all the recordings done with the AndroSensor app must be started and
ended manually, since the app does not offer a feature where recording time can be
configured. In addition, the data generated by the app also needs to be retrieved manually
from the smartphone. This can be done wireless or by cable. For these test the data was first
stored locally on the smartphones and then exported to Google Drive so it could be
downloaded for analysis.
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Next, the default settings of the app are adjusted in a way that for all the tests, the best and
most precise results can be achieved. The most essential setting to ensure precise data quality
is the sampling rate (or recording frequency), which is the regular interval at which the
software ‘asks’ the mobile operating system for the particular sensor value and is defined as
hertz (Hz). Thus, for example if the sampling rate is 10 Hz, the AndroSensor app will record 10
times a sensor data value in every second. The appropriate sampling rate mainly depends on
the signal to be measured. If the sampling rate is too low, information could be lost and the
signal will not be represented correctly. If the sampling rate is too high, the measured signal
will most probably contain excessive noise (a random fluctuation in the signal) and will
generate large data files, which will increase processing time of the data. Therefore, a sample
rate of 20 Hz is preset for the recordings of all the tests, with the exception of ‘Test 3
Controlled Acceleration’. For this test a higher sampling rate is required of 50 Hz since for this
test the recording signals will be analyzed in detail. The sampling rate of 20 Hz for the other
test is more than sufficient to ensure precise data quality.

Besides the sampling rate, for each test only data from the relevant sensors will be recorded.
Thus, for example, for test 1 only data about the accelerometer will be recorded and for test
4 only data from the GPS receiver. This way no unnecessary data will be recorded and the data
analysis process will be more efficient.

Finally, during all the recording the keep-screen-on function is enabled, which will ensure that
the smartphone will not lock itself during the recordings. It is of outmost importance that the
smartphone is kept ‘awake’ during the recording, since it is generally known that when a
phone falls in ‘sleep-mode’, the smartphone shut downs parts of the system to save battery
power, like sensors or apps running in background. This can be bypassed by alternating the
software code, however for this situation an application is used from third parties and so the
code cannot be alternated.

4.2.2 REFERENCE DEVICE

To better indicate the quality of GPS sensor, a GPS Trip Recorder 747pro will be used as a
reference device during ‘Test 4’ and ‘Test 5’. The GPS Trip Recorder 747pro is an advanced
GPS logger originating from 2007 and it only logs location data. It records data with a sampling
rate of 1 Hz and the data needs to be retrieved manually. The data of the Trip Recorder will
be used as a benchmark regarding the GPS data generated by the smartphone. In addition,
the GPS Trip Recorders’ POI (Point-of-Interest) feature will be used to indicate the exact start
and end points for the recordings of test 4 and 5, since for these test the data of all three
smartphones is recorded simultaneously, and starting and ending these recordings
simultaneously is impossible. Some time will pass between the time the first and last
smartphone recording is started or ended if done manually. During this time some biased data
might be generated. Thus, to ensure that the data is recorded under the same circumstances
and that they are equivalent, POI-feature of the Trip Recorder will be used. By simply pushing
a button a POI will be recorded in the data of the Trip Recorder. Next, taken the advantage
that all devices work on the basis of precise time measurement, the smartphone data will be
filtered based on the POI’s timestamps.

Furthermore, no reference device is used to compare the smartphones’ accelerometer, since
the characteristics of accelerometers installed in smartphones significantly differ from
professional accelerometer sensors used in vibration analysis (Feldbusch et al., 2017). The
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professional accelerometers are high precision sensors with a resolution up to 10° g, where
smartphones’ accelerometer have a resolution up to 103. The smartphone sensors are limited
in their accuracy since for their technology aspects as miniaturization, robustness, low energy
consumption and low price also need to be taken into account.

4.3 TEST 1 - SENSITIVITY ACCELEROMETER

The first test will evaluate the sensitivity and tolerance levels of the smartphone in stationary
position. According to Amick et al. (2013), sensitivity describes the gain of the sensor and
tolerance levels define the sensitivity range over larger population of sensors. These
measurements regarding the sensitivity of accelerometers are sometimes already conducted,
however they are conducted by the sensors’ manufacturer prior to the accelerometers being
installed in smartphones or other mobile multimedia devices. That is why this test is set up to
assess the sensitivity of the accelerometers when embedded in smartphones. Thus, this test
will determine the sensitivity and tolerance levels of the smartphones listed in table 4.1.

4.3.1 METHOD

The sensitivity and tolerance levels can be determined by applying + 1 g acceleration (or 9.81
m/s?) to it, noting the output values, rotating the device by 180 degrees so -1 g acceleration is
applied to it, and noting the output value again. By subtracting the larger output value from
the smaller one, and dividing the result by two, the actual sensitivity of the sensor is
determined, and the sensitivity tolerances levels are described as the range of the sensitivities
within a smartphone (ST Microelectronics Technical Manual, 2008). The same method is
applied in the study of Amick et al. (2013), as they also studied the sensitivity of the
accelerometers within mobile consumer electronic devices, or Apple iPod Touch to be more
specific.

4.3.2 DATA COLLECTION

The + 1 g acceleration is applied on the sensor by simply placing the smartphone on a surface
with the smartphone screen (z-axis) pointing towards the center of the earth (1 g) or pointing
towards the ceiling (-1 g). In both situation a total g-force of 1 is measured due to the
downward-pulling gravitational force and the resulting upward reactions force of equal
strength (Vieyra et al., 2015). The acceleration values of both situations were recorded for a
period of 30 seconds to determine the amount of variation in steady state recording. This
protocol was repeated three times for each of the three smartphones.

4.3.3 DATA ANALYSIS

The sensitivity was determined by comparing the mean acceleration across a data recording
in the +1 g z-axis position to the mean acceleration of the recording in the -1 g z-axis position.
Note that when only noting the z-acceleration value, the surface on which the phone is placed
must be exactly leveled, or else some gravitational forces will be absorbed by the x and y
acceleration values. This test therefore uses the resultant acceleration value axy, of the three
axes, which can be calculated using the same formula as for the resultant vector principle, as
already discussed in section 3.3.3. Formula (2) for the resultant acceleration was applied to
the data.
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Next, the larger mean acceleration output was subtracted from the smaller mean output, and
the result was divided by 2. Further, descriptive statistics, such as mean, standard deviation
and coefficient of variation, were generated for the sensitivities within each smartphone.
Finally, since the study of Amick et al. (2013) applied the same methodology as discussed in
this test and they also researched tri-axial accelerometer’s sensitivities, their results will be
used as benchmark for this test. In the study of Amick et al. (2013), a mean sensitivity of 0.0165
was measured with a standard deviation of 0.0086 for the tested devices. The tested devices,
however, were not smartphones but multiple Apple iPod Touches originating from 2012.

4.3.4 RESULTS

The resulting sensitivities as well as the descriptive statistics for each of the smartphones is
presented in table 4.2. For more detailed results see table 8.2 of appendix lll, as it indicates
the mean observed acceleration values and resulting sensitivities of each trial.

The mean sensitivities, represented in column ‘Sensitivity’, are 0.151 with standard deviation
of 0.0087 for the Oneplus 5, 0.0005 with a deviation of 0.0056 for the Google Nexus, and
0.0125 with a deviation of 0.0023 for the HTC M9. Overall the smartphones score better than
the iPods tested in the study of Amick et al. (2013), as one would expect since these
smartphone are most probably equipped with more advance technology than the iPods
originating from 2012. Furthermore, it can be observed that all three smartphones are very
consistent across the three trials given the extremely small standard deviation. All three
devices have coefficients of variation smaller than 1%. Although it should be noted that the
standard deviation is based on only 3 trials.

Table 4.2: Descriptive statistics of test 1 results

. Sampling Sensitivity Std Coefficient of
Smartphone Trials Frequency . ..
(g) Deviation Variation
(Hz)
OnePlus 5 3x 20 0.0151 0.0087 0.87%
Google Nexus 3x 20 0.0005 0.0056 0.55%
HTC M9 3x 20 0.0125 0.0022 0.23%

4.4 'TEST 2 - FREEFALL MOTION

The second test will test if the accelerometer can detect a freefall motion, which is a type of
dynamic acceleration. A freefall motion is an object that is falling under sole influence of
gravity (1 g or 9.81 m/s?) towards the surface of the earth (Khoo Chee Han et al., 2014). Thus,
since there is no the resulting upward reaction force of equal strength as in the previous test,
all the axes values of the accelerometer should converge to 0 during the freefall. Based on this
condition, this test will evaluate how well a smartphone is capable of detecting when it is in
freefall motion.

441 METHOD

A freefall motion can be detected by using the measurements of static acceleration and
dynamic acceleration (Clifford, 2006). The change between these values can also be referred
to as the dynamic sensitivity (Khoo Chee Han et al., 2014). During the static acceleration only
gravity is acting (and a resulting counter force) and the resultant acceleration value should
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therefore be equal to 1 g or 9.81 m/s?, like the previous test. During the dynamic acceleration
there is no counter force and the resultant acceleration value should therefore be equal to 0
g or 0 m/s%. Note that the linear acceleration would be the other way around since it negate
the effects of the earth’s gravitational field, as discussed in section 3.4.

4.4.2 DATA COLLECTION

For the actual test, the smartphones where placed against the ceiling of a room with the
screen facing upward, and were then dropped towards the ground. This protocol was
repeated 5 times for each device. Figure 4.2 provides an abstract representation of the test
set-up. The recordings were each started shortly before the fall, and ended after it was
dropped. It is of utmost importance that the smartphones fall under a linear motion, meaning
that the orientation of the smartphones remains during the fall, otherwise, the acceleration
forces due to rotation should be included. If this condition was violated, another trial was
conducted.

4.4.3 DATA ANALYSIS

The data for this test was processed only using MS Excel. The freefall motion is determined by
comparing the static acceleration values with the dynamic acceleration values of all three
axes. The static resultant acceleration values are derived from a data point right before the
drop and the dynamic acceleration values from a data point during the drop. Figure 4.3 depicts
how the static (a1) and dynamic (az) acceleration values are obtained. The segment within the
dotted line represents the freefall motion, where a1 is the data point immediately prior to fall
and ayis the data point after the drop. Note that a, should be derived from a data point close
after the drop, since air resistance will influence the acceleration values in the later stages. As
one may see from the figure, the acceleration value slightly increases after a, due to air
resistance functioning as counterforce.

Freefall Motion
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Figure 4.2: Test 2 set-up
Figure 4.3: Representative Graph from Freefall Motion

After the values of a; and a; are obtained, the change in acceleration between these two data
points is calculated along the x, y and z-axes. Next, the dynamic sensitivity in acceleration is
calculated, which is the resultant acceleration value of the change in acceleration. The total
formula for calculating the dynamic sensitivity is therefore as follow:
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(J(@1-02."+(@r-a20)" 410020

9,80665

dynamic sensitivity = (6)

Note that the total resultant acceleration is divided by the force of gravity, as the smartphone’
accelerometers provide the data in m/s; instead of g. For the dynamic sensitivities of the 5
trials per smartphone, descriptive statistics, such as mean and standard deviation, are
generated. Ideally, the dynamic sensitivity should be 1 g (or 9.81 m/s?), as the values around
aishould be 1 g and 0 g around ay. The results will therefore be compared with this established
standard of 1 g.

4.4.4 RESULTS

Table 4.3 contains the resulting dynamic sensitivities as well as the descriptive statistics for
the five trials of each smartphone combined. In table 8.3 of appendix Il more detailed results
can be found of each trial separately, including the axis acceleration values of the data points
aiand a;.

Table 4.3 shows that the mean dynamic sensitivities of the smartphone are very accurate to
one thousandth of 1 g, and, in addition, are very consistent as evidenced by the very small
standard deviations ranging from 0.0045 to 0.0064. Although again, it should be noted that
these deviation are based on only 5 trials. Furthermore, it can be observed that there is no
explicit difference between the three smartphones

Table 4.3: Descriptive statistics of test 2 results

SR . Trials Sampling Mean dynamic Std Coefficient of
P frequency (Hz) | sensitivity (g) Deviation Variation
OnePlus 5 5x 20 1.0054 0.0045 0.45%
Google Nexus 5x 20 0.9992 0.0064 0.64%
HTC M9 5x 20 0.9962 0.0045 0.46%

4.5 TEST 3 - CONTROLLED ACCELERATION

Previous tests examined the smartphone accelerometers in both static and dynamic
situations. This third test will examine how accurate the smartphone’s linear accelerometers
are at detecting the frequency and acceleration-force (or magnitude) of a controlled vibration
signal, or a so-called vibratory excitation. The smartphones will be subjected to multiple
vibrational signals with predefined magnitudes and frequencies. Based on the data generated
by the linear accelerometer, the smartphones should be able to detect the same frequencies
and magnitudes as the predefined values. This test will therefore evaluate how accurate the
estimated values of the smartphone are compared to the predefined values. Thus, this test
basically examines if the smartphone’s output corresponds to the input.

4.5.1 METHOD

An electrodynamic shaker will be used to reproduce the multiple vibrational signals. These
shakers are normally used for vibration testing, in the purpose of establishing reliabilities or
testing to destruction (De Silva, 2007). This involves applying a controlled amount of vibration
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to a test specimen and monitoring the resulting response. In this test, the shaker is only used
to subject the smartphones to simple continuous vibration signals of a specific frequency and
magnitude. These characteristics of the vibration signal are also referred to as the acceleration
profile (De Silva, 2007), here as a test condition. In total, the smartphones were subjected to
10 distinctive test conditions, where each condition defines a vibration signal of a particular
frequency and magnitude. The test conditions are listed in table 4.4. The shaker will reproduce
the vibration signals in the form of a simple continuous sine wave with the characteristics of
one of the test conditions. Thus, the shaker will subject the smartphones to five sine waves
with a frequency of 5 Hz with a starting magnitude of 0,2 g raging up to 1 g, and five sine waves
with the same magnitudes but then with a frequency of 10 Hz.

Table 4.4: Test Conditions for vibration signal

Condition | Accelerationproflle | ¢,y | Accelration profle
A-05 0.2g /5Hz A-10 0.2g /10 Hz
B-05 0.4g /5 Hz B-10 0.4g / 10 Hz
C-05 0.6g/5 Hz c-10 0.6g / 10 Hz
D-05 0.8g /5 Hz D-10 0.8g / 10 Hz
E-05 1.0g/5Hz E-10 1.0g /10 Hz

4.5.2 DATA COLLECTION

The execution of this experiment occurred at the environmental test laboratory of Thales
Cryogenics in Eindhoven, as they are in possession of an ETS MPA406-M232A electrodynamic
shaker. For the test set-up, the smartphones were securely attached on the shaker table using
fixtures. The smartphones were all mounted with their screens pointing towards the ceiling,
since the recordings had to be manually started and ended. Along with the smartphones, an
accelerometer was mounted to measure and feedback the input (or control) acceleration a.
The data from this accelerometer will be used to define the exact values of the acceleration
profiles of each test conditions with an accuracy of 4 decimals. These profiles will be compared
to the acceleration profiles detected by the smartphone. The test set up for the
electrodynamic shaker is depicted in figures 4.4 and 4.5.

For the recordings, the sampling frequency of the AndroSensor app was increased to 50 Hz,
since the data for this test needs to be analyzed in more detail. Furthermore, for each test
condition three samples per smartphone were recorded for a period of 30 seconds. Thus, in
total 90 data samples were recorded, 30 samples per smartphone. Finally, this test will record
the linear acceleration instead of the acceleration, since the force of gravity is automatically
excluded from the data. This data structure is much more convenient for the analysis of the
signal’s magnitudes. In addition, since the smartphone are mounted perpendicular to the
excitation movement as depicted in figure 4.5, only the sensor data of smartphones’ z-axis
needs to be taken into account. The other axes can therefore be neglected.
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Figure 4.4: ETS MPA406-M232A Electrodynamic Figure 4.5: Test set-up where all three smartphone are mounted on
the shaker table

shaker at environmental test laboratory of Thales
Cryogenics

4.5.3 DATA ANALYSIS

The techniques for analyzing a vibration signal can broadly classified in two groups, in the
frequency and time domain (Hanly, 2016). For this test both techniques will be used to analyze
the captured signals. The frequency domain will be used to analyze the dominant frequencies
of the captured signals, and the time domain to analyze the magnitudes of the signals. After
the data is analyzed in both the frequency and time domain, an acceleration profile is defined
for each data sample, containing the frequency and magnitude detected by the smartphones.
Subsequently, descriptive statistics will be generated for these estimated acceleration
profiles. Additionally, the errors of the estimated values will be indicated, which represent the
deviation of the estimated values (output) with the true values produced by the shaker (input).
The next sections will describe the analysis in the frequency and time domain in more detail.

Frequency domain

By default, the data generated by the smartphone sensors is represented in time domain,
since the data consist as a series of data points indexed in time order. For the analysis in the
frequency domain, the data first needs to be converted from the time domain to the
frequency domain. A fast Fourier transformation (FFT) is therefore applied to the sensor data.
FFT is an algorithm for the fast calculation of the discrete Fourier transformation (DFT), which
basically decomposes a signal into its frequency components (Hanly, 2016). For this test, the
FFT is only applied to the recorded linear acceleration data of the z-axis, since the phones were
mounted perpendicular to the excitation direction.

The result after converting the time series data of the captured signal into the frequency
domain, is a frequency spectrum from 0 Hz to the half of the selected sampling rate, also
known as the Nyquist frequency. The Nyquist frequency is the highest frequency that a
captured signal can unambiguously represent, and is thus equal to half the sampling
frequency of a particular signal (Hanly, 2016). Note that when a sampling rate of 20 Hz was
used like in the other tests, the Nyquist frequency of 10 Hz would have provided some
complications. The resulted frequency spectrum represents the distribution of the vibration
amplitudes as a function of frequency (Telgarsky, 2013), and enables to perform analysis in
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the frequency domain to gain a deeper understanding of the vibration profile. Figures 4.6 to
4.8 provide three frequency spectrums generated from the sensor data of the smartphones.
The left figure represents the frequency spectrum of the HTC M9 subjected to test condition
C-10, the middle of the Google nexus subjected to test condition E-05, and the right of the
OnePlus 5 subjected to test condition A-05. Note that each spectrum is generated out of one
data sample, thus in total 90 frequency spectrums were generated.
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Figure 4.6: Frequency Spectrum from HTC Figure 4.7: Frequency Spectrum from  Figure 4.8: Frequency Spectrum from
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For the analysis in this test, the frequency spectrum is used to extract the dominant frequency
out of the captured signals, which is the frequency that carries the maximum energy among
all frequencies found in the spectrum (Telgarsky, 2013). It will rather be easy to identify these
dominant frequency, since the smartphones for this test were only subjected to vibration
signals characterized by a single frequency (5 Hz or 10 Hz). As one can see from the figures 4.6
to 4.8, The spectrums will mainly contain the single frequency at which the samples were
subjected to and some noise. The conversion to the frequency spectrum and the extraction of
the dominant frequency were done using MATLAB. The base of the developed script can be
found in appendix IV. This script with small modifications (code data sample, file-name, etc.)
was applied to each data sample.

Time domain

Normally, the frequency spectrum is also used to determine the magnitude or acceleration
force of each frequency component of a captured signal. For the analysis in this test, an
alternative approach is applied to determine the magnitude of the captured signal, since the
magnitudes derived from the frequency spectrums will not be representative. These
magnitude values will be lower than the actual magnitude reproduced by the shaker, due to
a phenomenon called ‘aliasing’. Aliasing refers to the distortion that results when the signal
reconstructed from samples is different from the original continuous signal (Hanly, 2016). This
phenomenon is caused by a too low sampling rate for the recordings. The sampling frequency
of 50 Hz is sufficient for identifying the dominant frequency (minimum of 2 times the signal’s
maximum frequency), however not for determining the magnitude. The phenomenon is best
explained visually.

The shaker will produce an excitation or vibration with a particular acceleration-force back
and forth, as can be seen in figure 4.9. The excitation is only for a very brief moment on this
specified acceleration-force also known as the peak amplitude. The recording will therefore
sometimes miss the exact peak amplitude and record a data point right after or before peak,
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as can be seen in figure 4.10. This provides a biased representation of the magnitude in the
frequency spectrum. To minimize this phenomenon, the recordings’ sampling rate could be
increased. However, if the sampling frequency is increased, the high quality of the data cannot
be guaranteed, as discussed in section 4.2.1.
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Figure 4.9:5 A sample from the OnePlus 5 of a signal with test Figure 4.10:5 Magnified segment of the red square in figure 4.9

condition C-05
Therefore, for this test is chosen to use a more simple alternative approach. The approach will
determine the signal’s magnitude in the time domain instead of the frequency domain. The
maximum and minimum amplitudes of the captured signal will be determined over 6 time
periods of 5 seconds (recordings are 30 seconds) to identify the peak amplitude of the
recorded signal. Next, the absolute mean values of these maxima and minima will be
determined. Thus, for each recording a mean magnitude will be determined based on the
maxima and minima from 6 consecutive time periods. This should be a good representation
of the signal’s acceleration force, as it is very unlikely that the recordings ‘missed’ all the peak
amplitudes.

4.5.4 RESULTS

In table 4.5 are the mean errors of the estimated frequencies and magnitudes of the 30 trials
of each smartphone presented. The frequency and magnitude error of each trial separately
can be found in tables 8.4 and 8.5 respectively of appendix Ill, including the test conditions
and their corresponding input values of the dynamic shaker. The mean errors are represented
as the corresponding unit (Hz or g) and as a percentage. Thus, for example, the OnePlus 5
estimated frequencies have a mean error of 0.0119 Hz or 0.17%, and for the estimated
magnitude a mean error of 0.0118 g or 2.24%.

Table 4.5: Descriptive statistics test 3 Results

OnePlus 5 30x 50 0.0119 | 0.17% | 0.0037 0.0118 | 2.24% 0.0067
Google Nexus 30x 50 0.0127 | 0.18% | 0.0047 0.0214 | 4.81% 0.0077
HTC M9 30x 50 0.0123 | 0.17% | 0.0043 0.0354 | 5.45% 0.0169
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As one can see from the table, all three smartphone are on average extremely accurate in
detecting the frequency of a vibrational signal, as they all estimated the frequency with an
mean error smaller than 0.2%. Moreover, when observing table 8.4 of appendix lll, it can be
acknowledged that all estimated frequency are equal or below an error 0.3%.

For detecting the magnitude, the smartphones appear to be less accurate than for detecting
the frequencies, as the mean errors are larger ranging from 2.24% to 5.45%. Additionally, it
can be observed that the OnePlus 5 is the most accurate of the three smartphone in estimating
the magnitude of a vibration signal. This was already expected since the OnePlus is the newest
phone, and is therefore most likely equipped with slightly more advanced sensors.

4.6 TEST 4 - GPS LOCATION ACCURACY

The previous three tests were intended to evaluate the motion sensors of the smartphones.
This test, together with test 5, will evaluate the accuracy, reliability and consistency of the
smartphones’ GPS receivers. This test in particular will evaluate the GPS location accuracy. The
GPS location accuracy is in this study referred to as in how accurate a position can be
determined by the GPS receiver. Basically, a GPS position is determined by distance
measurements from multiple satellites. Essentially, each satellite transmits a unique signal,
and GPS receivers measure the distance by the amount of time it takes to receive this signal.
With at least four of these independent satellite measurements, the receiver is able to
determine a user’s position, by using these distance
measurements to create the geometries of spheres
(Bauer, 2013; Korpilo et al., 2017). This process is also
called trilateration and is visualized in figure 4.11.

Nowadays, this position can be computed with an
accuracy up to 5 to 10 meters, even with low-cost GPS
receivers incorporated in todays’ smartphones if the
circumstances are favorable (Korpilo et al., 2017). This
test evaluate if this accuracy can be complied with by
the smartphones GPS Receivers by examining their GPS
location accuracies of multiple segments with varying
environments.

Figure 4.11: GPS trilateration principle
4.6.1 METHOD

The GPS location accuracy of GPS data is affected by a variety of factors. First, as one might
expect, the quality of the GPS receiver can greatly affect the accuracy of the recordings (Hess
et al., 2012; Ritchie, 2007). For example, the quality can determine the number of channels a
GPS receiver can use to track satellites. The more channels it can use, the more accurate it can
determine a GPS position. Secondly, the position of satellites at the time the data is recorded
(Bauer, 2013; Ritchie, 2007). The more satellites in view, the greater the level of accuracy. The
number of satellites naturally fluctuates, as the satellites circle the earth in a precise orbit.
Thirdly, the characteristics of the environment in which the data is recorded (Bauer, 2013;
Korpilo et al., 2017; Ritchie, 2007). GPS receivers require a direct line of sight to the satellite
to determine its position. Objects can block, reflect or weaken the signal between the receiver
and a satellite. This is particularly the case in urban environments within valleys and or
mountain slopes, where buildings can, for instance, completely block the signal or reflect the
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signal on its glass facade. Objects which are less substantial, such as tree covers or car roofs,
can weaken the signal. Another factor which particularly affects the accuracy of GPS data
generated by smartphones, is the type of smartphone and its operating system (Hess et al.,
2012). It does not directly affect the GPS data, however it does affect the performance of the
GPS Receiver, as already mentioned in section 4.2.

Taken these factors into account, the test is set up to evaluate the GPS location accuracy of
smartphones. The accuracy will be simply determined by the AndroSensor app, as it
automatically provides an location accuracy when recording location data. Additionally, the
app also indicates the amount of satellites available for that particular phone and to how many
it is connected. These aspects will also be incorporated in the evaluation as they influence the
location accuracy and therefore could clarify inaccuracies.

However, before the values of the AndroSensor app are blindly adopted for the data analysis,
it is important to validate how these values are derived. Unfortunately, the AndroSensor app
does not explain these values, although it does indicate that it directly retrieves raw sensor
data via the Android Sensor Framework using API’s (Application Programming Interface), and
that it makes no alternation to the rough data. After some research on the Android developers
platform (2017a), it was found that Android defines the (horizontal) GPS accuracy as the radius
of 68% confidence. In other words, if a circle is drawn around a derived GPS coordinate with
a radius equal to the accuracy, then there is a 68% probability that the true location is inside
the circle. Furthermore, the amount of satellites available is derived from the smartphone’s
satellite list, and the amount of connected satellites from the current state of the GPS engine
(Android Developers, 2017a). With this knowledge, these location data characteristics can be
properly used for the data analysis and evaluation.

4.6.2 DATA COLLECTION

Three street segments were chosen on which the GPS location accuracy will be determined
for each smartphone. The segments were carefully selected in the city-center of Eindhoven
based on the characteristics of their surroundings, as they could affect the GPS data. Figures
4.12 to 4.15 depict the selected segments and their environments. Segment X is characterized
by a urban environment with (semi-)high-rise buildings, segment Y by an urban environment
with medium-rise buildings, and segment Z by an semi-urban environment with low-rise
buildings and a park located next to it. It is expected that the best accuracies are acquired for
segment Z, as there are almost no surroundings that can block, reflect or weaken the signal
(see figure 4.15), followed by segment Y and segment X.

Each segment was cycled five times with all three smartphones and the GPS Trip Recorder
(see section 4.2.2) rigged to the rider. This in order to simultaneously generate the GPS data
samples, and thus to ensure that all the data is collected under the same circumstances.
During all the recordings the weather circumstances were cloudy, which most probably affect
the GPS accuracy badly, as the clouds weaken the signals of the GPS receivers.

Furthermore, as discussed in section 4.2.2, the POl-feature (Point-of-Interest) of the Trip
Recorder was used to indicate the exact start and end point of each segment, since it is
impossile to start or end all the recordings simultanously. Based on the timestamps of the POI,
the rough data sets will be filtered.
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4.6.3 DATA ANALYSIS

This test, in contrast to the others, does not require an extensive and complicated data
analysis, as all the values are already automatically generated by the AndroSensor application.
This analysis only requires 3 simple steps. First, the data retrieved from the smartphones
needs to be filtered. The data will be filtered based on the POI’s determined by the Trip
Recorder. These POl’s are characterized by timestamps, on which the data will be filtered. All
the data outside the start-timestamp and the end-timestamp of a particular segment is seen
as redundant and will be excluded.

Next, duplicates in the data samples will be eliminated. The AndroSensor collects the sensor
data with a sampling rate of 20 Hz, which is 20 datapoints per second, as discussed in section
4.2.2. However, since GPS is slightly inaccurate on 5 to 10 meters, it cannot derive a new GPS
position every 1/20 of a second. The data will therefore sometimes uses the same GPS position
for multiple data points. Eliminating the duplicate GPS data points will considerably reduce
the size of the data sets. Normally, the data will also contain vibration data and duplicates can
therefore not be eliminated. For now the duplicates can be eliminated, since only the GPS
data will be analyzed.
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Finally, the mean GPS location accuracy, the mean amount of connected satellites, and the
mean amount of available satellites will be determined for each data sample, providing 5
results for each smartphone and segment.

Ideally, the data from the smartphone would have been compared to the data of the GPS Trip
Recorder. However, since the Trip Recorder’s data sets do not automatically provide GPS
accuracies of the estimated locations like the AndroSensor app, it is rather complicated to do
so. Therefore, the smartphone data will be compared to the established standard of the GPS
being accurate up to 10 meters. Although, the Trip Recorder’s data will be used to compare
the smartphone data visually by plotting both the smartphone and Trip Recorder data using
Google Earth. This will provide a general impression of the smartphone GPS receivers accuracy
in contrast to the Trip Recorders’ accuracy.

4.6.4 RESULTS

The location accuracies, amount of connected satellites and amount of available satellites are
presented in table 4.6 of each segment based on the five trials of each phone, and in addition,
the mean values over the three segments are indicated per smartphone. The values derived
for each trial can be found in table 8.6 of appendix Ill. Additionally, the plots of all 5 trials per
segment and per smartphone can be found in figures 8.1 to 8.3 of appendix Ill.

Out of table 4.6, it can be observed that none of the three smartphones accomplished to meet
the established standard of an accuracy of 10 meters. Only the OnePlus 5 comes near this
standard with an average accuracy of 12.37 meters. The general larger accuracies could be
explained by the cloudy weather conditions when the data was recorded, as discussed in
section 4.6.2.

Table 4.6: Test 4 results GPS location accuracies

OnePlus 5 Google Nexus HTC M9

Route
Segment Accuracy  Connected | Available | Accuracy Connected Available | Accuracy Connected Available

(m) Satellites | Satellites (m) Satellites = Satellites (m) Satellites = Satellites
Segment X 13.18 14.59 32.21 22.31 7.94 24.76 15.04 9.46 21.42
Segment Y 12.28 13.93 31.99 15.91 7.81 24.78 18.75 8.21 21.56
Segment Z 11.66 16.93 32.08 12.42 8.72 24.59 13.81 9.03 21.18
Total 12.37 15.15 32.09 16.88 8.16 24.71 15.86 8.90 21.39

Furthermore, as was discussed in section 4.6.1, it can indeed be noticed that the GPS receiver
quality affects the GPS accuracy, since the newest GPS receiver of the OnePlus 5 can connect
and find significantly more satellites, which results in the OnePlus 5 to acquire better GPS
accuracies than the Google Nexus and HTC M9, as can be observed in table 4.6.

Another factor which was discussed to affect the GPS accuracy were the environmental
characteristics. It was therefore expected that the best accuracies would have been found at
segment Z, followed by segment Y and X. This assumption can be confirmed, as the best
accuracies are observed at segment Z, followed by segment Y and X, only for the HTC M9 a
better accuracy is observed for segment Y over X. The justification of the assumption can also
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be observed in the plots of each smartphone for each segment depicted in figures 8.1 to 8.3
of appendix lll, as for all smartphone the spread of the GPS data points over segment Z is much
less than for the other two segments.

When comparing the plots of the Trip Recorder with those of the smartphones depicted in
figures 8.1 to 8.3 of appendix lll, it can be observed that in general the Trip Recorder is much
more consistent in determining the location. It follows a more fluent line in contrast to the
smartphone that even sometimes strongly deviate from the cycled path, especially in the
more dense areas of segments X and Y. This could be explained by the fact the devices such
as the Trip Recorder often have built-in software which pre-process the data to aid in
determining the positioning (Bauer, 2013; Korpilo et al., 2017). The data from the
smartphones, on the other hand, is not pre-processed, as the AndroSensor app retrieves raw
data from the GPS Receiver.

4.7 TEST5 - GPS DISTANCE ACCURACY

Previous test evaluated the GPS location accuracy of the GPS receivers incorporated in
smartphones. This test will focus on another component of the GPS receiver, namely the GPS
distance accuracy. For this research, the GPS distance accuracy refers to how accurate the
distance travelled can be estimated based on GPS data. It is generally known that distances
recorded with a GPS are slightly inaccurate from the true distances travelled by a moving
object. This inaccuracy is also referred to as the GPS measurement error in literature
(Ranacher et al., 2016). This measurement error depends on the GPS receiver’s quality to a
considerable extent (Bauer, 2013; Korpilo et al., 2017; Ranacher et al., 2016). This is especially
the case with today’s smartphones, since they are incorporated with very basic receivers
(Korpilo et al., 2017). Therefore, this test aims at examining the GPS distance accuracy of the
GPS receivers incorporated in smartphones.

4.7.1 METHOD

For GPS devices, estimating the travelled distance is simply done by “connecting the dots”
between GPS coordinates and calculating the distance between them. This distance is
calculated using the ‘Haversine’ formula, which determines the great-circle distance (the
shortest path over the earth’s surface) between two points on a sphere from their longitudes
and latitudes (Cesario et al., 2017). This formula forms the basis for all distance calculation of
navigation devices. Normally, this is automatically incorporated in GPS software. However, for
this test the distance between two consecutive GPS coordinates will have to be calculated
manually based on this formula, since the AndroSensor app only provides raw data. An
additional advantage of manually calculating this distance is that the data will not be pre-
processed or manipulated by GPS software to adjust the travelled distances, which is often
the case nowadays (Bauer, 2013; Korpilo et al., 2017).

Accordingly to the Haversine formula, the distance d willl be calculated with the following
formulas:

Ao = arccos(sin ¢p; * sin ¢p, + cos ¢, * cos ¢, * cos(AR)) (7)

d=1+* Ao (8)
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Were ¢4, 1, and ¢,, A, are the geographical lattitude and longitude coordinates in radians of
two consecutive points, A4 their absolute difference, Ao is the central angel between the two
points, and r is the sphere radius or in our case Earth’s radius. Figure 4.16 provides an
illustration of the central angle A between two points, P and Q. This test will compare the
estimated distance based formulas (7) and (8) and GPS data generated with the smartphone
with the exact distance of a particular route. The error between the estimated and the exact
distance will be used to define the GPS distance accuracy of the GPS receivers.

CENTRUM
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Figure 4.16: Illustration of computing central
angle Ao Figure 4.77: Test 5 - Cycling route in Eindhoven

4.7.2 DATA COLLECTION

A route through the city-center of Eindhoven was selected on which the GPS distance
accuracies of the GPS receivers will be determined. The route is depicted in figure 4.17. The
start and end of the route are at the same point (red point). Note that all the segments of test
4 are included in this route, and therefore the data generated by cycling this route is also used
for test 4.

Just like in the previous test, the route was cycled 5 times with all three smartphones rigged
to the rider in order to simultaneously generate the GPS data samples under the same
conditions. Thus, in total 15 data samples were recorded for the cycled route. For each data
sample, the route distance will be calculated. Next, these derived distances will be compared
to the exact distance of the cycled route.

The exact distance of this route was determined with a wheel-based cyclocomputer mounted
to the bicycle. These devices are capable of measuring the distance to a high level of precision,
since the computer derives the travelled distance by simply counting the amount of wheel-
revolutions and multiplying it with the wheel’s perimeter. The computer will solely be used to
determine the exact distance of the cycled route and to demonstrate the GPS distance
accuracies of the GPS receivers.

Furthermore, the GPS Trip recorder, introduced in section 4.2.2 will be used as a benchmark
to which the performance and quality of the smartphones’ GPS receivers will be compared.
The recordings for the Trip Recorder were generated simultaneously with the smartphone
recordings. This test used, just like for the recordings in test 4, the POI feature of the Trip
Recorder to indicate the exact start and end point of the route based on timestamps.
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4.7.3 DATA ANALYSIS

For this test, the GPS data of the smartphones as well as the GPS Trip Recorder are analyzed
to determine their GPS distance accuracies. These accuracies are represented as the error
between estimated distance (based on GPS data) and the exact distance of the cycled route.
As already mentioned, the actual distance will be derived using a cyclocomputer. After each
time the route is cycled, the distance can simply be read of the device. Estimating the distance
based on GPS data, on the other hand, is a more complicated process. MS excel will be mainly
used for this process and is conducted in 2 main steps. This process will be applied to each
GPS data sample generated by the smartphones and the Trip Recorder.

First, the redundant data of each data sample needs to be eliminated. This concerns excluding
the data not relevant to the cycled route and eliminating duplicates in the GPS data. The first
is achieved by filtertering the data between the start and end point defined by the POI’s of
the Trip Recorder. Next, duplicates in the data samples will be eliminated, since only GPS data
will be analyzed, just like in the previous test.

Secondly, after the redundant GPS data is removed, formulas (7) and (8) will be implemented
in MS Excel in order to calculate the distances between the GPS data points. Subsequently,
these distances will be added up, providing the estimated route distance based on GPS data.
Finally, the GPS distance accuracies are determined based on the error of the estimated route
distance and the true distance.

For the estimated distances, descriptive statistics such as mean and standard deviation will be
generated. Addionally, the GPS data will be plotted in order to support the estimated
distances. If very deviating distances are found, they could be explained by the visual
representations.

4.7.4 RESULTS

In table 4.7 are the results presented of this test. The table contains for each device the mean
estimated distance and standard deviations of the five GPS data samples, and the GPS distance
accuracies represented as the error over the exact route distance derived from the
cyclocomputer. For the cyclocomputer no standard deviation is given, as for all five trials a
distance of 1.88 km was measured by the cyclocomputer. This illustrates the high level of
precision of the cyclocomputer. The estimated distances of each trial separately with the
corresponding distance accuracy can be found in table 8.7 of appendix Ill. Additionally, the
plots of the five trials per device can also be found in figures 8.4 to 8.7 of appendix Ill.

Table 4.7: Test 5 results of GPS distance accuracies

Device Trials Mean distance Error Std Coefficient
(km) Deviation  of Variation

Cyclocomputer 5x 1.88 - - -

Trip Recorder 5x 1.82 3.42% 0.0123 0.68%

OnePlus 5 5x 1.89 2.90% 0.0674 3.56%

Google Nexus 5x 2.00 6.35% 0.1157 5.79%

HTC M9 5x 1.88 1.23% 0.0345 1.84%
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Overall it can be observed that all three smartphone overestimate the travelled distance,
where the Trip Recorder underestimates the distance. These over- and underestimation can
be explained by looking at the GPS data plots of the devices in figures 8.4 to 8.7 of appendix
lll. It can be seen that the Trip Recorder sometimes cuts of a curve, especially at the upper left
corner of figure 8.4. The smartphone, on the other hand, sometimes deviate from the cycled
path, resulting in an overestimation of the cycled distance.

When further observing the GPS data plots it can be noticed that especially the Google Nexus
sometimes strongly deviates from the travelled path. This can also be observed in table 8.7 of
appendix I, as one trial has an distance accuracy of 16.89%. This explains the relatively high
mean distance accuracy of 6.35% of the Google Nexus, as it levels the rest of the accuracies.
If this trial is excluded, an distance accuracy of 3.72% is achieved. Thus, overall it can be
concluded that the distance accuracies of the smartphones are more than acceptable,
especially when comparing it to the Trip Recorder.

4.8 DISCUSSION & CONCLUSION

This case study aimed at testing the current sensor technology embedded in smartphones in
order to evaluate if smartphones can serve as a reliable data collection tool for BIMS, as the
system intends to rely on data to be collected from cyclists’ smartphones. In addition, since a
lot of literature acknowledges the increasing capabilities of using the smartphone as an
advanced measuring tool (Allmendinger et al., 2017; Azzoug & Kaewunruen, 2017; Johnston
& Robinson, 2015; Novakova & Pavlis, 2017), but literature supporting this statement with
testing of the actual capabilities lags behind.

Based on five tests, the case study examined the accuracy, sensitivity and consistency of the
smartphones’ sensors. Three tests investigated the smartphones’ accelerometer and two tests
the smartphones’ GPS receiver. In total three smartphones of different brands and ages were
tested in order to provide a general impression of the overall smartphone sensor quality.
These were the OnePlus5, Google Nexus 6p and HTC M9.

Test 1 and 2 analyzed the smartphones’ accelerometer to quantify the stationary and dynamic
sensitivities of the acceleration outputs respectively. For the first test, the outputs of the
devices demonstrated mean sensitivities ranging from 0.0005g to 0.0125g. Moreover, the
sensitivity values were found to be highly consistent across the multiple trials of each
smartphone, as evidenced by the low standard deviations and coefficients of variability. These
values were evaluated to be very acceptable as all three smartphone performed better than
devices test in the study of Amick et al. (2013), which was used as a benchmark. As for the
second test, the acceleration outputs indicated mean dynamic sensitivities ranging from
0.9962 to 1.0054, where in an ideal situation a dynamic sensitivity of 1g was obtained. Also
here, high consistencies over the derived sensitivities are observed across de trials of each
phone, given the small standard deviations and coefficient of variability.

The third test focused its analysis on the linear accelerometer to evaluate the accuracy of the
acceleration outputs. All three smartphones appeared to be extremely accurate in detecting
the frequency of vibrations signals to which they were subjected to, as on average an accuracy
of less than 0.2% was observed for estimating the frequencies. The accuracies for estimating
the vibrations signals’ magnitudes were slightly less as for both the HTC M9 and Google Nexus
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an accuracy of approximately 5% was observed and 2.24% for the OnePlus 5. Higher accuracies
could have been acquired for detecting the magnitudes if the maxima and minima used for
the analysis were determined over more time periods. The current magnitude accuracies,
however, are still acceptable.

Test 4 and 5 examined the smartphones’ GPS Receivers to assess the location and distance
accuracy of their GPS data respectively. For test 4, the GPS data was observed to have a
location accuracy up to 12-17 meters, where the highest accuracies were acquired for the
OnePlus 5, as expected, since the OnePlus 5 being the newest phone and therefore being able
to find and connect to more satellites. Overall higher accuracies could have been acquired if
the weather conditions during the recordings would have been favorable, as the cloudy
conditions during the execution of the tests could weaken the GPS signals. Furthermore, the
less dense route segments were characterized with better accuracies. As for test 5, the GPS
data was used to determine the distance of a cycled route and it was observed that overall
the smartphones overestimated the cycled distance by 2-3%, which is more than acceptable
as a benchmark GPS device underestimated the distance by 3%.

Thus, overall out of the five tests it can be concluded that all three smartphones are capable
of serving as an advanced measuring tool with a high level of precision. It can therefore be
stated that in general the overall smartphone sensor quality should be suitable for collecting
vibration and GPS data for the BIMS systems. However, it should be noted that all three
devices worked with an Android operating systems, the statements above can therefore not
be ensured for devices running on other operating systems such as iOS. Although, it is
expected that similar qualities will be observed, as the studies of Amick et al. (2013) and Khoo
Chee Han et al. (2014) discussed in test 1 and 2 respectively used iPod Touches which operated
on iOS and similar results were observed.
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5 FIELD EXPERIMENT

This chapter will present a field experiment which will test BIMS assessment method of
dynamic comfort mapping discussed in section 3.3 to multiple segments. In addition, the
aspects mentioned in section 3.3.3, which are expected to influence the assessment method,
will be analyzed in order to examine how these aspects should be handled. This section will
first give a short introduction of what this experiment entails, followed by its objectives. Next,
how the data is collected for the experiment, and which methods are used for the analysis.
Finally, the results of this experiment will be presented and an ending discussion regarding
these results.

5.1 INTRODUCTION

Previous chapter discussed a case study examining if the current smartphone sensor quality is
at all sufficient for collecting vibration and location data regarding the bicycle environment,
and if the sensor quality is proportional between multiple devices. The results indicated that
the current sensor technology embedded in smartphones should be sufficient for the intended
use of assessing the bicycle pavement surface conditions.

This chapter presents a successive study in the form of a field experiment, which will put the
smartphones into practice. It will examine if the assessment component of BIMS can rely on a
smartphone-based vibration measurements to assess the pavement surface quality of a
bicycle segment. As discussed in section 3.3, it will therefore use the dynamic comfort
mapping method introduced by Bil et al. (2015).

In addition, even though that the performance of dynamic comfort mapping method already
has been justified in their study on a road network with varying types of pavement surfaces,
it has to be re-examined on several aspects as one crucial condition in this study differs from
their methodology. Namely that the data on bicycle vibrations is in fact collected via
smartphones located in a cyclists’ trousers, instead of an accelerometer mounted to the front
fork of the bicycle. This entails that some additional aspects need to be taken into account
towards the computation of the DCI. This experiment will examine these aspects in order to
indicate how these should be handled regarding the method of dynamic comfort mapping for
BIMS. The next sections will only briefly indicate the essence of each aspect as they are
elaborately discussed in section 3.3.2 and 3.3.3, and in addition, how they are handled or will
be examined in this study.

The first most important aspect is the adaptation of the original DCI formula used in the
method of dynamic comfort mapping to objectively represent the measured bicycle
vibrations. Normally, only the readings of the axis perpendicular to the road surface were
included. However, since the orientation of the smartphone inside the trousers’ pocket differs
constantly per cyclist or even per trip, the readings of all three axes must be included to negate
the position of the smartphone. Hence, an adaptation to the formula was necessary, which
can be found in formula (3) of section 3.3.2 and is referred to as DClsym.

Secondly, the effect of cyclist’s weight to the measured vibrations. The DCl is normally
calculated out of data collected from an accelerometer mounted to the front fork of a bicycle.
For BIMS, on the other hand, the DCl is calculated out of data collected form smartphones
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located in cyclists’ pockets. It is therefore likely that cyclist’s weight will have a direct influence
on the measured vibrations. This experiment will collect data from multiple test riders in order
to give an indication how cyclist’s weight influences the measurement, but also to illustrate
how the DCI assessment method performs with data from multiple cyclists.

Thirdly, the effect of the bicycles used by cyclists. Originally, the vibrations were measured
near the front fork, where the surface vibrations can be detected first and therefore bicycle
characteristics could not significantly affect the measurement. However, this study measures
the vibrations with a smartphone located in cyclists’ trousers, which is near the saddle. It is
therefore reasonable to assume that the bicycle frame will affect how the vibrations are
transmitted and thus that the bicycle characteristics have an influence on the measurement.
This aspect however is not examined in this field experiment, due to the limited time frame of
this research and the assumption that these characteristics can be neglected if the data
collection community is large enough.

Fourthly, the adaptation of calculating the DCl over distance intervals instead of time intervals.
Normally, the DCl is calculated for every second of a recording, and is then linked to a location.
This approach, however, is inconvenient for BIMS, as the data will be collected from multiple
cyclists. Therefore, for BIMS, it is suggested to calculate the DCI over fixed distance-intervals.
This approach will ensure that the index values are calculated consistently among cyclists, as
the vibration data can be allocated to a specific interval based on the GPS data. In addition, it
will be easier to refer to a specific section and its corresponding index value. Nevertheless,
this experiment will examine multiple scales on which the DCI will be calculated to eventually
select the most suitable scale-configuration for BIMS.

Fifth and last aspect concerns impact of cyclists’ pedal movement on the vibration data, as the
smartphone-based vibration measurement is conducted from cyclists’ trousers while cycling.
A variant towards the original formula was therefore suggested, which incorporated the
difference in acceleration values of two consecutive points of each axis. This will reduce the
acceleration-effect of the pedal movement, since it is a relatively slow acceleration. It will
function as a sort of natural ‘filter’, filtering the pedal movement. Furthermore, a possible
additional advantage of this variant is that it could represent local extremes more clearly, since
if two consecutive points are located on the local maxima and minima than the data will
represent the peak-to-peak value instead of two (smaller) peak values. The mathematical
notation of the variant can be found in formulas (4) and (5) of section 3.3.3 and is referred to
as DClgiss. In This experiment will examine if the DClgiss performs better than the DClsym.

5.2 OBJECTIVES

The main objective of this field experiment is to serve as a Proof-Of-Concept (POC) for the
assessment component of BIMS. More specific, the experiment aims at demonstrating the
feasibility of the using smartphone sensors for assessing the pavement surface condition of
the bicycle environment. When put in context of the process flow diagram, the experiment
mainly concerns topics regarding the main ‘Process’ of BIMS and some aspects regarding the
‘Input’, ‘Pre-Process’, as depicted in figure 5.1.

Furthermore, it will evaluate if the dynamic comfort mapping method introduced by Bil et al.
(2015) for computing the vibration data to a surface quality index is suitable to be adopted by
BIMS. It will therefore examine if using this method, segments of different qualities, or of
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different pavement types can be distinguished. Moreover, a first look will be provided towards
the feasibility of using data from multiple cyclists by inspecting the similarities between these
data sets. There will also be evaluated what the most suitable distance-interval configuration
is for the DCI method, and if the proposed variant (DClgif) on the DCl method performs better
than the DClsum approach.

Bicycle Infrastructure Monitoring System (BIMS)

Field Experiment
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Figure 5.1: Field Experiment in context with BIMS process flow diagram

5.3 DATA COLLECTION

The field experiment applied the method of dynamic comfort mapping methodology inspired
by Bil et al. (2015) to four road segments in the city center of Eindhoven. The segments
consisted of 2 asphalt segments of 200 meters and 2 cobblestone segments of 150 meters,
where for both pavement types one is in good condition and one in bad condition. Figure 5.2
illustrates the locations of the segments in Eindhoven. Segment A and B are the asphalt
segments, where segment A is in bad condition as it is worn and clearly shows signs of
deterioration, and segment B in good condition as it has a smooth paved surface with no
cracks or any other form of irregularities. Segment C and D are the cobblestone segments,
where segment C is in bad condition as it has multiple places of sagging and on some places it
even misses cobblestones, and segment D is in good condition as it retiled at the end of the
summer of 2017. Appendix V depicts photos of the pavement surfaces of segments A to D in
order to support the above assertions made about the conditions of the four segments.

In line with the characterization of pavement issues of Champoux et al. (2007) discussed in
section 2.3.3 of the literature study, segments A can be characterized as a coarse road since it
will transmit continuous random excitations to the bike due to a rough but uniform surface
structure. Segment B is not characterized as it does not contain any form of pavement issues.
Segment C can be characterized as both a cracked and coarse road, since it will also provide a
series of successive impacts due to potholes and missing cobblestones. Segment D can also be
characterized as a coarse road. Even though in principle it does not contain any pavement
issues, the cobblestone surface will transmit continuous random excitations to the cyclist.
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Figure 5.2: Location bicycle segments for data collection field experiment

Since BIMS relies on data to be collected from multiple cyclists, the segments were cycled by
three test riders with varying weights for collecting the vibration data relevant for the
assessment method. The weights of the test riders are listed in table 5.1. Based on the varying
weights of the test riders, the field experiment aims to provide a first look of how the
assessment method performs with data combined from multiple cyclists. In addition, this
experiment will provide a general sense of how cyclist’s weight affects the assessment
outcome, since it is expected that their weights will affect the entity of the measured
vibrations.

In order to properly analyze the data from the three test riders, is it important that the data
is recorded consistently. The test riders therefore all rode the segments with the same bicycle
maintaining a constant speed of 15 km/h. The ‘OV-fiets’ rental bicycle offered by the NS (Dutch
Railway Agency) is used, as it represents an ordinary touring bike (figure 5.2). Each test rider
cycled each segment three times with this bicycle, generating a total of 36 vibration data sets.

Table 5.1: Characteristics of test riders

# Rider Weight (kg)
Test Rider 1 80
Test Rider 2 85
Test Rider 3 70

Figure 5.3: 'OV-fiets' rental bike of NS
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This vibration data was measured by the OnePlus5 smartphone using the AndroSensor app
with the same sampling frequency of 20 Hz as in the case study. This frequency should be
sufficient as a higher frequency will lead to more excessive noise in the data and will require
a lot of battery power, and lower frequencies for detailed information to get lost. As an
indication, the smartphone will record a data point for approximately every 21 centimeters of
road segment when cycling at a speed of 15 km/h (= 4.17 m/s) and a frequency of 20 Hz. Given
that a data point is recorded every 21 centimeters, it seems that the chance of missing a crack
is rather large. The vibration measurement however records the excitation experienced from
both the front and rear wheel of the bicycle, as the measurement is executed from cyclists’
trousers. If the recording misses the vibration caused by the crack with the front wheel, the
rear wheel will most likely record this vibrations. Thus, the chance of missing a crack is
considerably low.

In the study of Bil et al. (2015) the same speed and sampling frequency was used enabling the
results of this experiment to be compared to their results. Finally to ensure data consistency,
the OnePlus5 was located in the left pocket of the test rider’s trouser for each recording. An
example of a recording is depicted in figure 5.4. Note that in this figure the resultant
acceleration values are presented and not the DClsym values.

Furthermore, just like in test 4 and 5 of the case study, the GPS Trip recorder POI feature was
used to indicate the exact start point of each recording, as the test riders had to build-up speed
and the recordings were manually started preliminary to this event. A POl was created on the
start point of each segment. The end points of the segments were determined based on the
distance travelled indicated by the data.

Example Vibration Recording
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Figure 5.4: Example of a vibration recording segmented by distance. The data represents the resultant
acceleration of the three axes of the smartphone

5.4 DATA PROCESSING

Since in the previous chapter the GPS accuracy of smartphones already is examined, this field
experiment solely focus on analyzing the assessment of the pavement surface conditions of
the segments depicted in figure 5.2 with the smartphone-based vibration data. Before the
data can be analyzed, it first need to be processed to meaningful information, which in this
case is the DClsym values. This section indicates how the vibration data collected in section 5.2
is processed for further analysis.
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5.4.1 CALCULATION DClsum

For the assessment of the segments depicted in figure 5.2, the DClsym (Dynamic Comfort Index)
will be used to objectively represent the recorded bicycle vibrations with an index value, which
is indirectly related to these vibrations. As discussed in section 3.3.2, this index value is similar
to the index used in the methodology of Bil et al. (2015), with the exception that this index
formula includes the readings of all three axis to negate the orientation of the smartphone.
Moreover, instead of calculating the index value over time-intervals, it will be calculated over
distance-intervals, as it will be easier to combine the data from multiple cyclist. Since this
experiment yet will evaluate the most optimal scale for the distance-interval, the DClsym is
calculated for every 5 meters of data recording as a basis. This value corresponds most closely
to the scale used in the DCI calculation of Bil et al. (2015), as they calculated the index for
every second at a cycling speed of 15 km/h, which is similar to approximately an DCl for every
4.17 meters. The exact computation of the DCl index can be found in formula (3) of section
3.3.2. The calculation of the DCI was conducted using MATLAB. The base of the developed
MATLAB script can be found in appendix V.

5.4.2 COMBINING DATA SETS

For each data set corresponding to a particular road segment and test rider, the DClsym’s were
calculated. Given that the base scale for the index is 5 meters, the data sets for the 200-
meters-long asphalt and 150-meters-long cobblestone segments consisted of 40 and 30 index
values respectively. Moreover, each index value is linked to a specific distance-interval. Next,
the three data sets for each test rider for a specific segment are merged by averaging the index
values of each distance-interval using MS Excel. This results in one set of average index values
per test rider for each segment.

Note that for the calculation of the variant DClgif’s values the same procedure is followed with
the only difference that in the formula of the index value the difference in acceleration values
of adjacent data points is included. The MATLAB script for the DClgisf's calculation can be found
in appendix VI.

5.5 DATA ANALYSIS & RESULTS

After the data is processed, it can be analyzed on the aspects mentioned in section 5.1. For
each aspect there will be indicated how the data is analyzed and what the results are of this
analysis. However, before the data sets are used for the analysis, an correlation analysis will
be conducted in order to measure the strength of association between the data sets of the
three test riders.

5.5.1 CORRELATION BETWEEN DATA SETS TEST RIDERS

A correlation analysis will be conducted in order to verify the assumption that for BIMS the
data of multiple cyclist can be combined. The correlation coefficient derived from this analysis
will indicate the extent to which the data sets of two test riders tend to change together. The
correlation can range in value from -1 to +1 describing both the strength and direction of the
relationship (Niven & Deutsch, 2012). Ideally, the data sets will have a correlation coefficient
of +1 as it indicates that when an index value of one test rider increases over a specific section
the values of the other test riders also increases by a consistent amount.
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The two most widely used correlation statistic are the Pearson correlation and Spearman
correlation. The Pearson correlation measures the degree of linear relationship between
related variables, and the Spearman correlation the monotonic relationship (Bobko, 2001).
Normally, the selection correlation statistics is assessed via scatter plots (Bobko, 2001). A
matrix is depicted in figure 5.5 with the scatterplots of the total data sets from one test rider
to another test rider. Note that for the scatterplots the data sets for each test rider distinctive
to the four road segments are appended, resulting in one master data set for each test rider
containing all the derived index values. Out of the scatterplots it seems that the relationships
of the test riders’ DCl values are linear and therefore the Pearson relationship should be used.
The Pearson correlation however is based on the assumption that the data should be normally
distributed, which appears not to be the case after a quick normality test.

Therefore, since it is not clear which of the two correlation statistics should be used, both will
be measured to get a general sense of how the strength of association between the data sets.
The correlation are measured over the master data sets containing the total 140 index values
per test rider or so-called observations in statistics, and in addition, also for the data sets of
each segment separately. The results of both the Pearson and Spearman correlation over the
master data sets are listed in table 5.2 and table 5.3 respectively. The correlations coefficient
for the segment data sets can be found in appendix VII.

From both the Pearson and Spearman correlation coefficient the data tends to strongly
correlate, as correlation coefficients larger than 0.75 (or smaller than -0.75) indicates that the
data strongly correlates (Bobko, 2001). Since both correlation statistics measure coefficients
larger than 0.75 for all relationships with a significance of 0.01, there can be concluded that
indeed the data among the test riders do correlate strongly, as expected.

However, when observing the correlation coefficient of the separate segment data sets listed
in appendix VI, the data does not always seems to correlate. Note that this is solely the case
for the data sets of segment B & D, which are the segments in good condition. Although these
low correlation coefficients can be explained due to the low amount of variability in de data
sets of segment B & D, often termed ‘range restriction’ or ‘truncated range’ (Goodwin & Leech,
2006). It is natural that on good surface less data spread is examined, since the data sets will
contain no or less extreme values on which the correlation coefficient benefits.

This phenomenon can easily be identified by measuring the spread or range of the data sets.
In table 5.4 the ranges for the data sets of each segment is presented. As one can see the
average ranges of both segment B & D are lower than for the segments A & C respectively of
the same pavement surface type. Note that the range of segment D does not much differ from
segment C, however this is mainly caused by test rider 2 with the large range of 0.350.

Nevertheless, the assumption that data from multiple cyclist can be combined can be justified
based on the derived correlation over the master data sets. Moreover, it can therefore be
justified to combine the data sets of the test riders in further analysis.
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Figure 5.5: Scatterplot Matrix of the master data sets of the three test riders

Table 5.2: Pearson Correlation Coefficients of DClsm values
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Table 5.3: Spearman correlation coefficient of DClsym values

between test riders

Test Test Test Test Test Test
Rider 1 | Rider 2 | Rider 3 Rider 1 | Rider 2 | Rider 3
Pearson Correlation 1 827" 848" Spearman Correlation 1,000 832" 851"
Test : : Test : .
Sig. (2-tailed Sig. (2-tailed
Riger 1 219 ) ,000 0000 | rigerq 59 ) ,000 ,000
140 140 140 140 140 140
Pearson Correlation 827" 1 8017 Spearman Correlation 832" 1,000 801"
Test : : Test : .
Sig. (2-tailed Sig. (2-tailed
Ridero 219 ) ,000 000] | rigers 59 ) ,000 ,000
140 140 140 140 140 140
Pearson Correlation 848" 801" 1 Spearman Correlation 851" 8017 1,000
Test : : Test : .
Sig. (2-tailed Sig. (2-tailed
Riders o9 ) ,000 ,000 Rigers 9 ( ) ,000 ,000
140 140 140 140 140 140
**_Correlation is significant at the 0.01 level (2-tailed). **_Correlation is significant at the 0.01 level (2-tailed).
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Table 5.4: Range statistics of segment data sets

Segment N Range | Minimum | Maximum
TestRider 1 40 336 185 521
TestRider 2 40 339 ,265 ,604
SegmentA ;
TestRider 3 40 281 216 497
Average 40 ,319 - -
TestRider 1 40 215 ,381 ,596
TestRider 2 40 ,090 526 ,616
SegmentB .
TestRider 3 40 197 426 ,623
Average 40 ,167 - -
TestRider 1 30 250 ,205 455
TestRider 2 30 287 ,180 467
Segment C .
TestRider 3 30 217 187 404
Average 30 ,251 - -
TestRider 1 30 162 334 497
Test Rider 2 30 350 270 ,620
Segment D -
TestRider 3 30 ,206 ,353 ,560
Average 30 ,239 - -

5.5.2 DClsum PERFORMANCE BASED ON VIBRATION DATA OBTAINED FROM SMARTPHONES

This experiment calculated the DClsym values of four segments based on the method of
dynamic comfort mapping, as described in section 5.3. In order to properly evaluate the
overall performance of the DClsym, it will be compared to the DCI methodology used in de
study of Bil et al. (2015), as both indexes still represent the basic principle of objectively
representing the recorded bicycle vibrations. Ideally, the performance of the DClsum based on
smartphone data would have been compared to the same values derived with the
methodology of Bil et al. (2015), namely with data retrieved from an accelerometer fixed to
the bicycle’s front fork. However, due to the lack of an professional accelerometer, this could
not be accomplished and therefore the DClsum values will be compared to the DCI values
derived in their study for segments of the city of Olomouc located in Czech Republic. Even
though the bicycle infrastructure of the Czech Republic is not comparable to the Dutch cycling
infrastructure, comparing the DCI values of this experiment with their study will provide a
general sense of how well the method of dynamic comfort mapping performs with data
collected from smartphones.

Figure 5.6 depicts a table from the study of Bil et al. (2015) with the DCI values derived from
11 distinctive segments. The four road segments depicted in figure 5.2 will be compared to
the segments with the most corresponding description described in the ‘Surface Type’ column
of the table. Therefore, based on the conditions depicted in appendix V, the DClsum calculated
for segment A will be compared to DCI value with ‘Section ID’ 4, segment B with number 11,
and segment D with number 2 as they represent the index value of worn asphalt, ‘normal’
asphalt and new cobblestones respectively. For segment C there is no explicit comparative
segment. Although, section ID’s 7 has the most comparable surface type and is therefore used
to compare the DClsum values derived for segment C. The comparative sections are also
indicated in figure 5.6.
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For the analysis, the data sets containing the combined DClsum values for each test rider of a
particular segment will be merged to one, resulting in the data sets to represent the average
derived index values for a specific segment. Next, the data sets will be compared by generating
the same descriptive statistics as depicted in figure 5.6: minimum value, mean value, median
value, maximum value and standard deviation. The descriptive statistics of segments A, B, C
and D are presented in table 5.5.

Section I Length Surface type DCI walues
(m) Pelimirmum Mean Median Maximum Standard
value value value value deviation
1 208 Old small granite cobblestones 0.2454 0.3861 0.3753 0.5841 00809
[2 371 MNew cobblestones 04604 0.G922 0.7037 0.9206 0.0892] Segment D
3 333 Old large granite cobblestones 02015 0.3258 03203 0.4994 L0655
[4 133 Wiorn asphalt 06057 0.7332 0.7441 0.8442 0.0634 | Segment A
5 466 Uneven asphalt (L3868 0.7945 08172 0.9026 00911
5 212 Interlocking concrete pavement 0.52849 0.7108 07127 0.8119 00645
7 185 Uneven interlocking concrete L3172 0.6043 06152 0. 7880 (L0a6S
pﬂ.'u't'mL‘I'I[
8 B5 Unpaved path (4496 0.6452 0,680 08131 (055
a9 170 Old large granite cobblestones 02083 03125 03016 04261 00G11
10 448 Old small granite cobblestones (L2854 0.4631 0.4536 0.6677 LOg18
| 11 626 Asphalt L6928 0E8132 0.8192 0.9100 0.0544| Segment B

Figure 5.6: Derived DCl values from study of Bil et al. (2015)

It can be directly observed that in general the DClsym values are 0.2 to 0.3 lower than the DCI
values derived in the study of Bil et al. (2015), indicating that more severe vibrations are
recorded from the cyclists’ pocket than from the front fork of the bicycle. Typically, one would
expect less vibrations as some vibrations are absorbed by the cyclists. This would however
results in higher index values, as the index represent the inverse value of the measured
accelerations. One possible explanation for this could be that the pedal movement of the
cyclist has a more severe effect on the vibration-measurement than expected, as the pedal
movement is a constant movement and the index values are consistently lower given the
similar standard deviation.

However, the lower DCl values can rather be explained by the fact that in general more intense
vibrations are recorded near the saddle than near the front fork of the bicycle, as the in the
literature discussed study of Lépine et al. (2015) revealed. Near the saddle, the vibrations of
both the front and rear wheel are measured, where in contrast to near the front fork, mainly
the vibrations of the front wheel are measured. Another possible contributing factor is that
including the acceleration values of all three axes, instead of only the axis perpendicular to
the pavement surface, results in more vibrations to be recorded, since a crack most likely
causes not only vertical bicycle vibrations but also horizontal vibrations.

Table 5.5: Descriptive statistics of DClsum values

Section Length = Surface type DCI values
bl Minimum | Mean Median | Maximum | Standard
value value value value deviation
Segment A 200 Worn asphalt 0.2220 0.4039 0.4089 0.5161 0.0639
Segment B 200 Smooth asphalt 0.4445 0.5353 0.5353 0.5746 0.0245
Segment C 150 Uneven cobble stones 0.1908 0.3629 0.3763 0.4304 0.0520
Segment D 150 New (retiled) cobblestones | 0.3506 0.4473 0.4482 0.5153 0.0419
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Nonetheless, if solely is focused on table 5.5, there can be seen that the bad segments can be
clearly distinguished from the good segments, as segment A is lower than segment B and
segment C lower than segment D. Moreover, the asphalt segments can be distinguished from
the cobblestone segments, when looking at the good and bad segments separately. Finally,
interesting to note that segment A of worn asphalt on average scores lower than segment D
of new cobblestones.

5.5.3  DClsum SENSITIVITY TO CYCLIST'S WEIGHT

For BIMS the DCI is calculated with data collected from smartphones located in cyclist’s
trousers. It is therefore likely that the cyclist’s weight will have a direct influence on the
measured vibrations, as elaborately discussed in section 3.3.3. In section 5.3, the DClsym’s of
the four segments were calculated with smartphone-based vibration data collected from
three test riders. Since it is expected that cyclist’s weight tends to affect the vibration data,
this section will analyze the extent to which the DClsum values are sensitive to the weights of
the test riders.

For the analysis, the test riders’ data sets containing the index values will be analyzed by
comparing the mean index values and standard deviation separately and combined for the
segments. Moreover, it will also be analyzed visually by generating grouped boxplots of the
index values for each segment and test rider separately. The boxplot is depicted in figure 5.7
and the average index values in table 5.6. Note that the columns indicated with ‘N’ represent
the amount of index values for that particular segment, as for each 5 meters a DClsum is
calculated. Thus, as discussed in section 5.4, the data sets of each test rider per segment
contains 40 or 30 index values.

As can be seen in both the table and the boxplot, the raking from highest to lowest mean index
values for the test rider is almost consistent over each segment. Test rider 2 always has the
highest index values, followed by test rider 1 and test rider 3. Only over segment B the ranking
is slightly different as test rider 1 has the lowest mean. Notice that when looking at table 5.1
of section 5.2, the same raking can be observed over the weights of the test riders, where test
rider 2 is the heaviest and test rider 3 the lightest. Moreover, notice that all standard deviation
are approximately equal for all test riders per segment. It therefore appears that weight
indirectly affects the measured vibrations with a constant factor, as when the weight increases
the measured vibrations decreases.

Furthermore, what is more noticeable in the boxplot than in the table is that for the
cobblestone segments the spread between the mean index values of the test riders is much
lower than for the asphalt segments. For the asphalt segments A and B the range is 0.0894
(=0.3604-0.4498) and 0.0536 (=0.5147-0.5683) respectively. For cobblestone segments the
index values range is 0.0296 (=0.3479-0.3775) for segment C and 0.0381 (=0.4310-0.4691) for
segment D. This could be explained by the fact that over cobblestone segments cyclists
experience more consistent vibrations than over other pavement types, resulting in weight to
play a lesser role.
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Table 5.6: Summary index values per test rider for each segment

20

00

Segment

Figure 5.7: Boxplot of mean index values of the test riders clustered per segment

5.5.4 DClsum DISTANCE-INTERVAL CONFIGURATION
In both section 3.3.3 and 5.1, the aspect involving the computation of the DCI over distance
intervals was discussed. Normally, in de study of Bil et al. (2015), the DCI was calculated for
every second of a recording, and is then linked to a location. This approach, however, is
inconvenient for BIMS, as the data will be collected from multiple cyclists. Therefore, for BIMS
the data is linked to fixed distance sections. This approach will ensure that the DCl’s are
calculated more consistently among cyclists. In addition, it will be easier to refer to a specific

Test Rider 1 | 40 0.4015 0.0737 40 0.5147 0.0395 30 |[0.3635 0.0611 30 [0.4418 0.0423
Test Rider 2 | 40 0.4498 0.0712 40 0.5683 0.0234 30 |0.3775 0.0600 30 [0.4691 0.0783
Test Rider 3 | 40 0.3604 0.0618 40 0.5231 0.0332 30 |[0.3479 0.0490 30 [0.4310 0.0435
Total 120 |0.4039 0.0777 120 |0.5353 0.0401 90 |0.3629 0.0576 90 (0.4473 0.0588
o
60
Test Rider

T ET1

T2

o 0 T3

8 |
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section and its corresponding DCI. As a basis the DClsum Was calculated for every 5 meters of
bicycle segment. In this section, multiple scales will be analyzed to propose the most suitable
scale for BIMS.

Besides the 5-meter scale, the DClsym’s is calculated over distance-intervals of 10, 25 and 50
meters. For the calculation the same procedure is followed as in section 5.4.1. The segments
and the different distance-intervals are plotted in figure 5.8 to 5.11. Each figure plots a
segment against distance with the corresponding DClsum values over different interval scales.
Ideally, the base scale of 5 meters is used for BIMS, as it will identify more detailed information
about the pavement surface. This will ensure that surface defects are more easily observed by
extreme index values, as can be seen with segment A in figure 5.8 around 160 meters.

The GPS inaccuracy smartphones however makes this scale less optimal as BIMS relies on data
to be collected from cyclists’ smartphones. In the case study it was observed that these GPS
receivers can be inaccurate up to approximately 15 meters. This inaccuracy can cause the
DClsum to be calculated with data which originally corresponds to a different section. With
small GPS inaccuracies this will not be a major issue, as it only causes some overlap of data
included for the index calculation. However, inaccuracies of 15 meters can have greater
impacts on the derived DCI values. The interval scales of 5 and 10 meters are therefore not
optimal for BIMS. Note that the GPS inaccuracy is not an issue in this field experiment as the
data was processed based on timestamps instead of GPS positioning.

Out of the two remaining options, it is proposed to select the 25-meter scale to divide the
route segments, as the 50-meter scale can cause outliers to be leveled off by the rest of the
data. This can be clearly observed in figure 5.8 of segments A, as around 20 and 160 meters
the index value is leveled off when the scale is increased. On the other hand, outliers can also
cause data to be leveled off in such way that the whole segment is indicated as bad. This can
be observed in figure 5.10 of segments C around 40 meters. This however is more preferred
since the section’s index will indicate that there is a problem. Thus, the most optimal seems
to calculate the DClsum over sections of 25 meters, considering the discussed aspects.

Segment A
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o
o
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5 Meters 10 Meters 25 Meters 50 Meters

Figure 5.8: Segment A index values over different interval scales
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Figure 5.9: Segment B index values over different scales
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Figure 5.10: Segment C index values over different scales
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Figure 5.11: Segment D index values over different scales
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5.5.5 DCI PERFORMANCE BASED ON DIFFERENCES IN ACCELERATION DATA

In section 3.3.3 the aspect concerning the pedal movement of the cyclist was discussed, as it
was expected to influence the outcome of the DCl assessment methodology. A variant
towards the DClsum formula was therefore suggested, which incorporated the difference in
acceleration values of two consecutive points of each axis in order to reduce the effect of the
pedal movement. Moreover, an additional expected benefit of the variant was that it will
better identify extreme values. The variant is referred to as DClgifr and its formula and more
information can be found in section 3.3.3 of this study. This section will analyze if the variant
DClgiss performs better than the DClsym by comparing the values calculated with the DClsym and
DClaitf.

Based on the reasoning that the DClgis formula should reduce or naturally “filter’ the effect of
the pedal movement and identify extremes more clearly, the DClgits values should on average
be higher for the segments in good condition and lower for the ones in bad condition than the
index values derived with the DClsum formula. Thus, the DClgi¢ values for segment B and D
should be higher than the DClsum values, and for segment B and D they should be lower. This
section will analyze if these statements can be confirmed.

Even though in the previous section it was concluded that the index should be calculated over
sections of 25 meters, the two approaches will be compared on the 5-meter scale in order to
compare them in more detail. Thus, the DClgifs is also calculated over 5-meter sections. By
generating the same descriptive statistics for the DClgi as for the DClsum listed in table 5.5, the
two approaches will be compared. Besides these statistics, also graphs of each segment with
both derived DCI values will be plotted in order to demonstrate if indeed the DClgi better
identifies extremes, and it also better provides a quick graphical display of the difference
between the two indexes. The descriptive statistics of DClgiss are listed in table 5.7 and the
graphs are depicted in figure 5.12 to 5.15.

From the graphs, it can be seen that in general DClgitr performs similarly to the DClsum, as it
follows the same trend line. This observation can be supported by the descriptive statistics of
table 5.7, as similar standard deviation for the segments are observed for the calculated DClgi
values as for the DClym values (presented in table 5.5), with the exception for segment B.
Proportionally, for segment B a twice as big standard deviation is found. The larger spread of
index values can also be observed in the graph of segment B depicted in figure 5.13, only it
seems that in general it follows the same line. In order to quickly check this last assumption,
the degree of relationship between the two index values derived for segment B is determined
with both Pearson’s and Spearman’s correlation. The Pearson’s and Spearman’s correlation
coefficient are 0.891 and 0.845 respectively, and are significant at the 0.01 level, indicating
that indeed the DClgir and DClsum values of segment B tend to change together.

Furthermore, as expected, the DClgi¢f indeed provides higher values for the segments in good
condition and lower for the ones in bad condition, with the exception for segment D. The latter
could be explained by the fact that the DClgitr variant is based on changes in acceleration (or
vibrations) and the cobblestone segments continuously transmit small vibrations to the cyclist
due to its rough surface, as was indicated in section 5.3. When cycling on an asphalt segment
a cyclist does not experience these kind of small continuous vibrations due to the surface, and
therefore results in a better DCI.
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Moreover, it was expected that the DClgiss values better identified extreme values in the data.
From the graphs, one can see that every time a local minimum is identified by the DClsum, the
DClgiss indicates a more extreme minimum. For example at distance section 160-165 of
segment A, where for DClsym a value of approximately 0.22 is calculated and for DClgissa value
of 0.17. Another example can be observed at distance section 40-45 of segment C.

Even though the new variant appears to perform as expected, the new variant performs in
general much worse than the values derived with the DClsym formula, and therefore also
regarding the DCIl values derived in the study of Bil et al. (2015). Segment B is the only one
which is evaluated better based on the new approach and even its average index value is not
even close to which segment B was originally compared in section 5.5.2.

Table 5.7: Descriptive statistics of DClgig values

Segment A | 0.1698 0.3349 (0.3343 |0.5173 0.0785
Segment B | 0.3757 0.6082 |(0.6133 |0.7126 0.0592
Segment C | 0.1304 0.2968 (0.3047 |0.3771 0.0506
Segment D | 0.3228 0.4027 |[0.4045 |0.4924 0.0363
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Figure 5.12: DClsum and DClgigs values over segment A
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Figure 5.13: DClsym and DClgig values over segment B

Segment C
1 DClsum DClIdiff
0.8
0.6
o]
o
0.4
0.2 b
0
0 20 40 60 80 100 120 140

Distance (m)

Figure 5.14: DClsum and DClgg values over segment C

Segment D

Ny smmmamase DCISUM  ememmee DCIdiff

0.8

0.6
o]
o

0.2

0

0 20 40 60 80 100 120 140

Distance (m)

Figure 5.15: DClsum and DClgys values over segment D
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5.6 DISCUSSION & CONCLUSION

The goal of this field experiment was to demonstrate the feasibility of the assessment
component of BIMS, discussed in section 3.3. More specific, the method of assessing the
pavement surface condition of the bicycle environment based on the dynamic comfort
mapping method introduced by Bil et al. (2015). Overall it can be concluded that the field
experiment achieved to demonstrate the feasibility of the assessment component of BIMS, as
clear distinctions were observed between the good segments and bad segments based on the
DClsum values calculated with vibration data collected from smartphones. In addition, based
on the strong correlations found between the data sets of the test riders, the experiment
achieved to illustrate the workability of combining data gathered from multiple cyclists. Based
on the literature findings, and the results and experience gained from the field experiment,
the sixth and seventh sub-research question can be answered.

Another goal of the experiment was to re-examine the method on four aspects, due to the
principal difference of using smartphones in this study for the vibration measurement instead
of an separate accelerometer, as discussed in section 3.3.2 and 3.3.3. These aspects were
examined in order to evaluate if and how the method should be adjusted before it is adopted
for BIMS.

First and foremost, the original formula was altered so it would include the readings of all
three axes of the smartphones in order to negate the smartphone orientation, as originally
the orientation of the measuring device stayed fixed during the recordings and only
acceleration outputs perpendicular to the road surface needed to be included, while for BIMS
the smartphone position is basically unknown. The new formula is referred to as DClsym. The
field experiment tested the altered method over 4 road segments in city-center of Eindhoven
to evaluate the appropriateness as well as the performance of the method for BIMS. The
performance was evaluated by using some outcomes of the study of Bil et al. (2015) as
benchmark to which the DClsum values of the four road segments were compared. The DClsym
values were calculated from vibration data collected from three cyclists with varying
characteristics, as BIMS will rely on data to be collected from all day cyclists. Overall it was
observed that the altered method performed significantly worse in contrast to the method of
Bil et al. (2015), as the DClsum values were considerably lower than the DCI values of the
selected matched segments, indicating that more intense acceleration are recorded in the
field experiment. This was explained by the fact that more intense vibrations are experienced
near the saddle than the front fork. Even though the DClsum performed badly, the experiment
was able to clearly distinguish the segments of different quality and of different pavement

types.

Secondly, based on the literature of chapter two, it was expected that the cyclist’s weight will
have an direct influence on the entity of the recorded vibrations, as the smartphone-based
vibration-measurement is conducted from cyclist’s trousers. The experiment therefore
analyzed the index values calculated from data of three cyclists with varying weights. Out of
the analysis, it was concluded that in general weight dampens the vibrations, as improving
index values were observed with increasing weights. This will however be of less interest for
the total BIMS, as it is expected that if the community collecting the data is large enough, the
noise effect of cyclist’s weight on the index values will automatically be averaged out. This
latter statement however requires further inquiry in order to be certain on this matter.
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Thirdly, it was suggested to calculate the DClsym over distance-intervals instead of time-
intervals, as it will be easier to allocate the data from multiple cyclists. The experiment
examined the ideal distance configuration over which the DCI will be calculated. Eventually, it
was concluded that distance sections of 25 meters were the most suitable for BIMS, as with
larger distances the index value will level off extreme values too much and with smaller
distance the GPS inaccuracy of smartphones will become an issue of concern.

Fourthly, as the literature review of chapter 2 showed that the pedal movement of cyclists
could have an influence on the recorded vibrations, an alteration to the DClsym Was suggested,
which was intended to naturally ‘filter’ the pedal movement. The field experiment examined
if the DClgis formula would better represent the segments pavement surface conditions. The
contrary was observed as the DClgiss formula provided worse index values for those segments
on which continuous vibrations are experienced due to their coarse characteristics. It
therefore seems that the DClgits variant mainly weighs vibrations heavier, and in addition, does
not filter the pedal movement. The latter however cannot be stated with certainty as it was
not researched in this experiment. It could for instance also indicate the contrary, namely that
the pedal movement does not has a severe effect on the recorded vibrations. Further inquiry
is required in order to get a definitive answer.

5.7 LIMITATIONS

The literature review in chapter 2 revealed that besides the characteristics of the cyclist and
condition of the road, also the bicycle characteristics could be of influence on the vibrations
experienced as a cyclist. The study of Bil et al. (2015) however showed the contrary as no
significant difference between bicycle types was observed. It would therefore have been
interesting to investigate the effect of different bicycle types on the experienced vibrations,
though since more factors also had to be taken into account, the experiment would become
too large. Although it is advised to re-investigate the influence of bicycle type on the DCI
outcome in order to be definite on the matter.

Another factor which appeared to affect the entity of the vibrations, was the speed of the
cyclist at which the data was recorded. The literature indicated that with increasing speeds
more severe vibrations were experienced. This was confirmed by the study of Bil et al. (2015).
Since the results of this study were intended to be compared to the results of the study of Bil
et al. (2015), the same data recording conditions were maintained. The relation between
speed and the DClsym however should be researched, as BIMS collects data from multiple
cyclist and they will not all maintain cycling speeds of 15 km/h while collecting data.

Finally, this field experiment was restricted to only conduct the vibration measurement with
a smartphone located in cyclist’s trousers to measure the vibrations. In reality, not every
cyclist will have his/her smartphone located in their trousers, as they might also be located
inside a cyclist’s backpack or purse for instance. This will most likely affect the vibration
measurement in how severe the vibration are measured. It is therefore advised to also
research the effect of the smartphone location on the vibration measurement. This can imply
some limitations to BIMS, as for instance the method’s reliability only can be assured if the
smartphone is located in a trouser.
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6 CONCLUSIONS

6.1 GENERAL CONCLUSION

The objective of this research was to provide a strong foundation for a ‘Bicycle Infrastructure
Monitoring System’ (BIMS) capable of continuously collecting, analyzing and monitoring asset
condition data regarding the bicycle pavement surfaces. Furthermore, to provide a first look
towards the feasibility of the assessment component of this BIMS, which includes the
assessment of the bicycle pavement surfaces based on vibration data collected through
cyclists’ smartphones located in their trousers. The main research question in order to satisfy
this study’s objective was therefore as follow:

“Can the pavement quality be indicated with a set of individual vibration measurements
using internal smartphone sensors, and is it possible to convert these measurements into a
surface quality index, for the benefit of collecting asset condition data regarding the bicycle
pavement quality?”

First the sub-research questions are answered as they were defined in order to support the
main research question.

e How is pavement and its condition related to cyclists’ level of comfort and safety
according to current literature?

In order to provide an answer to this question, the results of an extensive literature review
have been presented in chapter 2. Many articles were reviewed to find out how pavement is
related to cycling comfort and safety. Remarkable is that many researchers often combine the
terms safety and comfort, but do not substantiate how they are interrelated. An own
interpretation was therefore made regarding the relation between comfort and safety based
on the reviewed articles in order to better indicate how pavement is related to the two. The
relation was defined as cyclists’ level of comfort not only being related to the ease of cycling,
but also to cyclists’ subjective levels of safety, and that cyclists’ level of safety itself
represented the objective levels of safety. Hence, it was stated in section 2.5 that when
referring to cyclists’ level of comfort in this study, the relation to the ease of cycling is meant.

Based on this terminology, the literature showed that most research relates pavement to
cyclists’ level of comfort, as bicycle vibrations are for cyclists the most important cause of
discomfort and uneven pavement is the main reason for these vibrations to occur. As the
bicycle vibrations increases, comfort decreases. Cyclists perceive the pavement condition by
means of vibrations the surface transmits to them, hence why researchers attempt to indicate
the pavement conditions based on its vibration properties. Moreover, the comfort issues
related to pavement also affect route-choice behavior of cyclists, as cyclists are prepared to
make a detour to a certain level if more route-comfort is assured. Furthermore, only few
researchers also relate pavement issues to cyclists’ level of safety. Although these articles are
more related to severe cases of pavement issues or damages where cyclist’s safety
undoubtedly is compromised.
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e  Which factors influence the vibrations transmitted from the pavement surface to the
cyclist?

As already discussed in the previous question, the most common factor for the vibrations
experienced as a cyclist is the condition of pavement itself. Basically, two different types of
vibrations can be identified from the literature, namely the vibrations directly associated with
a particular pavement surface structure and the vibrations associated with pavement issues.
The vibrations due to pavement issues can then be further divided into vibrations as a series
of successive impacts due to a cracks or other surface defects and as a continuous random
excitation due to a coarse road.

Other factors which were defined to influence the vibrations transmitted to the cyclist were
weights of the cyclists and the bicycle. The first was also observed in the field experiment, as
vibrations were damped when cyclist’s weight increased. The latter refers to characteristics
such as the mass, tire pressure, and stiffness of the frame. Logically the suspension will also
have an effect on how the vibrations are transmitted if present.

o What is the current practice for assessing the bicycle environments’ pavement surface
condition?

Since the literature was short of information regarding the current practice for the assessment
of bicycle environment’s pavement conditions, three interviews were conducted with experts
in the field of road management. This in order to gain more knowledge on the subject and to
provide a more adequate answer for this question. Thus, out of the proceedings of both the
literature and the expert interviews it was learned that currently the pavement condition is
assessed through visual inspections. The expert interviews provided more specific knowledge
on the matter by indicating that these inspections are mostly conducted by car driving at crawl
speed or foot, and sometimes by high definition video footage in order to minimize the
obstruction of traffic. Moreover, during these inspections all the sections of the roads are
inspected simultaneously. It is advised to inspect closed pavements once a year and open
pavements once every two or three years. The higher frequency of closed pavements is
because of the risks of higher associated costs due to negligence.

These inspections, however, are not the triggering factor on the decision if maintenance is
conducted. A road manager makes the final call with a ‘measurement assessment’ in which
he/she assesses if maintenance is necessary and if he/she deems it to be executed.
Unfortunately, because governmental authorities overall have limited funds for road
management, the road manager must make priorities in which roads they deem to be
maintained. The prioritizations can differ from authority to authority.

o What are state-of-the art bicycle monitoring technologies for collecting asset condition
data regarding the bicycle environments?

This answer will be limited to only the technologies that have been proven in the field.
Basically two distinctive state-of-the art bicycle monitoring can be identified out of the
literature, namely the IPB’s (Instrumented Probe Bicycles) and crowdsource-based monitoring
technologies. The IPB technology uses simple bicycles equipped with high-performance
sensors capable of measuring, gathering and recording data about the environments in which
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the sensors find themselves in order to generate and provide reliable objective data regarding
the bicycle environment. Mostly, IPB’s are equipped with simple sensors like accelerometers
and GPS receivers to measure bicycle position and vibrations, just like this study in order to
assess the pavement conditions.

The crowdsourcing monitoring technologies on the other hand, use public platforms to
outsource work to open communities in order to gather asset condition data about the
environment. Mostly in the form of a smartphone-app, which is an excellent technique for
distributing the platform as almost everyone in the world is in possession of a smartphone.
The amount of effort an user has to commit to provide asset condition data varies per
technology, which also logically affects the amount of data the technology acquires. The more
effort, the more data it can acquire. Additionally, the amount of effort also affect the response
rates of users. The more effort, the lower the response should be expected.

e How reliable is the smartphone as a data collection tool for BIMS?

In order to provide an answer to this question, a case study was conducted, as the literature
only indicated that current sensor technology is progressive and contains no further
information regarding the actual reliability. As for BIMS only vibration and location data needs
to be collected, the case study only tested smartphones’ motion and location sensors based
on five test. Based on the results of the motion tests, it can overall be concluded that
smartphones are capable of measuring accelerations with high level of precision, as for the
motion sensors considerable low sensitivities and accuracies were observed with high
consistencies. The results of the location sensors provided relatively sound results, as it is
generally known and accepted that GPS data can be inaccurate to a specific level. Although
the three tested smartphones provided an overall impression of the reliability of smartphones,
it should be noted that it cannot entirely be assured that similar reliabilities are acquired with
all smartphones.

e What are the benefits and drawbacks of the smartphone-based vibration measurement
for determining the pavement surface condition compared to the current practices?

For this answer the smartphone-based vibration measurement is compared to both the
current practice of assessing the bicycle environment on pavement surface conditions and the
state-of-the-art bicycle monitoring technologies dealt with in the previous questions’ answers.
First and foremost, compared to the current practice of visual inspections, the smartphone-
based vibration measurement is a much more resource efficient manner of assessing the
pavement conditions as the smartphone-based assessment is conducted while cycling instead
of on foot or by car driving at crawl speed. This makes it less labor-intensive and more efficient,
as no designated inspector is needed, and the assessment is conducted at a higher speeds
enabling to cover more surface in less time. Secondly, the smartphone-based vibration
measurement will most probably provide more reliable assessments, as it is an objective
method in contrast to the subjective visual assessments. Thirdly, the current quality of the
bicycle environments’ pavement will be better maintained or even improved based on the
intended crowdsourced data collection model, as it will continuously monitor the pavement
conditions. This results in hazardous and poor segments, and defects to be spotted faster,
enabling road managers to act faster keeping the maintenance measure costs low, since for
some damages the costs can rise considerably if not acted quickly. Meanwhile, the visual
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inspection is only conducted once every 1-3 years depending on the type of pavement.
Fourthly, the method can provide more valuable data in addition to data about the pavement
conditions, as the location data of the vibration measurement can be used to evaluate bicycle
movements and bottlenecks. Finally, this data can also easily be transferred to be used by
other applications, such as traffic models.

The drawbacks of the vibration measurement on the other hand are that first the vibration
measurement depends on cyclist’s lateral position and given that, the state of a cycle path can
vary laterally, the vibration measurements can fail to record certain surface defects, as cyclists
usually avoid defects if possible. Although, since for the assessments the acceleration
recordings of all axes of the smartphone are included, sudden lateral movements will be
recorded. Secondly, no distinction can be made between damages based on the data, which
is the case for the visual inspections, and in addition, out of the visual inspection directly
follows what kind of maintenance measure is advised regarding the perceived surface defects.
The latter however can be nullified as the road manager performs a second inspection in the
form of a ‘measurement assessment’ on the segments in need of maintenance followed out
of the visual inspections. The second round could be employed to define the surface defects
and the associated advised maintenance measures.

Thus, the smartphone-based vibration measurement is overall in contrast to the current visual
inspection mostly beneficial, as most drawbacks can be overruled. However, it should be
noted that all the established benefits will only apply if the development of the sophisticated
assessment method is completed, as it currently is not ready to be applied in the field.

Furthermore, in contrast to the recent bicycle monitoring technologies the smartphone-based
vibration measurement combines the beneficial aspects of both the IPB as well as the
crowdsourcing techniques. Firstly, the crowdsourcing technique of using smartphones was
already discussed to be an excellent approach for collecting the measurements’ data, as
almost everyone is in possession of a smartphone. The only challenge however is convincing
people to participate, in order to be able to collect data from them. Secondly, the current
crowdsourcing technologies rely on users to take effort to mark and/or describe unsafe or
unsatisfying bicycle-related traffic situations. For the vibration measurement, users will have
to make much less effort to provide the data, as the smartphone records the data for them.
In addition, the measurement is objective, where the crowdsourcing technologies rely on
users’ subjective opinions just like the visual inspection. Fourthly, in contrast to the IPB’s the
smartphone-based measurement is more widely applicable and easily transferable, as it used
the current most common device to gather the data, namely the smartphone. Fifthly, the IPB’s
rely on one or maybe a hand full of people to generate the data, where the vibration
measurement intends to use a larger community of every-day cyclists, which also leads to
more continuous data.

The smartphone-based vibration measurement also has in contrary to these technologies
several disadvantages. First, as discussed the vibration measurement depends on the lateral
position of cyclists and since the state of a bicycle path can vary laterally, it could fail to record
certain defects, which most likely will be less the case with the subjective assessments of the
crowdsourcing techniques. Although, this can be simply overcome if for the intended BIMS
smartphone app an additional feature is developed enabling cyclists to also add subjective
opinion to their cycled routes. Secondly, in contrast to IPB, the vibration measurement is
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limited in the amount of data it can obtain. The IPB’s are equipped with more sensors like
camera’s enabling them to assess the bicycle environment on more aspects concerning
cyclists’ safety and comfort levels. However most of these aspects stay unchanged for quite
some time until the area is restructured. These aspects can therefore also be obtained in a
different manner, like for instance HD video footage. Thirdly, in contrast to the IPB’s, the
smartphone-based vibration measurement needs more calibration, as more factors should be
taken into account that influence the measurement outcome, like the pedal movement of the
cyclist and bicycle type.

e How can the results of this research be implemented in operations and maintenance
plans of road managers?

The direct results of these study are unfortunately not sophisticated enough to be directly
implemented in the operation and management plans of road managers. Although it does
provide a strong foundation for a BIMS capable to continuously monitor the bicycle
environment on pavement surfaces conditions, providing road managers with valuable data
regarding the bicycle asset condition data. As discussed in the previous question, BIMS can
replace the current visual inspections, making it very beneficial for road managers, as this
system will enable them to plan in a more resource efficient manner the operations and
maintenance of the bicycle pavement surfaces, by using the data provided by the system as
input. However, if BIMS ought to replace the visual inspections, the second round assessment
specified as the ‘measurement assessment’ should become more sophisticated, since BIMS
data does not distinct different surface defects and in addition does not assess the severity
and dimensions of the defects.

Furthermore, road managers can use the data of BIMS in two forms for their operations and
maintenance. First, the data allows road manager to spot local extremes which in most cases
identifies hazardous locations. This will enable them to act more quickly on these locations,
keeping the maintenance cost low, as costs can significantly rise if not acted at the right
moment. Second, the aggregated values the data provides linked to cycling tracks can be a
good representation of the aggregate condition of a bicycle path. These condition values can
be useful to evaluate if the current quality is above or below established standards. The scale
over which these values are calculated can even be extended, since the local extremes are
spotted separately it will not be an issue if these extremes are leveled off by the rest of the
segment. When the method is completely sophisticated, the data could also be used for
predicting the lifespans of pavement, since the system continuously collects data enabling to
build prediction models to be build based on the data.

Finally, based on the answers of the sub-research questions, an answer can be formulated for
the main research question: “Can the pavement quality be indicated with a set of individual
vibration measurements using internal smartphone sensors, and is it possible to convert these
measurements into a surface quality index, for the benefit of collecting asset condition data
regarding the bicycle pavement quality?”.

Basically, this question could be answered with a simple yes or no, however when considering
all the findings of this report the answer is not so simplistic. In order to provide a solid answer
to the above stated question this study proposed, investigated and tested an assessment
method in which the data collected from a smartphone-based vibration measurement was
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converted to a DClsym (Dynamic Comfort Index) value, which objectively represents the
recorded bicycle vibrations. This surface quality index was derived from an already existing
method introduced by Bil et al. (2015) called ‘dynamic comfort mapping’, which was already
proven to be a sound objective manner to indicate pavement surface conditions of cycle paths
as it was already applied. However, since the assessment method of this research differed in
using smartphones located in cyclist’s trousers instead of an accelerometer mounted to the
front fork of a bicycle to record the bicycle vibrations, the method was altered and therefore
needed to be re-validated.

Based on the results of the field experiment the smartphone-based method appears not to
perform similar the original method, as more severe vibrations were measured during the
field experiment, which most likely is due to difference in where the vibrations were recorded.
However, even though the smartphone-based method performed worse in comparison with
the original method, the field experiment shows that it is possible, on the basis of the
calculated DClsm’s, to distinguish different pavement surfaces of different qualities.
Moreover, repeatability is fairly good, as strong correlations were found between
measurements of different individuals. Therefore, the main question can generally be
answered with ‘yes’, however more extensive research and calibration is needed before this
method can be applied in the field or by BIMS.

6.2 GENERAL DISCUSSION & RECOMMENDATIONS

The literature is acknowledging the opportunities that arise of what can be achieved with
recent advancements of sensor technologies, though research concerning new innovative
manners of collecting asset condition data regarding the bicycle environment based on these
recent sensor technologies is scarce. Moreover, given the growing interest of using the bicycle
as a transportation mode and that many cities are coping with severe problems emerging from
the high dependency on motorized traffic, such manners will become more of interest to
maintain and improve the bicycle environment in order to stimulate cycling behavior. The
purpose of this study was to contribute to the development of such an objective method, by
providing a strong basis for a monitoring system named BIMS, which intends to use every-day
cyclists and their smartphone to collect asset condition data regarding the bicycle
environment’s pavement surfaces. This valuable information will ensure more efficient use of
limited resources of road managers in relation to operation and maintenance, renewal and
auditing of the bicycle environment. As a basis, this report presented a comprehensive case
study researching the capabilities of smartphones’ motion and location sensors and a field
experiment examining an existing assessment method, in order to prove that smartphones
are capable of collecting reliable asset condition data and in addition of what can be achieved
with this data. This section will provide recommendations specifically for further research and
development of BIMS assessment method based on smartphone data, as well as for BIMS in
general. However, first there will be discussed which users other than road managers can
benefit from the outcomes of a system such as BIMS.

6.2.1 POTENTIAL USERS

Road managers are not the only users that will benefit from the objective assessment of a
system such as BIMS. Firstly, cyclist themselves can use the information regarding the
vibrations to plan their cycling routes. For instance, leisure cyclists using racing bikes usually
seek the most comfortable (or fewest vibrations) routes in order to achieve the best
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performance. The data resulting out of the assessment can therefore for instance be placed
on a web-application where it is accessible for all people. This will also make it more attractive
for people to contribute to the system. Secondly, which has already been mentioned, are
researchers and other people working with traffic models and simulations. In literature, it was
stated that route comfort affects cyclist route-choice behavior and that one of the attributes
which strongly contributed to the route comfort was the pavement conditions. The data can
therefore be used by researchers to generate better prediction models and by modellers as
input in order to improve the performance and correctness of their traffic models and
simulations. Third and finally, following on the previous users, researchers studying cyclist
route-choice behavior can use this data.

6.2.2 SMARTPHONE APP

The first recommendation regarding assessment component of BIMS is the development of a
smartphone application. Due to the lack of expertise in developing apps, this study used the
AndroSensor-app for collecting the raw sensor data of smartphones. For this study, the use of
such a simple application was sufficient enough as it involves a relatively small amount of data.
For BIMS on the other hand such a simple application will not be adequate, and therefore a
more sophisticated app is recommended in order to automatically process the large entailed
data sets. Moreover, the app can also be used to audit if certain condition regarding the data
collection are met. If certain conditions are not met, no data is recorded.

Ideally, the app will be a stand-alone app collecting the data relevant to BIMS (vibration and
location data) from each cyclist. However, developing an app is one thing, distributing the app
by convincing people to install this app is another challenge. As smartphones are linked to
specific people and the app intends to collect location data, one should for instance keep into
account cyclists” privacy. The literature study already provided some examples of how
distributing the application can successfully be achieved. Thus, besides the recommendation
of developing a smartphone-app, it is also recommended to research how it is going to be
distributed and the challenges associated with it. One option is for instance to use the
platform from an already existing application and run the vibration measurement on the
background.

6.2.3 BIMS ASSESSMENT METHOD

It is observed in the field experiment that based on smartphone data it is possible to
distinguish pavement surfaces of different qualities. However the method used in this study
did not perform according to the original method of Bil et al (2015), as overall much lower
index values were observed, which indicated that more severe vibrations were recorded. This
was explained to be mainly due to where the vibrations were recorded. The original method
recorded directly at the front fork of a bicycle, leading to mainly record the vibrations of the
front wheel. In the case of the field experiment on the other hand the vibrations are measured
near the saddle, including the vibrations of both the front and rear wheel. This statement
however is due to the limited time frame of this research restricted to findings in literature
and experience gained over the time period of this research. It is therefore recommended to
further research this statement in order to validate it. Especially if the dynamic comfort
mapping method is still intended to be employed by BIMS, which is advised since the DCl is
based on a relatively simple method, and it provides a sound and objective representation of
the recorded vibrations. In addition, it is expected that the DCI only needs to be re-calibrated
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to a different scale, since it was observed in the field experiment that the average index values
of each segment were with a constant level lower compared to their benchmark values, hence
the statement that more vibrations are recorded near the saddle.

The aspect of including the acceleration values of all three axes, instead of only the axis
perpendicular to the pavement surface, was also expected to contribute to more vibrations
to be recorded, as cracks or other surface defects are most likely to cause horizontal vibrations
apart from the vertical vibrations. An alternative approach for calculating the DClsum could be
to not weigh all three axes equally, but to weigh the axis perpendicular to the road surface
heavier than the other acceleration values, or to only include the axis perpendicular to the
road surface. This approach could better fit the computation of the acceleration values to the
DCI values. This requires a complex procedure in which the smartphone coordinate system
needs to be re-oriented to the Earth’s coordinate system during or after the measurements.
This re-orientation can be achieved by including an algorithm that uses the data from the
accelerometer, linear acceleration, magnetometer, and gyroscope to re-orient the
smartphone, as has been done in the studies of Ferreira et al. (2017) and Vittorio et al. (2014).
This alternative approach however will not record the lateral evasive maneuvers of cyclists
towards extreme surface defects as clearly as when the values of all three axes was included,
resulting in surface defects to be missed. Although this could be overcome by including a
feature in the intended BIMS app (discussed in section 6.2.1) where cyclist can subjectively
report surface defects, as with the ORcycle platform of Figliozzi (2015) discussed in section
2.4.2 of the literature.

Furthermore, from the field experiment followed two aspects which are recommended to be
further researched, as currently these aspects impose several specific conditions towards how
the smartphone-based vibrations measurement should be conducted to provide reliable
outcomes, limiting the applicability of the dynamic comfort mapping methodology. The first
aspects concerns the speed of the cyclists. In both this study as in the study of Bil et al (2015)
a cycling speed of 15 km/h was maintained and since cycling speed appears to affect the
recorded bicycle vibrations, the reliability of the DCI’s outcome can currently only by assured
if the same speed of 15 km/h is maintained. It is however very unlikely that all cyclists will
maintain cycling speeds of 15 km/h while the data is recorded for BIMS. Therefore, the relation
between cycling speed and bicycle vibrations should be established. Based on this relation,
the recorded vibrations could be corrected on the basis of cyclists’ speed, as with the study of
Yamaguchi et al. (2015) discussed in section 2.4.3 of the literature review. The second aspects
concerns to the location of the smartphone for the vibration measurement. This study was
limited to only research the vibration measurement to be conducted from cyclist’s trousers,
more specifically cyclists’ left pocket. In reality, cyclists will not always have their smartphones
located inside their trousers. It should therefore be researched how the location of the
smartphone affect the measurements. If the effect is minor, it may be corrected as with the
cycling speed. However if the effect is major, it will imply that BIMS should exclude the data
that is collected on a different manner.

A third aspect followed from the field experiment revealed which should be further
researched, as it was shown to affect the recorded vibrations, namely the bicycle itself. This
aspect however does not impose certain conditions towards how the vibrations measurement
should be conducted, as it was expected that if BIMS data is collected by a large population,
the noise effect of the bicycle will be automatically averaged out. However even though this
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is expected, it is still recommended to research the effect of the bicycle type on the measured
vibrations. This in order to analyze if certain bicycle types appear to influence the recorded
vibrations too much. Then, It can be decided to for instance exclude the cyclists riding these
specific bicycle types for BIMS data collection.

6.2.4 PRACTICAL IMPLEMENTATION BIMS

As already stated, for BIMS the dynamic comfort mapping method can basically be used in
two ways. First, it can be used to indicate the aggregate condition of a particular segment, and
secondly to spot local extremes. The first form of providing reliable aggregate condition data
is achievable with smartphone data, however it requires more extensive research regarding
topics discussed in previous section. In addition, another important research topic should be
the verification if indeed it can be assumed that based on a large community the noise effect
of cyclist’s weight and their bicycle on the vibration measurement can be neglected for the
method as the large community will automatically average out the method’s outcomes. This
could for instance be researched by performing a pilot with a large group.

The second form of spotting local extremes, on the other hand, can be confirmed to be
achievable with smartphone data, as for this form the factors which were identified to affect
the data are overall less of interest. In every situation when a cyclist hits a surface defect, like
a pothole or a tree root, an extreme will be recorded. This can also be observed in the field
experiment, as for all three test riders extremes were detected at approximately the same
locations on the driven segments. The exact value of this extreme can of course still vary due
to the factors like weight and bicycle type, but the data will identify an anomaly. Moreover,
since the factors affecting the bicycle vibrations are of less interest for spotting local extremes,
the community does not has to be of considerable size in order to provide reliable data.

Thus, since it is reasonable to assume that in the early stages when BIMS is implemented in
the field the community will not be large enough to assure reliable aggregate values regarding
the bicycle pavement conditions, it is recommended to first use BIMS for spotting local
extremes. This until the community of BIMS has increased to a considerable size so reliable
data can be assured. Note that for spotting local extremes the scale of the distance-interval
discussed in section 5.5.4 should be adjusted to 5 meters in order to spot these extremes more
clearly. Even though the GPS inaccuracy will cause for these extremes to be spotted on slightly
different locations, they will provide an indication were severe surface defects are.

An alternative approach for BIMS to provide and collect reliable asset condition data about
the bicycle pavement surface conditions could be by equipping common bicycles with simple
sensors for collecting the data. For instance, by equipping the identical bicycles of bicycle
sharing systems. Using these bicycles will considerably reduce the amount of factors that
affect the vibration measurement, especially if the motion sensor is mounted to the front fork
of the bicycle, like in de study of Bil et al (2015). Exiting from the latter, the pedal movement
can for instance directly be neglected. Moreover, the original method of dynamic comfort
mapping can most likely directly be transferred, as it was stated that the outcome of the
method is not affected by the bicycle type. Acquiring the motion and location sensors to equip
these bicycles with does not has to be a large investment, as the case study of this research
revealed what can be achieved with the relatively simple sensors of smartphones. Overall
using a bicycle equipped with simple sensors will considerably improve the data reliability as
less factors influence the measurement.
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6.2.5 FUTURE RESEARCH AND DEVELOPMENT

This study specifically focused on the assessment component of BIMS and provided a basis for
the components concerning the evaluation and implementation of the results following out
of the assessments, discussed briefly in the process flow diagram of section 3.2. These
components need to be further elaborated as they also are essential for how the system will
function. For instance, it should be researched how the DCI values will be categorized into
different levels of quality for the ‘Evaluation’ process of BIMS. Basically, the DCI value already
represents the surface pavement conditions of a bike segment with a value between 0 and 1,
where 0 is very poor and 1 perfectly smooth. The DCI however is not yet categorized into
different levels of quality. Therefore a comfort perception study should be conducted to draw
opinions of cyclists, and use this study to categorize the index values and create a quality rating
system. This rating scale should also be balanced with the quality standards defined by
governments for road managers. This quality rating scale should then be established for each
pavement type separately, as the study of Calvey et al. (2015) showed that cyclists differently
evaluate the same level of vibrations on different types of pavement. For instance, the same
level of vibration on an asphalt is most likely to be evaluated less comfortable than on
cobblestones, since cyclists expect less comfort on cobblestones. Furthermore, it is essential
to conduct a validity study towards the results in order to check if the system achieves the
same or better results than the current practice of visual inspections.
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APPENDIX [ SEMI-STRUCTURED INTERVIEW

At the beginning of the interview | will introduce myself. After the introduction the interviewee will
be provided with a context for the interview by a briefing. In this briefing the situation for the
interviewee is defined, the purpose of this interview is explained, and the use of a tape recorder is
mentioned. Before starting the interview, the interviewee is asked if he has any questions before
starting. After the interview, further and more detailed explanations about the research topic will be
discussed (if subject is interested) to prevent biased answer on the interview questions.

GENERAL
1.What is the core business of your organization is?

2. What is your role in the organization, and with what organizations do you often cooperate?
- Only relevant organizations are noted

OPERATIONS AND MAINTENANCE OF BICYCLE INFRASTRUCTURE
3. How is your organization related to O&M of bicycle infrastructure?
a. How are you (the expert) related to O&M of bicycle infrastructure?

4. What kind of policy is maintained regarding the O&M of bicycle infrastructure?
a. What is current decision-making procedure of planning O&M?
b. What is the assessment procedure for deciding whether or not maintenance is necessary?
¢. Do you think that the current approach for O&M of bicycle infrastructure is efficient?
- If yes, why?
- If no, where do you see improvement possibilities?

VISUAL INSPECTIONS
5. Do you have experience with visual inspections for (bicycle) infrastructure?
a. if yes, what is the current practice for visual inspections?
- what is the procedure?
- who executes these inspections?
- who evaluates these inspections?
- how are these inspections evaluated?
- how frequent are these inspections executed
- Is this practice similar for all pavement types (asphalt, concrete, tiles, cobblestones)

BICYCLE MONITORING TECHNIQUES
6. Do you know recent bicycle monitoring techniques used for the benefit of operation and
maintenance of bicycle infrastructure?
a. if yes, what is this technique(s) and where did you heard of it?
- What is the objective of this technique?
- Is it already tested or applied in the field?

7. Do you see potential in using smartphones and crowdsourcing techniques for monitoring bicycle

infrastructures for the benefit of cyclists safety and comfort?
a. ... for the benefit of road managers
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APPENDIX III COMPREHENSIVE RESULTS CASE STUDY

TEST 1

Table 8.2: Results test 1

Screen Up 1,0006 | 0,0104 1,0099 0,0058 1,0053 0,0022
Trial 1 Screen Down 1,0149 | 0,0099 1,0102 0,0054 0,9925 0,0022
Sensitivity 0,0143| 0,0101 0,0003 0,0056 0,0128 0,0022
Screen Up 0,9999| 0,0102 1,0101 0,0057 1,0048 0,0022
Trial 2 Screen Down 1,0151| 0,0060 1,0104 0,0055 0,9925 0,0022
Sensitivity 0,0153| 0,0081 0,0004 0,0056 0,0124 0,0022
Screen Up 0,9995| 0,0098 1,0095 0,0058 1,0045 0,0022
Trial 3 Screen Down 1,0151| 0,0061 1,0105 0,0053 0,9922 0,0022
Sensitivity 0,0156| 0,0080 0,0009 0,0055 0,0123 0,0022
Total 0,0151| 0,0087 0,0005 0,0005 0,0056 0,0125
TEST 2

Table 8.3: Results test 2. All units are in g’s

ar 0,4647 | 0,1397 | 9,8385 | 0,2227 | 0,1126 | 9,9465 | 0,19 | 0,15 | 9,98
Trial1 | 2 0,3325 | -0,0285 | -0,0484 | 0,0647 | -0,0263 | 0,1030 | 0,01 | -0,30 | 0,19
SZ:::\'”CW 1,0084 1,0040 0,9995

ar 0,5036 | 0,1415 | 9,884 | 0,2658 | 0,0599 | 9,8914 | 0,26 | 024 | 9,91
Trial2 | 2 0,3019 | -0,1135 | -0,0268 | 0,0407 | -0,0527 | 0,0742 | 000 | -031 | 0,18
SZ:::\'HCW 1,0112 1,0014 0,9941
ar 0,5114 | 0,1649 | 9,8229 | 0,4838 | -0,2395 | 9,9058 | 0,26 | 0,17 | 9,91
Trial3 | 22 0,2558 | -0,0171 | -0,022 | -0,024 | -0,0048 | 0,1772 | 001 | -030 | 0,22
SZ:::\'HCW 1,0044 0,9937 0,9896
as 0,5198 | 0,1409 | 9,8151 | 0,1605 | 0,0096 | 9,9872 | 0,25 | 0,19 | 9,97
Triala | 2 0,2900 | -0,0249 | -0,0184 | 0,1461 | -0,0862 | 0,1245 | 001 | -033 | 017
SZ:::\'HCW 1,0032 1,0058 1,0010
ar 0,5120 | 0,1481 | 9,8139 | 0,2874 | 0,0192 | 9,9298 | 027 | 021 | 9,94
Trials | 22 0,3109 | -0,0931 | 0,0157 | 0,0982 | -0,0862 | 0,2108 | 0,01 | -027 | 0,18
SZ:::\'”CW 0,9997 0,9913 0,9968
Total 1,0054 0,9992 0,9962
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TEST 3

Table 8.4: Results estimated Frequencies test 3

amer T

e |

APPENDICES

A-05 5,0261 1 5,0352 (0,0091|0,18% | 5,0359 |0,0098|0,19%| 5,0353 |0,0092|0,18%
A-05 5,0261 2 5,0357 [0,0096| 0,19% | 5,0360 |0,0099|0,20%| 5,0359 |0,0098|0,19%
A-05 5,0261 3 5,0353 (0,0092|0,18% | 5,0364 |0,0103|0,20%| 5,0355 |0,0094|0,19%
B-05 5,0269 1 5,0353 [0,0084|0,17% | 5,0362 |0,0093|0,18%| 15,0355 |0,0086|0,17%
B-05 5,0269 2 5,0357 [0,0088|0,17% | 5,0362 |0,0093|0,18%| 5,0357 |0,0088|0,17%
B-05 5,0269 3 5,0355 |[0,0086|0,17% | 5,0360 |0,0091|0,18%| 5,0355 |0,0086|0,17%
C-05 5,0261 1 5,0357 |[0,0096| 0,19% | 5,0362 |0,0101|0,20%| 5,0357 |0,0096 |0,19%
C-05 5,0261 2 5,0353 [0,0092|0,18% | 5,0362 |0,0101|0,20%| 5,0357 |0,0096 |0,00%
C-05 5,0261 3 5,0348 |[0,0087|0,17% | 5,0364 |0,0103|0,20%| 5,0359 |0,0098|0,19%
D-05 5,0234 1 5,0353 |[0,0119| 0,24% | 5,0362 |0,0128|0,25%| 5,0359 |0,0125(0,25%
D-05 5,0234 2 5,0353 (0,0119|0,24% | 5,0362 |0,0128|0,25%| 5,0350 |0,0116|0,23%
D-05 5,0234 3 5,0355 |[0,0121| 0,24% | 5,0362 |0,0128|0,25%| 5,0360 |0,0126(0,25%
E-05 5,0206 1 5,0347 |(0,0141|0,28% | 5,0362 |0,0156|0,31%| 5,0353 |0,0147|0,29%
E-05 5,0206 2 5,0355 (0,0149|0,30% | 5,0362 |0,0156|0,31%| 5,0357 |0,0151|0,30%
E-05 5,0206 3 5,0353 [0,0147|0,29% | 5,0362 |0,0156|0,31%| 5,0355 |0,0149|0,30%
A-10 10,0494 1 10,0380 |0,0114|0,11% | 10,0720 |0,0226(0,23% | 10,0714 |0,0220|0,22%
A-10 10,0494 2 10,0707 |0,0213|0,21% | 10,0720 |0,0226(0,23% | 10,0700 |0,0206 |0,21%
A-10 10,0494 3 10,0707 |0,0213|0,21% | 10,0720 |0,0226(0,23% | 10,0710 |0,0216|0,22%
B-10 10,0259 1 10,0373 |0,0114|0,11% | 10,0390 |0,0131(0,13%| 10,0384 |0,0125|0,12%
B-10 10,0259 2 10,0377 |0,0118|0,12% | 10,0380 |0,0121(0,12%| 10,0380 |0,0121|0,12%
B-10 10,0259 3 10,0367 |0,0108 | 0,11% | 10,0390 |0,0131|0,13%| 10,0377 |0,0118|0,12%
C-10 10,0458 1 10,0370 |0,0088| 0,09% | 10,0390 |0,0068|0,07%| 10,0384 |0,0074|0,07%
C-10 10,0458 2 10,0377 |0,0081| 0,08% | 10,0387 |0,0071(0,07%| 10,0380 |0,0078|0,08%
C-10 10,0458 3 10,0373 |0,0085| 0,08% | 10,0380 |0,0078(0,08% | 10,0380 |0,0078|0,08%
D-10 10,0477 1 10,0377 |0,0100| 0,10% | 10,0390 |0,0087(0,09% | 10,0380 |0,0097 |0,10%
D-10 10,0477 2 10,0377 |0,0100| 0,10% | 10,0390 |0,0087(0,09% | 10,0387 |0,0090 |0,09%
D-10 10,0477 3 10,0357 |0,0120| 0,12% | 10,0390 |0,0087|0,09% | 10,0380 |0,0097|0,10%
E-10 10,0204 1 10,0377 |0,0173|0,17% | 10,0390 |0,0186(0,19%| 10,0387 |0,0183|0,18%
E-10 10,0204 2 10,0380 |0,0176|0,18% | 10,0387 |0,0183|0,18% | 10,0380 |0,0176|0,18%
E-10 10,0204 3 10,0370 |0,0166|0,17% | 10,0387 |0,0183(0,18% | 10,0380 |0,0176|0,18%
Total 0,0119( 0,17% 0,013 | 0,18% 0,012 | 0,17%
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Table 8.5: Results estimated amplitudes test 3

A-05 0,20 1 0,206 |0,006|2,89%| 0,224 |0,024|11,79%| 0,210 (0,010 |5,12%
A-05 0,20 2 0,206 (0,006 (2,79%| 0,221 |0,021|10,58%| 0,210 |0,010 |5,16%
A-05 0,20 3 0,205 (0,005 (2,66%| 0,221 |0,021|10,64%| 0,210 |0,010 |5,07%
B-05 0,40 1 0,412 |0,012|3,10%| 0,419 |0,019| 4,78% | 0,421 |0,021 |5,26%
B-05 0,40 2 0,412 (0,012 (3,01%| 0,421 |0,021| 5,26% | 0,421 |0,021 |5,22%
B-05 0,40 3 0,412 |0,012|3,12%| 0,422 |0,022| 5,52% | 0,423 |0,023 |5,63%
C-05 0,60 1 0,616 (0,016(2,63%| 0,618 |0,018| 2,93% | 0,631 |0,031|5,20%
C-05 0,60 2 0,616 |0,016|2,59%| 0,624 |0,024| 4,01% | 0,636 | 0,036 |6,04%
C-05 0,60 3 0,616 (0,016(2,59%| 0,623 |0,023| 3,91% | 0,635 |0,035 |5,88%
D-05 0,80 1 0,823 |0,023|2,85%| 0,826 |0,026 | 3,25% | 0,856 | 0,056 |6,94%
D-05 0,80 2 0,825 (0,025(3,14%| 0,821 |0,021| 2,69% | 0,842 |0,042 |5,29%
D-05 0,80 3 0,820 |0,020|2,55%| 0,819 |0,019| 2,37% | 0,848 | 0,048 |5,98%
E-05 1,00 1 1,023 |0,023|2,31%| 1,049 |0,049| 4,88% | 1,067 |0,067 |6,74%
E-05 1,00 2 1,020 |0,020(2,00%| 1,041 |0,041| 4,11% | 1,051 |0,051|5,15%
E-05 1,00 3 1,024 10,024 |2,40%| 1,030 |0,030| 2,98% | 1,056 | 0,056 |5,61%
A-10 0,20 1 0,207 |0,007|3,39%| 0,220 |0,020| 9,91% | 0,212 |0,012 |5,75%
A-10 0,20 2 0,207 (0,007 |3,26%| 0,220 |0,020 | 9,94% | 0,210 |0,010 |4,95%
A-10 0,20 3 0,206 |0,006|3,16%| 0,220 |0,020|10,17%| 0,212 |0,012 |5,88%
B-10 0,40 1 0,408 (0,008 |2,06%| 0,420 |0,020| 5,01% | 0,426 | 0,026 |6,50%
B-10 0,40 2 0,409 |0,009|2,26%| 0,418 |0,018| 4,61% | 0,419 (0,019 |4,67%
B-10 0,40 3 0,409 |0,009|2,25%| 0,423 |0,023 | 5,70% | 0,425 | 0,025 |6,28%
c-10 0,60 1 0,611 (0,011(1,91%| 0,620 |0,020 | 3,38% | 0,632 |0,032 |5,40%
C-10 0,60 2 0,610 |0,010|1,61%| 0,617 |0,017| 2,81% | 0,632 |0,032|5,31%
c-10 0,60 3 0,611 (0,011(1,85%| 0,622 |0,022 | 3,74% | 0,623 | 0,023 |3,86%
D-10 0,80 1 0,812 |0,012|1,52%| 0,814 |0,014| 1,76% | 0,838 | 0,038 |4,73%
D-10 0,80 2 0,813 (0,013(1,62%| 0,816 |0,016 | 2,02% | 0,844 | 0,044 |5,56%
D-10 0,80 3 0,810 |0,010|1,29%| 0,815 |0,015| 1,91% | 0,843 (0,043 |5,38%
E-10 1,00 1 1,003 |0,003|0,33%| 1,013 |0,013| 1,35% | 1,061 |0,061 |6,08%
E-10 1,00 2 1,001 |0,001|0,06%| 1,011 |0,011| 1,13% | 1,032 | 0,032 |3,20%
E-10 1,00 3 1,000 |0,000|0,05%) 1,011 |0,011| 1,05% | 1,057 |0,057 |5,66%
Total 0,0119 0,012 |2,24%( 0,022 | 0,021 (4,81% | 0,035
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TEST 4

Table 8.6: Comprehensive results test 4

APPENDICES

1 10,95 16,62 31,00 13,57 8,83 24,97 18,36 0,00 21,97

2 11,92 14,52 30,98 13,54 7,83 24,00 18,70 7,88 20,92

Segment | 3 12,21 14,09 32,00 14,99 7,98 24,00 17,60 9,44 20,96

A 4 14,76 10,83 32,97 15,55 6,88 24,96 19,67 11,26 21,97

5 11,57 13,59 33,00 21,90 7,51 25,97 19,40 12,45 21,98

Total| 12,28 13,93 31,99 15,91 7,81 24,78 18,75 8,21 21,56

1 10,77 17,99 31,61 10,40 8,93 24,99 11,02 0,28 22,00

2 10,87 18,00 31,61 10,34 8,97 23,99 12,83 7,95 20,86

Segment | 3 10,94 16,82 31,97 11,11 8,91 23,97 15,03 9,97 20,99

B 4 14,34 13,73 32,96 15,11 8,87 24,96 14,98 12,94 20,99

5 11,37 18,09 32,26 15,16 7,94 25,03 15,18 14,00 21,05

Total| 11,66 16,93 32,08 12,42 8,72 24,59 13,81 9,03 21,18

1 11,99 15,34 30,97 17,44 8,82 24,97 9,44 2,69 22,00

2 14,09 15,42 31,98 16,56 8,63 23,96 19,48 7,86 20,98

Segment | 3 13,49 14,25 32,98 19,65 8,80 24,98 12,37 9,79 21,92

¢ 4 13,94 12,65 33,11 29,01 6,48 24,95 16,10 12,96 20,98

5 12,39 15,29 32,00 28,89 6,95 24,95 17,82 14,00 21,22

Total| 13,18 14,59 32,21 22,31 7,94 24,76 15,04 9,46 21,42

Total 12,37 15,15 32,09 16,88 8,16 24,71 15,86 8,90 21,39
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Figure 8.1: GPS data plots of each device for Segment Y
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APPENDICES

Figure 8.3: GPS data plots of each device for Segment Z

TEST 5

Table 8.7: Comprehensive results test 5

Trial 1 1,88 1,81 3,55% 1,83 2,74% 1,95 3,49% 1,87 0,70%
Trial 2 1,88 1,81 3,54% 1,87 0,50% 191 1,53% 1,87 0,45%
Trial 3 1,88 1,82 3,36% 1,84 2,28% 2,20 16,89% 1,84 1,87%
Trial 4 1,88 1,83 2,41% 1,97 4,94% 1,94 3,36% 1,88 0,09%
Trial 5 1,88 1,80 4,24% 1,96 4,05% 2,00 6,49% 1,94 3,05%
Total 1,88 1,82 3,42% 1,89 2,90% 2,00 6,35% 1,88 1,23%
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APPENDIX [V MATLAB SCRIPT FOR FFT TRANSFORMATION

o

% Import data from spreadsheet (Excel)
% read Excel document xlsread ('NameDocument', 'NameTable', 'xl1Range')
x1Range = 'A2 or B2:Dmax or Emax'

oe

[~, ~, raw] = xlsread('T3 ASOP 10.xlsx','T3 ASOP 10E3','G2:H1501");

%% Create output variable
data = reshape([raw{:}],size(raw));

%% Create table
T3 ASOP 10E3 = table;

%% Allocate imported array to column variable names
T3 ASOP 10E3.Time = data(:,2)/1000;
T3 ASOP 10E3.LIN ACC Z = data(:,1)/9.80665 ;

%% Clear temporary variables
clearvars data raw;

%% Determine variables for FFT-analysis
Ns = height (T3 _ASOP 10E3); % Number of samples

Fs = height (T3 ASOP 10E3) / max (T3 _ASOP 10E3.Time);% Sampling
frequency, Hertz

%% Clear temporary variables
clearvars data raw;

%% Fast Fourrier Transform

Y = fft(T3_ASOP_10E3.LIN ACC Z); % Fourrier transformation signal
P2 = abs(Y/Ns); % Two-sided spectrum P2
Pl = P2(1:Ns/2+1); % Single-sided spectrum P1

Pl (2:end-1)= 2*P1(2:end-1);

o

Even-valued signal length L

H

= Fs * (0:(Ns/2))/Ns;

o

Define frequency domain f

%% Plot graph in frequency domain
plot (f,P1)

Pl

title ('T3-ASOP-10E3")
xlabel ('Frequency (Hz) '
ylabel ('Magnitude') ;

o

Plot single-sided amplitude spectrum
)

%% Frequency
[
|l

peak Magnitude, PeakFreqldx] = findpeaks(Pl, 'minpeakheight', 0.1,
NPeaks', 1);
Frequency (end+1l,:) = f (PeakFreqgldx);
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APPENDICES

APPENDIX V BICYCLE PAVEMENT CONDITIONS OF ROUTE SEGMENTS FIELD EXPERIMENT

Figure 8.9: Bicycle pavement conditions Segment B
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Figure 8.11: Bicycle pavement conditions Segment D
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APPENDIX VI MATLAB SCRIPT FOR CALCULATE DCI OVER MULTIPLE DISTANCE

o

% Import data from spreadsheet
Script for importing data from the following spreadsheet:

o° o\

o

Workbook: C:\Users\sl115933\Dropbox\Graduation Project\Thesis\Proof of
Concept\Cycle data\DCI T#OP A.xlsx
Worksheet: DCI_T1OP AlA

o° o

o

To extend the code for use with different selected data or a different
spreadsheet, generate a function instead of a script.

o

oe

Auto-generated by MATLAB on 2017/10/27 11:34:10

%% Import the data

[~, ~, raw] = xlsread('C:\Users\sl115933\Dropbox\Graduation
Project\Thesis\5. Field Experiment\Cycle

data\T#OP A.xlsx',6 'T10P A3','A2:I961");

stringVectors = string(raw(:,1));

stringVectors (ismissing(stringVectors)) = '';

raw = raw(:,[2,3,4,5,6,7,8,91);

%% Create output variable
data = reshape([raw{:}],size(raw)):;

%% Create table
T10P A3 = table;

%% Allocate imported array to column variable names
T10P_A3.Date = stringVectors(:,1);

T10P_A3.Time = (data(:,1)-min(data(:,1)))/1000;
T10P_A3.X = data(:,2
T1O0P A3.Y = data(:,3
T10P_A3.Z = data(:,4);
T10P A3.SUMXYZ = sqrt(
T10P_A3.Lat = data(:,
T10P A3.Lon = data(:,6);
T10P A3.Speed = data(:,7);
T10P_A3.Accuracy = data(:,8);

’

)
) ’
)
t

’

data(:,2) .72 + data(:,3) .72 + data(:,4).72);
)
)

%% Clear temporary variables
clearvars data raw stringVectors;

%% Transform table to temporary array for calculations
A = table2array(T10P A3(:,[2,3,4,5,6,71));

%% DCI values per # meters for segment A

Am = height (T10P_A3) /40; % per 5 meter
Bm = height (T10P_A3)/20; % per 10 meter
Cm = height (T10P A3)/8; % per 25 meter
Dm = height (T10P A3)/4; % per 50 meter

%% Calculation of DCI value per 5 meter

\o

s Calculate square values of SUMXYZ
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% Determine mean values of SUMXYZ per 5 meter

o

z=zeros (size (A, 1) /Am) ; % Create array with zeros

for 1 =0:Am:size(A,1)-1 % Create for loop with increments of Fs
a = i/Am+1;
z (a)=mean (A (i+1:1i+Am,5)) ; % Mean SUMXYZ per second

end

% Repeat copies of array elements and calculate DCI value by calculating

square root and inverse of mean values SUMXYZ

B(:,1) = repelem(z(:,1),Am); % Repeat copies of array elements
B(:,1) = sqrt(B(:,1));

B(:,1)= B(:,1).7=1;

% Allocate DCI values based on SUMXYZ to table
T10P A3.SUM DCI 5m = B(:,1);

%% Calculation of DCI value per 10 meter

% Determine mean values of SUMXYZ per 10 meter

z=zeros (size(A,1) /Bm); % Create array with zeros

for 1 =0:Bm:size(A,1)-1 % Create for loop with increments of Fs
a = 1i/Bm+1;
z (a)=mean (A (i+1:1+Bm,5)) ; % Mean SUMXYZ per second

end

% Repeat copies of array elements and calculate DCI value by calculating
uare root and inverse of mean values SUMXYZ

[

q
(:,2) = repelem(z(:,1),Bm); % Repeat copies of array elements
(
(

~
N
Il

sqrt (B(:,2));
:,2)= B(:,2)."-1;

% Allocate DCI values based on SUMXYZ to table
T10P A3.SUM DCI 10m = B(:,2);

o

% Calculation of DCI value per 25 meter

% Determine mean values of SUMXYZ per 25 meter

z=zeros (size(A,1) /Cm) ; % Create array with zeros

for 1 =0:Cm:size(A,1)-1 % Create for loop with increments of Fs
a = i/Cm+1;
z (a)=mean (A (i+1:i+Cm,5)); % Mean SUMXYZ per second

end

% Repeat copies of array elements and calculate DCI value by calculating
uare root and inverse of mean values SUMXYZ

[

q
(:,3) = repelem(z(:,1),Cm); % Repeat copies of array elements
(
(

~
w
Il

sqrt(B(:,3));
:,3)= B(:,3)."-1;

o

Allocate DCI values based on SUMXYZ to table
T10P_A3.SUM DCI 25m = B(:,3);

%% Calculation of DCI value per 50 meter
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% Determine mean values of SUMXYZ per 50 meter

z=zeros (size(A,1)/Dm) ; % Create array with zeros

for i =0:Dm:size(A,1)-1 % Create for loop with increments of Fs
a = 1i/Dm+1;
z (a)=mean (A (i+1:1i4Dm, 5)) ; % Mean SUMXYZ per second

end

% Repeat copies of array elements and calculate DCI value by calculating

square root and inverse of mean values SUMXYZ

B(:,4) = repelem(z(:,1),Dm); % Repeat copies of array elements
B(:,4) = sqrt(B(:,4));

B(:,4)= B(:,4).7-1;

% Allocate DCI values based on SUMXYZ to table
T10P A3.SUM DCI 50m = B(:,4);

o

% Export Data to Excelfile

filename = 'DCI TOP Av2.xlsx';
writetable (T10P_A3, filename, 'Sheet', 3, 'Range’', "Al")

clear a A B C DIF Fs 1 z;
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APPENDIX VII MATLAB SCRIPT FOR CALCULATING DClpir

oe

% Import data from spreadsheet
Script for importing data from the following spreadsheet:

o° o

o

Workbook: C:\Users\sl15933\Dropbox\Graduation Project\Thesis\Proof of
Concept\Cycle data\DCI T#OP A.xlsx
Worksheet: DCI TI1OP AlA

o° o\

oe

To extend the code for use with different selected data or a different
spreadsheet, generate a function instead of a script.

o

oe

Auto-generated by MATLAB on 2017/10/27 11:34:10

%% Import the data

[~, ~, raw] = xlsread('C:\Users\sl15933\Dropbox\Graduation
Project\Thesis\5. Field Experiment\Cycle

data\T#OP A.xlsx',6 'T10P A3','A2:I961");

stringVectors = string(raw(:,1));

stringVectors (ismissing(stringVectors)) = '';

raw = raw(:,[2,3,4,5,6,7,8,91);

% Create output variable

data = reshape([raw{:}],size(raw)):;

o
)

%% Create table
T10P_A3 = table;

%% Allocate imported array to column variable names
T10P_A3.Date = stringVectors(:,1);

T10P_A3.Time = (data(:,1)-min(data(:,1)))/1000;
T10P_A3.X = data(:,2);
T10P A3.Y = data(:,3);
T10P_A3.Z = data(:,4);

T1O0P A3.SUMXYZ = sqrt(data(:,2)."72 + data(:,3)."2 + data(:,4)."2);
T10P_A3.DIFXYZ = zeros (height (T10P A3),1);

T10P_A3.Lat = data(:,5);
T10P_A3.Lon = data(:,6);
T10P_A3.Speed = data(:,7);
T10P A3.Accuracy = data(:,8);

%% Clear temporary variables
clearvars data raw stringVectors;

%% Determine Sampling Frequency

Fs = height (T10P_A3) / max((T10P_A3.Time)); % Sampling frequency,
Hertz
Fs = round(Fs);

%% Transform table to temporary array for calculations
A = tableZarray(T10P_A3(:,[2,3,4,5,6,71));
%% Calculate consective difference of X,Y and Z acceleration values

DIF = zeros(size(A,1)-1,4); % Create array with
4 columns of zeros
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DIF(:,1) = diff(A(:,2)); % Calculate of
consective difference of X
DIF(:,2) = diff(A(:,3)); % Calculate of
consective difference of Y
DIF(:,3) = diff(A(:,4)); % Calculate of

consective difference of 7

% Calculate total acceleration DIFXYZ

DIF(:,4) = sqrt(DIF(:,1)."2+DIF(:,2) .72+DIF(:,3)."2); % Calculate total
acceleration

% Add values to temporary array

A(2:end, 6) = DIF(:,4);

A(l,6) = DIF(1,4);

o

Allocate DIFXYZ values to table
TlOP_A3.DIFXYZ = A(:,6);

%% DCI values per # meters for segment A
Am = height (T10P_A3) /40; % per 5 meter

o

% Calculation DCI values DIFXYZ

% Calculate square values of DIFXYZDCI
(:,6) = A(:,6).72;

pd

o

% Calculation of DCI values based on DIFXYZ per 5 meter

o

z=zeros (size (A, 1) /Am) ; % Create array with zeros

for 1 =0:Am:size(A,1)-1 % Create for loop with increments of Fs
a = i/Am+1;
z (a) =mean (A (i+1:i+Am, 6)) ; % Mean SUMXYZ per second

end

% Repeat copies of array elements and calculate DCI value by calculating
uare root and inverse of mean values SUMXYZ

[

q
(:,1) = repelem(z(:,1),Am); % Repeat copies of array elements
(
(

~
=
Il

: sqrt(C(:,1));
:,1)=C(:,1).7-1;

T10P_A3.DIF DCI 5m = C(:,1);

%% Export Data to Excelfile

filename = 'DCI TOP Av2.xlsx';
writetable (T10P_A3, filename, 'Sheet',3, 'Range’', 'Al")

clear a A B C DIF Fs 1 z;
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APPENDIX VIII PEARSON & SPEARMAN CORRELATION FOR DATA SETS

Table 8.8: Pearson Correlations of data sets test riders segment A

Segment A
Test Rider 1 Test Rider 2 Test Rider 3
Test Rider 1 Pearson Correlation 1 ,786™ 783"
Sig. (2-tailed) ,000 ,000
N 40 40 40
TestRider 2 Pearson Correlation ,786" 1 ,795"
Sig. (2-tailed) ,000 ,000
N 40 40 40
TestRider 3  Pearson Correlation ,783" 795" 1
Sig. (2-tailed) ,000 ,000
N 40 40 40
**_ Correlation is significant at the 0.01 level (2-tailed).
Table 8.9: Spearman Correlations of data sets test riders Segment A
Segment A
Test Rider 1 Test Rider 2 | Test Rider 3
Spearman's rho Test Rider 1 Correlation Coefficient 1,000 725" 723"
Sig. (2-tailed) ,000 ,000
N 40 40 40
Test Rider 2 Correlation Coefficient 725" 1,000 787"
Sig. (2-tailed) ,000 ,000
N 40 40 40
TestRider 3 Correlation Coefficient 723" 787" 1,000
Sig. (2-tailed) ,000 ,000
N 40 40 40
**. Correlation is significant at the 0.01 level (2-tailed).
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Table 8.10: Pearson Correlations of data sets test riders Segment B
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Segment B
Test Rider 1 Test Rider 2 Test Rider 3
TestRider 1 Pearson Correlation 1 ,649" ,318"
Sig. (2-tailed) ,000 ,046
N 40 40 40
TestRider2  Pearson Correlation ,649™ 1 122
Sig. (2-tailed) ,000 ,454
N 40 40 40
Test Rider 3 Pearson Correlation ,318" 122 1
Sig. (2-tailed) ,046 454
N 40 40 40
**_ Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
Table 8.11:1 Spearman Correlations of data sets test riders Segment B
Segment B
Test Rider 1 Test Rider 2 Test Rider 3
Spearman's rho Test Rider 1 Correlation Coefficient 1,000 672" ,304
Sig. (2-tailed) ,000 ,057
N 40 40 40
Test Rider 2 Correlation Coefficient 672" 1,000 ,136
Sig. (2-tailed) ,000 ,402
N 40 40 40
Test Rider 3 Correlation Coefficient ,304 ,136 1,000
Sig. (2-tailed) ,057 ,402
N 40 40 40
**, Correlation is significant at the 0.01 level (2-tailed).
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Table 8.12:2 Pearson Correlations of data sets test riders Segment C

Segment C
Test Rider 1 Test Rider 2 Test Rider 3
TestRider 1 Pearson Correlation 1 ,755" 745"
Sig. (2-tailed) ,000 ,000
N 30 30 30
TestRider2  Pearson Correlation ,755™ 1 780
Sig. (2-tailed) ,000 ,000
N 30 30 30
TestRider 3  Pearson Correlation ,745™ 780" 1
Sig. (2-tailed) ,000 ,000
N 30 30 30
**_ Correlation is significant at the 0.01 level (2-tailed).
Table 8.13: Spearman Correlations of data sets test riders Segment C
Segment C
Test Rider 1 Test Rider 2 Test Rider 3
Spearman'srho  Test Rider 1 Correlation Coefficient 1,000 ,679” 675"
Sig. (2-tailed) ,000 ,000
N 30 30 30
TestRider 2 Correlation Coefficient 679" 1,000 ,704”
Sig. (2-tailed) ,000 ,000
N 30 30 30
Test Rider 3 Correlation Coefficient 675" ;704 1,000
Sig. (2-tailed) ,000 ,000
N 30 30 30
**. Correlation is significant at the 0.01 level (2-tailed).
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Table 8.14:3 Pearson Correlations of data sets test riders Segment D
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Segment D
Test Rider 1 Test Rider 2 Test Rider 3
TestRider 1 Pearson Correlation 1 ,365 573"
Sig. (2-tailed) ,047 ,001
N 30 30 30
Test Rider 2 Pearson Correlation ,365 1 ,212
Sig. (2-tailed) ,047 ,260
N 30 30 30
TestRider 3  Pearson Correlation 573" 212 1
Sig. (2-tailed) ,001 ,260
N 30 30 30
*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).
Table 8.15: Spearman Correlations of data sets test riders Segment D
Segment D
Test Rider 1 Test Rider 2 Test Rider 3
Spearman's rho Test Rider 1 Correlation Coefficient 1,000 ,307 ,518"
Sig. (2-tailed) ,099 ,003
N 30 30 30
Test Rider 2 Correlation Coefficient ,307 1,000 ,235
Sig. (2-tailed) ,099 211
N 30 30 30
Test Rider 3 Correlation Coefficient 518" ,235 1,000
Sig. (2-tailed) ,003 211
N 30 30 30
**, Correlation is significant at the 0.01 level (2-tailed).
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