
Internal design validation

attestation in BIM models
A combination of Semantic Web technologies

and BIM Collaboration Format

Francisco José Bernal Ferrer

Construction Management and Engineering

September 27
th

, 2017

i

ii

Colophon

Internal design validation

attestation in BIM models
A combination of Semantic Web technologies

and BIM Collaboration Format

Student

Author: Francisco José Bernal Ferrer

Student number: 0978452

Email: f.j.bernal.ferrer@student.tue.nl

Master track: Construction Management and Engineering

University: Eindhoven University of Technology

Graduation Committee

Chairman (TU/e): prof.dr.ir. B. (Bauke) de Vries

1
st

 supervisor (TU/e): dr. Dipl.-Ing. J. (Jakob) Beetz

2
nd

 supervisor (TU/e): T.F. (Thomas) Krijnen

3
rd

 supervisor (V&L): L. (Leon) Leenders

iii

iv

Preface

This thesis is presented as the result of my master’s degree studies in Construction
Management and Engineering at the Eindhoven University of Technology (TU/e). Both
research and development have been carried out with the help and collaboration of
academics and construction professionals in the Architecture, Engineering and Construction
(AEC) industry. And in the next lines I intend to show my gratitude to all the people who
have contributed in one way or another to the development of this thesis.

First of all, I want to thank all the experts that I had the chance to talk with before and
during the elaboration of this thesis. Their willingness to collaborate and to share their
knowledge in the AEC industry was as helpful as inspiring to me; and for that, I am really
grateful.

Secondly, I would like to thank my supervisors for their instructions and counsel. To Jakob
Beetz for his excellent guidance and thoughtful advice which helped me to challenge myself
and always look at the big picture. Special thanks to Thomas Krijnen because his technical
assistance and patient explanations have considerably improved the obtained prototype.
And, of course, thanks to Leon Leenders whose broad perspective, motivation and provision
of resources have extended significantly the value of the thesis I am presenting today.

Last but not least, I would like to thank my family and friends. To my family because their
constant support has made everything easier; and to my friends (and enemy) because their
interest and opinions served me as motivation.

To all of you, thank you.

v

i

Table of contents

Summary ... iii

Abstract .. v

List of Abbreviations/Glossary .. vi

List of figures ...vii

List of tables ... x

1. Introduction .. 1

1.1 Problem definition/objective of the thesis .. 3

1.2 Research question(s) .. 7

1.3 Methodological justification .. 7

1.4 Research design .. 8

1.5 The practical/social and/or theoretical/scientific importance of the thesis 11

1.6 Reading guide (the organisation of the thesis) .. 11

2. Literature review .. 13

2.1 Introduction .. 13

2.2 Building Information Modeling (BIM): open standards, interoperability,
implementation and adoption ... 13

2.3 Information Delivery Manual (IDM) ... 16

2.4 BIM Collaboration Format (BCF) .. 18

2.5 Requirements’ management ... 21

2.6 Semantic Web .. 23

2.6.1 Resource Description Framework (RDF) and SPARQL .. 25

3. Methodology .. 29

3.1 Introduction .. 29

3.2 Building Structures vs. Civil Division... 29

3.3 Verhoeven en Leenders: organisation and projects .. 31

3.3.1 Case studies ... 33

3.4 Verhoeven en Leenders: systems engineering .. 36

3.5 Results .. 38

3.5.1 Requirements’ System Breakdown Structure ... 38

3.5.2 Process map: communication workflow ... 39

3.5.3 Process map: input/output workflow ... 41

3.6 Discussion ... 42

4. Tool development .. 45

4.1 Introduction .. 45

ii

4.2 Case study .. 45

4.3 Use case diagram ... 47

4.4 Ontology: BCF schema ... 49

4.4.1 Describing the ontology .. 50

4.5 Prototype development ... 55

4.5.1 Tab 1: 3D viewer .. 57

4.5.2 Tab 2: Backwards and external compatibility ... 63

4.6 Prototype validation ... 65

4.7 Prototype limitations.. 74

4.8 Prototype discussion .. 74

5. Conclusion .. 81

5.1 Limitations and recommendations (for possible follow-up research) 85

6. References .. 91

7. Appendices ... 99

7.1 Appendix I: Concept matrix .. 99

7.2 Appendix II: Requirements’ System Breakdown Structure .. 102

7.3 Appendix III: Process map MAVO project (Communication workflow) 103

7.4 Appendix IV: Process map MAVO project (Input/output workflow) 105

7.5 Appendix V: Application code (Python) ... 107

7.6 Appendix VI: Ontology BCF schema (TTL) .. 158

7.7 Appendix VII: BCF Schema (XSD) .. 164

7.8 Appendix VIII: Flowcharts of the developed tool ... 168

7.9 Appendix IX: Thesis’ scope ... 169

iii

Summary

The implementation of Building Information Modelling (BIM) in the Architecture,
Engineering and Construction (AEC) industry represents the development and use of
computer-generated n-dimensional (n-D) models to simulate the planning, design,
construction and operation of a facility. Specifically for design and construction phases, the
creation of BIM models helps architects, engineers and constructors to visualise what is to
be built in simulated environments and to identify potential design, construction or
operational problems that before were only noticeable in the execution phase (Azhar, Hein,
& Sketo, 2014; Grilo & Jardim-Goncalves, 2010; Xu, Ma, & Ding, 2014). As a result, the
creation of BIM models involves a collaborative environment where the exchange of
information is carried out repeatedly amongst engineering departments in order to meet the
requirements that have been previously defined for a given project. In addition,
collaboration becomes more complicated when the file format that each engineering
department uses is not the same because of different software tools.

To overcome this limitation, the development of the BIM Collaboration Format (BCF) and,
later on, the RESTful web service "bcfAPI" enable both informal communications and the
exchange of BCF data between BIM software tools in BIM workflows (BuildingSMART, 2017).
Regarding BCF, research on its implementation has shown that besides model checking
purposes (clash detection) or coordination issues (Asier Mediavilla, José Luis Izkara, & Iñaki
Prieto, 2015; Jakob Beetz, Berlo, Laat, & Bonsma, 2011), the exchange of BCF data across
different software applications in a BIM workflow could be extended to other process-
related activities such as task, requirement, cost and risk management (Treldal, Parsianfar, &
Karlshøj, 2016). However, this extension would require interoperability of the IFC model not
only with the BCF data but with other data sets.

Currently, linking the BIM model to external data sets through the implementation of
Semantic Web technologies is gaining scientific interest within the AEC industry (Curry et al.,
2013; Pieter Pauwels & Terkaj, 2016; Vanlande, Nicolle, & Cruz, 2008). Since the early 2000s,
the semantic approach has been introduced in the building industry as an opportunity to
enhance the interoperability between building object’s information and the IFC model,
improving the efficiency of information exchange process as well (Jakob Beetz, van Leeuwen,
& de Vries, 2009; Hans A. Schevers, John Mitchell, Paul Akhurst, & Chris Linning, 2007; Pieter
Pauwels & Davy Van Deursen, 2012). In such way, the combination of BCF and Semantic
Web technologies could increase the interoperability between the BCF data and other
domains.

This thesis studies the combination of the informal communication provided by the BCF with
the Semantic Web technologies for the purpose of internal design validation attestation. To
understand what the internal design validation implies, the methodology starts with the
research on three actual construction projects (case studies) provided by V&L in order to
study and gain insight not only into the organization and management of project
requirements, but also the exchange of information processes happening during the design
phase of these projects. As a result of the research at V&L, two outcomes are discussed: (1) a
System Breakdown Structure (SBS)/Requirements Breakdown Structure (RBS) matrix and (2)
a process map of the exchange of information workflow.

iv

The SBS/RBS matrix gathers the most common building objects and requirements that have
been identified within the three different case studies. By inspecting project documentation
(mainly calculations and advisory reports) it was possible to compare which similarities and
differences existed between the same building elements and how they were calculated and
checked against requirements. Moreover, the feedback coming from the personnel in V&L
was really valuable in order to understand which requirements were relevant for the matrix
as well as to which building elements they were applicable to. On the other hand, a better
understanding of how parties involved in the design process collaborate and share
information has been obtained from the elaboration of a process map for one of the case
studies. In fact, it was possible to identify the actors and information involved in the internal
validation process, and what is more important, the flaws of the current performance as well
as the functionalities that the practical approach should maintain.

The practical approach develops a prototype that on the one hand combines BCF with the
Semantic Web technologies, and on the other hand, is able to provide and/or improve the
identified functionalities for the purpose of internal validation attestation. To that end, the
current BCF specification, which is defined in an XSD schema, is represented as an ontology
that the prototype uses as a template when modelling BCF data as RDF triples. These triples
containing BCF data are later queried through the prototype by predefining SPARQL queries
that retrieve only the necessary information depending on which functionality it is
considered. The prototype is later validated in terms of correctness and completeness of the
generated data and data visualization. Moreover, the identified prototype’s limitations show
that there is room for improvement concerning practical purposes such as the creation of
multiple BCF issues per building object, the creation of multiple BCF at once and the
attachment of visual information like viewpoints and/or snapshots.The findings of the
development are discussed as well so benefits like the interoperability of the BCF data and
its connection to the BIM model is pointed out, and solutions for the mentioned limitations
are described.

Finally, conclusions present the prototype as the tangible proof of how the informal
communication provided by BCF can be combined with the Semantic Web technologies.
Moreover, the developed workflow examples capture the interaction of engineers with the
prototype and show how it could be integrated into the design process. The combination is
possible by modelling BCF information as RDF triples based on a predefined ontology that
serves as a template for the prototype when modelling BCF data. The ontology’s structure,
although it is the equivalent of the BCF specification (XSD schema), could be simplified by
omitting the hierarchical relationships between the markup and the sub-elements with no
multiple instances per markup. Moreover, the BCF data is stored as triples in an RDF
repository, to be later retrieved using SPARQL queries through the prototype.

Concerning the management of requirements, BCF is capable of dealing with internal
requirements that have to be with design changes in the structural BIM model. The most
common requirements that apply to Building Structure projects have been gathered in a
matrix as a result of the research and interviews performed in V&L. On the other hand, the
implementation of SE management tools in the Building Structures projects in comparison to
the Civil projects differ mainly in that SE is demanded as a process in the Civil projects and
for that reason, its implementation is more developed than in Building Structures projects. In

v

fact, the requirements that are handled are also different, being the most common in the
Building Structures projects the ones gathered in the SBS/RBS matrix.

Abstract

This thesis studies the combination of the informal communication provided by the BCF with
the Semantic Web technologies for the purpose of internal design validation attestation. In
order to understand what requirements and information an internal design validation imply,
the methodology studies the exchange of information processes and requirements
management and organization based on three different actual construction projects
provided by the structural engineering company Verhoeven en Leenders. The research
carried out in this company as well as the interviews with the personnel helped to set the
functionalities and the different use cases that the practical approach aims to provide for the
purpose of internal validation attestation. In addition, the research also helped to identify
and gather together an initial compilation of the most common building elements and
requirements in Building Structures projects as well as their applicability relationships. As a
result of the thesis, the prototype successfully combines BCF and Semantic Web
technologies by modelling BCF data as RDF triples that are stored in an RDF repository to be
retrieved using SPARQL queries. When modelling BCF data as RDF, it is only necessary to
maintain the existing hierarchical relationship between the markup and other sub-elements
in the XSD schema for the elements without multiple instances per markup.

On the other hand, concerning management of requirements, BCF is capable of dealing with
internal requirements that have to be with design changes in the structural BIM model. The
most common requirements that apply to Building Structure projects have been gathered in
a matrix as a result of the research and interviews performed in V&L. The implementation of
SE management tools in the Building Structures projects in comparison to the Civil projects
differ mainly in that SE is demanded as a process in the Civil projects and for that reason, its
implementation is more developed than in Building Structures projects. In fact, the
requirements that are handled are also different, being the most common in the Building
Structures projects the ones gathered in the SBS/RBS matrix.

vi

List of Abbreviations/Glossary

BIM: Building Information Modeling

MEP: Mechanical, Electrical and Plumbing

HVAC: Heating Ventilation Air Conditioning

AEC: Architecture, Engineering and Construction

BCF: BIM Collaboration Format

XML: Extensible Markup Language

IDM: Information Delivery Manual

SMC: Solibri Model Checker

OTL: Object Type Library

SE: Systems Engineering

CAD: Computer Aided Design

ICT: Information and Communication Technology

POP: Product, Organization and Process

XC: Extreme Collaboration

VDC: Virtual Design and Construction

MVD: Model View Definitions

OWL: Web Ontology Language

RDF: Resource Description Framework

RDFS: Resource Description Framework Schema

SPARQL: SPARQL Protocol And RDF Query Language

TTL: Turtle

URI: Unique Resource Identifier

vii

List of figures

Figure 1. Process-based models (Source: https://www.slideshare.net/berlotti/centraal-bim-
model, TNO, Leon van Berlo, 2015) ... 1

Figure 2. MacLeamy curve of BIM intentions (Source: book “BIM and Construction
Management: Proven Tools, Methods, and Workflows” by Brad Hardin, Dave McCool, 2015) 2

Figure 3. Thesis’ scope ... 6

Figure 4. Research model ... 10

Figure 5. BuildingSMART basic standards (Source:
http://buildingsmart.org/standards/technical-vision/open-standards-101/) 13

Figure 6. BPMN diagram (Source: IDMC 004, BuildingSMART) ... 17

Figure 7. Summary of results from bcfXML v2 exports – displaying missing, incorrect,
supported and not supported content (Source: Paper “Using BCF as a mediator for task
management in building design”, 2016) .. 19

Figure 8. Proposed model hierarchy and connections (Source: paper “Requirements
Management Interface to Building Product Models”, 2004) ... 21

Figure 9. Proposed concept to link detailed spatial requirements to a product model (Source:
paper “Requirements Management Interface to Building Product Models”, 2004) 22

Figure 10. Example of RDF triple structure (Source: paper “Using semantic web technologies
to access soft AEC data”, 2014).. 25

Figure 11. Semantic web based building performance assessment platform (Source: paper
“Using semantic web technologies to access soft AEC data”, 2014) 26

Figure 12. Example query structure against data graph .. 27

Figure 13. Systems engineering framework (Source: Systems Engineering Handbook V&L).. 30

Figure 14. Case studies from V&L .. 33

Figure 15. Case studies classified by contract type .. 34

Figure 16. Parties involved in the workflow for UAV contract (traditional) 35

Figure 17. Parties involved in the workflow for UAV-GC contract (collaborative) 35

Figure 18.Hierarchy of requirements (Source: systems engineering handbook from V&L).... 37

Figure 19. Location of the MAVO XL Schiedam (Source: Google Maps and V&L
documentation) .. 46

Figure 20. Structural model of the MAVO XL Schiedam project (IFC, Source: V&L) 47

Figure 21. Use case diagram of the developed tool .. 48

viii

Figure 22. RDF schema – Part 1 .. 51

Figure 23. RDF schema – Part 2 .. 52

Figure 24. RDF Schema – Part 3 ... 52

Figure 25. RDF Schema – Part 4 ... 53

Figure 26. RDF Schema – Part 5.1 .. 54

Figure 27. RDF Schema – Part 5.2 .. 54

Figure 28. RDF Schema – Part 5.3 .. 55

Figure 29. RDF Schema – Part 5.4 .. 55

Figure 30. 3D viewer tab .. 56

Figure 31. Backwards and external compatibility tab .. 56

Figure 32. 3D viewer tab – Loaded model ... 57

Figure 33. BCF creator interface... 58

Figure 34. List of RDF contexts in the RDF4J repository .. 58

Figure 35. Show files attached button example .. 59

Figure 36. Triple containing the Topic GUID of the RDF context 1 .. 59

Figure 37. Part of the RDF triples contained in an RDF context .. 60

Figure 38. Building objects coloured according to their BCF status .. 60

Figure 39. Triple containing the Topic Status from RDF context 1 .. 61

Figure 40. Query example .. 61

Figure 41. Query example 2 ... 61

Figure 42. Assigned To interface .. 62

Figure 43. Assigned To triple in the RDF context 1 .. 62

Figure 44. Interface for the “Mark as closed” button .. 62

Figure 45. Contents of BCF zip files .. 63

Figure 46. Content of folders inside the BCF zip file .. 63

Figure 47. BCF information serialized as XML file .. 64

Figure 48. Visualization of downloaded RDF contexts in the BCF Manager from KUBUS 65

Figure 49. BCF information for prototype validation ... 66

ix

Figure 50. Selected column for prototype validation .. 66

Figure 51. RDF context 8 for prototype validation .. 67

Figure 52. Visualization of the new BCF information in the developed desktop viewer......... 67

Figure 53. Visualization of RDF context 8 in the BCF Manager .. 71

Figure 54. Visualization of RDF context 8 in the BCF Manager 2 ... 72

Figure 55. Edition of the RDF context 8 in the BCF Manager .. 72

Figure 56. Visualization of the edited RDF context 8 in the RDF4J repository 73

Figure 57. Visualization of the edited RDF context 8 in the developed tool 73

Figure 58. Example showing the mixed comments coming from different topics related to
the same object .. 75

Figure 59. Sketch of the proposed Graphical User Interface 1 .. 76

Figure 60. Sketch of the proposed Graphical User Interface 2 .. 76

Figure 61. RDF repository with no contexts ... 79

Figure 62. Query of triples in the RDF repository with no contexts .. 79

Figure 63. Query example without hierarchy .. 79

Figure 64. Combination of thesis for further research .. 86

Figure 65. Requirements’ System Breakdown Structure ... 102

Figure 66. Communication workflow – MAVO project (Preliminary Design) 103

Figure 67. Communication workflow – MAVO project (Final Design) 104

Figure 68. Input/output workflow – MAVO project (Preliminary Design) 105

Figure 69. Input/output workflow – MAVO project (Final design) .. 106

Figure 70. Workflow examples ... 168

Figure 71. Thesis’ scope ... 169

x

List of tables

Table 1. Levels of detail (LOD) in V&L (Source: Systems Engineering Handbook V&L) 32

Table 2. Functionalities of the developed tool .. 47

Table 3. Visualization of BCF status – Colour code .. 61

Table 4. Comparison between the introduced (BCF interface) and generated (RDF triples)
information ... 68

Table 5. References’ concept matrix .. 99

1

1. Introduction

BIM represents the development and use of computer-generated n-dimensional (n-D)
models to simulate the planning, design, construction and operation of a facility. It helps
architects, engineers and constructors to visualise what is to be built in simulated
environments and to identify potential design, construction or operational problems (Azhar
et al., 2014).

Collaborative implementations of BIM in building projects work on a Shared Data Model
(Figure 1) where architects, contractors, MEP engineers and other actors work together with
the BIM manager for the elaboration of an IFC model that contains all the necessary building
information.

Figure 1. Process-based models (Source: https://www.slideshare.net/berlotti/centraal-bim-model, TNO, Leon
van Berlo, 2015)

This collaborative implementation has influence in the life cycle of a building project,
specifically, in the pre-visualization of design problems during the “Design phase” that
before were usually noticeable in the “Execution phase”. As a result, costs of design changes
are reduced according to the MacLeamy curve of BIM intentions (Figure 2).

https://www.slideshare.net/berlotti/centraal-bim-model

2

Figure 2. MacLeamy curve of BIM intentions (Source: book “BIM and Construction Management: Proven Tools,
Methods, and Workflows” by Brad Hardin, Dave McCool, 2015)

The truth is that it is far more effective to coordinate these building systems using a visual
approach with a 3D model, so that the location and relationships of all the components
(architecture, structure, HVAC, electrical, plumbing, etc.) and their potential conflicts can be
resolved while still in the project's planning phases (Grilo & Jardim-Goncalves, 2010; Xu et
al., 2014).

On the other hand, as a parallel consequence, the design phase of any building project
involves a collaborative environment where the exchange of information is carried out
repeatedly amongst engineering departments in order to meet the requirements that have
been previously defined for a given project. In addition, collaboration becomes more
complicated when the file format that each engineering department uses is not the same
because of different software tools.

Therefore, when project participants iteratively exchange model based design data, they
have to evaluate the data within the framework of a programmed procedure in which a
receiver confirms whether the building information model is satisfied both syntactically and
semantically and whether the updated building design conforms to the agreed upon
specifications and requirements. Otherwise, exchanges frequently do not realise intended
geometric transformations, project requirements, and required syntactic and semantic
conditions in building model data, exacerbating the problem of model integrity and resulting
in expensive changes during the construction and operation phases (Y.-C. Lee, Eastman, &
Lee, 2015).

The development of the BIM Collaboration Format (BCF) includes both, an XML file format as
well as a RESTful web service for the purpose of communicating BIM-related tasks. The file
format enables informal communications between BIM software tools while the RESTful web
service "bcfAPI" enables software applications to exchange BCF data seamlessly in BIM
workflows (BuildingSMART, 2017). Basically, a message that complies to a XML-based
schema is encoded containing BIM-topics (e.g. issues, proposals, change requests ...) and it is

3

assigned to building elements in order to exchange written comments and screenshots for a
better collaboration between parties. By using the IFC Global ID, which is the attribute that
identifies and differentiates every element in the IFC model, issues are assigned to building
elements.

To adequately manage issues within a BCF environment, it is important to set up an effective
set of values for the fields that describe the topic/issue, tailored to the processes of the
project partners (L. van Berlo & Krijnen, 2014). Many forms of communication amongst
different softwares around the design process can be then unified by implementing BCF as
the common language between engineering departments.

On the other hand, Systems Engineering (SE) management tools such as Relatics are being
implemented in civil works for the management of project information, providing project
managers with a defined framework for the control of data. Relatics is essentially a web-
based platform used by managers in projects to customise a Systems Engineering and
management of requirements application completely to their needs (Relatics, 2017). With it,
project managers are able to organise information in a coherent network of requirements
together with other project information (stakeholders, design components…).

On the contrary to BCF, Relatics avoids the file exchange of information with a web-based
centralized relational database, which provides a more efficient and synchronised
management of data, preventing the possible exchange and storage of outdated information
and/or modifications. In fact, the “bcfAPI” was born to overcome the manual exchange of
files by email attachments and automate it via a standardized RESTful API.

Systems engineering is an interdisciplinary approach and means to enable the realisation of
successful systems. It focuses on defining customer needs and required functionality early in
the development cycle, documenting requirements, and then proceeding with design
synthesis and system validation while considering the complete problem (INCOSE, 2017). SE
differs from traditional disciplines in that (1) it is focused on the system as a whole; (2) it is
concerned with customer needs and operational environment; (3) it leads system conceptual
design; and (4) it bridges traditional engineering disciplines and gaps between specialties
(Alexander Kossiakoff, William N. Sweet, Samuel J. Seymour, & Steven M. Biemer, 2011).

Concerning management as a whole, it is also relevant to count on a less manual validation
framework since for effective collaboration a process, checking these requirements in an
automated and unambiguous way is of crucial importance (Krijnen & van Berlo, 2016; Y.-C.
Lee et al., 2015). A manual validation framework involves a repetitive process carried out by
a manager whose risk of missing or committing an error increases proportionally with the
number of times that he has to validate a task on the same day. For that reason, since
nowadays we can count on machines or rule-checking engines that are able to read
requirements, the next step could be to integrate them as a new part of BCF and extending
this technology not only to issue but also requirements management.

1.1 Problem definition/objective of the thesis

Research was carried out at the structural engineering company Verhoeven en Leenders
(V&L) where both the Building Structures and Civil Division were analysed concerning
management of requirements and exchange of information during project design processes.

4

It was observed that contrary to the Civil Division, where management of requirements is
carried out by using a systems engineering management tool (Relatics) due to the strict
framework demanded by some clients, the Building Structures Division at Verhoeven en
Leenders does not rely on a well-structured process for the implementation of systems
engineering. The current situation at the company is that engineers only give face-to-face
feedback on the things that went wrong and/or attach comments or references to specific
checks (e.g. 2D drawings) indicating that something failed without a fixed action protocol.

The behaviour from engineers in V&L has been also noticed by several authors (L. van Berlo,
Derks, Pennavaire, & Bos, 2015; Gu & London, 2010; W. Shen et al., 2010) despite the fact
that Building Information Modeling (BIM) technologies are becoming more and more
common in the AEC field. Eventually, this reluctance to BIM adoption could be counter-
productive in a collaborative environment that requires data exchanges and communication
among different domains and applications. In addition, as the information processing
becomes more and more automated, standardized and qualified data is necessary for
efficient working processes (Zhang & Beetz, 2014).

Regarding BCF, research on its implementation has shown that besides model checking
purposes (such as clash detection) or coordination issues (Asier Mediavilla et al., 2015; Jakob
Beetz et al., 2011), the exchange of BCF data across different software applications in a BIM
workflow could be extended to other process-related activities such as task, requirements,
cost and risk management (Treldal et al., 2016). However, this extension requires
interoperability of the IFC model not only with the BCF data but with other data sets.

Currently, using web-based BCF management tools (bcfAPI) that synchronize BCF issues
without having to export BCF ZIP files (“BIMcollab,” 2017; L. van Berlo & Krijnen, 2014)
improves interoperability between the IFC model and the BCF data in the field of process
information exchange. On the other hand, linking the BIM model to external data sets
through the implementation of semantic web technologies is gaining scientific interest
within the AEC industry (Curry et al., 2013; Pieter Pauwels & Terkaj, 2016; Vanlande et al.,
2008).

Since the early 2000s, the semantic approach has been introduced in the building industry as
an opportunity to enhance the interoperability between building object’s information and
the IFC model, improving the efficiency of information exchange process as well (Jakob Beetz
et al., 2009; Hans A. Schevers et al., 2007; Pieter Pauwels & Davy Van Deursen, 2012). In
such way, the combination of BCF and Semantic Web technologies could increase the
interoperability between the BCF data and other domains.

The thesis’ scope is part of a project focused on researching the application of linked data
technologies for the purpose of internal and external design validation (Figure 3). For that
purpose, the objective is divided into (1) supplementation of an IfcOpenShell based desktop
viewer with the possibility of visualising objects’ requirements that have been previously
linked to the elements through semantics and attaching external validation documentation
(red tasks in Figure 3); and (2) allowing the communication between engineers through BCF
(in combination with Semantic Web technologies) for the purpose of internal design
validation attestation (green tasks in Figure 3).

5

The first objective is addressed in Miryana Stancheva’s thesis (Stancheva, 2017). On the
other hand, it is the second objective that is addressed within the scope of this thesis and,
specifically, its goal is to provide the IfcOpenShell based desktop viewer with an option to
create BCF issues so engineers can communicate when there are problems with building
elements meeting the project requirements in the BIM model. The creation of BCFs will be
done within an RDF environment that will prevent the creation of BCF zip files so that all the
issues created will be stored in a SPARQL endpoint. Moreover, this stored information
should be also retrievable directly from the desktop viewer providing the user with a direct
connection to information (like BCF object status) for all the elements in the model.

Backwards and external compatibility with other BCF management tools (such as KUBUS BCF
Manager) will be also included within the scope of this thesis. In this way, it will be possible
not only to generate BCF issues within an RDF environment but also to import BCF
information (zip files) created/modified with other BCF management tools.

6

V
al

id
at

io
n

 f
ra

m
ew

o
rk

B
IM

 m
o

d
el

le
r

St
ru

ct
u

ra
l e

n
gi

n
ee

r
Tr

ip
le

st
o

re
Fi

le
 S

er
ve

r
Ex

te
rn

al
 p

ar
ti

es

IfcOpenshell Desktop Viewer

IfcOpenshell Desktop Viewer

IfcOpenshell Desktop Viewer

Create a model

Export IFC
Geometry

Geometry

Calculate
structure

Convert IFC
geometry into

RDF

Document Proof (Calculations, advisory reports etc.)

Geometry Requirements
ontology

Visualize IFC
geometry and
requirements

Visualize “not
closed” objects

Create new BCF
(or add

comment to an
existing one)

Model defined
according to
calculations

NO

YES

Update model

RDF context (BCF)

Visualize IFC
geometry and

properties

Mark object as
closed

Referenced document

Visualize
“closed” objects

Link documents to
requirements and
model instances as

proofs

YES

RDF context (BCF)

Check object
status

Visualize
assigned objects

All model
instances

proven on all
requirements

?

RDF context (DocumentReference)

NO

Query model
instances per
requirement

Verify content
accuracy of
document

proofs

Document
contents
accurate?

NO

YES

End of
engineering design

Update
documents

(Calculations,
reports)

Link document
update to old

document reference

Update of Document Proof

RDF context (DocumentUpdate)

Change Request

Information
handover

Design Phase

Change request

RDF data

Activities related to this thesis Activities related to the complementary thesis Additional process-related activities

PDFIFC

TTLifcOWL RDF

PDF

RDF RDF

PDF

RDF

PDF

RDF

Figure 3. Thesis’ scope1

1 An A3 version of the schema can be found in the Appendix, 7.9 Appendix IX: Thesis’ scope

7

1.2 Research question(s)

The main research questions would be:

1. Can Semantic Web technologies be integrated into a building structures design

process for internal validation attestation using BCF?

2. Is BCF a capable tool for the management of requirements?

The already existent experience of the personnel within the Civil Division of the company

with systems engineering management tools such as Relatics make this engine an

opportunity for managing the requirements. So a sub-question could be:

3. What differences exist between the implementation of systems engineering

management tools (Relatics) in building structure projects and civil projects?

Moreover, requirements coming from stakeholders, clients or co-workers within the

company can take different shapes, for instance: you have to add/remove these elements

into/from the model or you have to modify the material class of this element. So sub-

questions to be answered could be:

4. What requirements apply specifically to projects in the Building Structures sector

and which requirements have a general scope? And how will these requirements

look like in a structural engineering context?

Regarding the communication framework through BCF within an RDF environment and

storage (SPARQL endpoint), further analysis could be carried out regarding the next sub-

questions:

5. How can BCF information be structured and stored using Semantic Web

technologies (RDF)? Can this information be accessed and used for internal

validation attestation of requirements (SPARQL endpoint)?

1.3 Methodological justification

The chosen methodology for the research approach of this thesis involves three main stages:
research, development and validation. The combination of these stages complements each
other and consequently the elaboration of the thesis.

First of all, before starting any development project, a research is needed to gain basic
insight into the status and level of development of current tools related to the topic. What is
more, developing a validation framework requires an understanding of every piece of
information exchanged in it. Process models are used in IFC specification development
projects as the means to discover and capture the information content of a business process
and how that information is to be exchanged between participants in the process (IDM
Technical Team, 2007). Therefore, a process model of the exchange of information processes
that occur during the whole design phase is needed to have a global view of the actors, type
of information that is exchanged between departments and responsibilities; and,
specifically, to be able to identify the necessary actors and information for internal design
validation attestation.

8

Interviews with the personnel at Verhoeven en Leenders are performed as well since the
best source of information for assessing this process model and the exchanged information
is the one coming from the actors that are involved in it. Moreover, since the Civil Division
has experience with systems engineering management tools (Relatics) regarding the project
requirements, it is reasonable that feedback coming from this division of the company is as
necessary as valuable for the research.

Secondly, based on the findings obtained from the initial research and interviews, a tool is
developed to address the needs that were identified while studying the implementation of
Semantic Web technologies as well. The features that this application offers to the user are
designed according to indications and recommendations coming from employees and
supervisors apart from the insight obtained from the first stage. Once the tool is ready, its
value is proved on the validation stage.

The third and last stage consists of use cases generated to show not only the value of the
features designed in the developed tool but to find possible issues or improvable
characteristics. The point of this stage is to show that the application works, deals with
current BCF implementations and, what is more important, brings additional possibilities to
the design process in the building environment.

1.4 Research design

The research model that has been followed in the elaboration of this thesis is shown in
Figure 4. Basically, it consists of three stages (research, development and validation) and the
final documentation stage where the conclusions obtained from the each stage are written
and discussed in the graduation report.

During the first stage called research, a study of the existing validation framework at both
Building Structures and Civil Division is carried out by reading the available company
documentation (like BIM or SE protocols) and interviewing several employees. Moreover,
requirements management, its organisation and the information exchange workflow are
studied within several actual company projects in order to identify general and project
specific requirements and elaborate a System Breakdown Structure of building elements and
project requirements. In addition, a process map of the exchange of information workflow
during a project is carried out as well.

Scientific papers regarding BCF, Semantic Web technologies (RDF and SPARQL) and
management of requirements and project information are investigated aiming to gain
insight into the existing implementations, tools and experiences. In addition, how
requirements are managed with systems engineering management tools (Relatics) is also
analysed directly at the company by inspecting actual civil projects.

The second stage involves a practical approach that aims to develop a management tool that
is able to combine BCF and Semantic web technologies for the purpose of internal design
validation and attestation. The developed tool allows users to create BCF issues within an
RDF environment that are uploaded and retrieved from a SPARQL endpoint. This tool is
based on the IfcOpenShell desktop viewer and the final code, which is written in Python,
reuses parts from already graduated students (Riet, 2016; Ven, 2017) that already work with
the IfcOpenShell viewer.

9

Conclusions from the second stage connect with the third stage where the tool is validated
through several use cases in order to prove whether BCF is an appropriate tool for
requirements management, and if benefits are achieved through the combination of BCF
and semantic web technologies. These use cases are identified and designed according to
what existing BCF management tools can and cannot do nowadays as well as the indications
and advice coming from employees and the supervisor at the company. In this way, the
value of the developed tool can be proved not only by substituting BCF Zip files with RDF
contexts but also it will contain functionalities based on actual user demands. An analysis
looking for possible issues or improvable features of the developed tool is carried out as well
so that recommendations about them and for future research or tool extensions are
proposed.

Finally, all three stages and their relevant conclusions are documented with the elaboration
of the graduation report.

10

Research model

R
es

ea
rc

h
 s

ta
ge

D
ev

el
o

p
m

en
t

st
ag

e
V

al
id

at
io

n
 s

ta
ge

W
ri

ti
n

g
1. Study the current validation framework at both Building Structures (BS)
and Civil Division by reading company documentation and carrying out
interviews to employees.

Conclusions

Conclusions

Conclusions

2. Study requirements organization within several actual company projects
to identify general and specific project requirements + elaborate a System
Breakdown Structure (SBS) of building elements and project requirements.

3. Research tools and investigations regarding the management of
requirements; and the implementation of Systems Engineering
management tools (Relatics) in the Civil Division.

4. Study exchange of information workflow within actual company projects
and elaborate a process map of the exchange of information workflow for
one of the projects.

5.Develop a tool based on the IfcOpenShell desktop viewer that provides
the structural engineer with a internal validation framework using BCF in
combination with Semantic Web technologies.

6. Allow informal communication through BCF within a RDF environment by
uploading and retrieving BCF information to/from a SPARQL endpoint.

10. Write graduation thesis report

8. Identify use cases that can and cannot be done with current BCF
viewers/managers and prove the value of the developed validation tool.

9. Analyse and identify possible issues with the implemented validation tool
and propose recommendations for further research or tool extensions

7. Allow backwards and external compatibility with other exisiting BCF
management tools.

Figure 4. Research model

11

1.5 The practical/social and/or theoretical/scientific importance of the
thesis

The importance and usefulness of this thesis can be justified within a practical and scientific
environment.

Concerning the scientific importance, exchange of BCF issues by using regular email
attachments hinders the efficiency and performance of engineering departments concerning
the validation of BIM models. In addition, it becomes limited when thousands of issues
generated from a single construction project need to be managed. Even with web-based
tools like BIM Collab (“BIMcollab,” 2017), which allows the management of BCF data without
the need to exchange BCF zip files, it still does not use RDF as data exchange. For that
reason, a combination of BCF with semantic web technologies (RDF) provides the AEC
industry with an approach that is not only able to substitute the creation and exchange of zip
files, but also it makes the BCF information machine-processable and retrievable. What is
more, it creates opportunities to combine it with data sets from other domains that use RDF
as a main data format in order to create a network of interconnected knowledge.

Regarding the practical importance, because of the upcoming Dutch law “Wet
kwaliteitsborging voor het bouwen” construction companies will have to document and
prove every aspect or decision of the construction design. For that reason, counting on an
internal validation framework that is able to keep track of every structural change and
decision made in the structural model represents not only an advance into the automation
and digitalization of the construction design process but also a great advantage for the
company who counts on it, in comparison with competitors who don’t, regarding the
tendering of new projects.

1.6 Reading guide (the organisation of the thesis)

This section will shortly introduce the contents of every chapter of the thesis, which consists
of a total of seven chapters:

Chapter 1 called “Introduction” will present the reader the main topics that the thesis is
related to, starting with the problem definition and objective of the thesis, continuing with
the research questions, methodological justification, research design and followed by the
practical/scientific importance of the thesis.

Chapter 2 called “Literature review” introduces the reader to the current status and level of
development of the topics of the thesis by explaining and highlighting the most relevant
findings that other researchers have investigated and developed about them.

Chapter 3 called “Methodology” brings in the findings and results obtained after carrying out
a research of the documentation and actual projects at the structural engineering company
Verhoeven en Leenders. The research concerns the identification and management of
project requirements; and the capture of the information exchange during the design
process of actual construction projects.

https://www.eerstekamer.nl/wetsvoorstel/34453_wet_kwaliteitsborging_voor#p3
https://www.eerstekamer.nl/wetsvoorstel/34453_wet_kwaliteitsborging_voor#p3

12

Chapter 4 called “Tool development” presents the practical approach of the thesis. Through
different sections, the developed tool and its functionalities are explained, analysed,
validated and discussed.

Chapter 5 contains the conclusions that will sum up all the relevant findings of this thesis. To
that end, the initial research questions presented in chapter one are answered based on
those findings and recommendations for further research are discussed as well.

Chapter 6 lists the references that have been consulted for the elaboration of this thesis.

Chapter 7 gathers the different documentation that has been consulted or developed during
the elaboration of thesis and, on the whole, has an important influence in the thesis.

13

2. Literature review

2.1 Introduction

This chapter contains the literature review that shows the current situation and/or status of
topics like BIM, IFC interoperability, BCF, requirements management, RDF and SPARQL.

A list of the articles addressed in this literature review can be found in the concept matrix in
section 7.1 Appendix I: Concept matrix, where they have been classified according to their
main topic.

2.2 Building Information Modeling (BIM): open standards, interoperability,
implementation and adoption

Building Information Modeling (BIM) is an intelligent 3D model-based process that equips
architecture, engineering, and construction professionals with the insight and tools to more
efficiently plan, design, construct and manage buildings and infrastructure (Autodesk, 2017).
It is expected to increase inter-organizational and disciplinary collaboration in the
construction industry and to improve the productivity and quality of the design,
construction, and maintenance of buildings (Miettinen & Paavola, 2014).

Interoperability between BIM tools is provided through the Industry Foundation Class (IFC)
open standard. The IFC is a language for transferring information between BIM applications
while maintaining the meaning of different pieces of information in the transfer. It
represents architectural and construction-related CAD graphic data as 3D real-world objects;
and it is one of the five basic open standards (Figure 5) which exist to perform different
functions in the delivery and support assets in the built environment (BuildingSMART, 2017).

Figure 5. BuildingSMART basic standards (Source: http://buildingsmart.org/standards/technical-vision/open-
standards-101/)

http://buildingsmart.org/standards/technical-vision/open-standards-101/
http://buildingsmart.org/standards/technical-vision/open-standards-101/

14

Other open standards included within the basic BuildingSMART standards, and which are
relevant for the development of this thesis, are the Information Delivery Manual (IDM) and
the BIM Collaboration Format (BCF). IDM captures business processes and provides detailed
specifications of the information that a user involved in the process will have to provide at a
certain point during the mentioned process. On the other hand, BCF is more oriented
towards the coordination of any communication workflow in the process. It encodes
messages (in an XML schema format) to enable workflow communication between different
BIM software tools.

For several years now, open BIM data standards have been tested to check whether they
meet the needs of the Architecture, Engineering and Construction (AEC) industry. For
example, Leon van Berlo compares (L. A. H. M. van Berlo, Beetz, Bos, Hendriks, & Tongeren,
2012) the efficiency of the collaboration process in two different cases: first using a central
data repository where all actors use the same software tool, and second, using open
standards like IFC to exchange data because all actors used different software tools.

Amongst the conclusions, three points can be highlighted: (1) engineers should be free to
choose their own software tools in order to achieve a higher performance in the execution
of their engineering tasks; (2) synchronization in a central data repository of models should
be done on a weekly basis instead of in real time. The idea is that IFC data of other users is
used as a reference to create your own native data. Finally, (3) the amount of available
information for BIM users should be that it contains only information that they need at a
given time and not all of it. In fact, interviewed respondents stated that the IDM and MVD
concept (BuildingSMART 2011) could solve this issue.

The features and possible implementations of IFC in the AEC industry are discussed by
Thomas Froese (Thomas Froese, 2003). According to the author, the IFC’s scope includes
both product (building systems and elements, their geometry, design properties…) and non-
product (costs, schedules, people, organisations, resources, documents…) information.
However, it is argued that most systems implement this scope only in one direction to use
product information as an input to non-product applications, like input geometry into an
energy simulation application (Grilo & Jardim-Goncalves, 2010); and very few implement it
backwards to use non-product information back into IFC files to exchange non-product data.

In addition, it presents that current implementations only consider this open BIM standard
for the exchange of IFC files between team members, which is simple and effective, but
limited when it comes to managing a shared project with many users and large amounts of
data; and the same applies for BCF zip files. The problem is that IFC model only offers a
standardisation of the information format, but it does not create any exchange framework.
Subsequently, the paper supports the formalisation of data exchange protocols to support
IFC-based transactions. These transactions, as mentioned in Leon van Berlo’s paper (L. A. H.
M. van Berlo et al., 2012), could be managed through the implementation of IDM.

Later on, van Berlo, Derks, Pennavaire and Bos aimed to standardize a workflow for
collaborative engineering with IFC (L. van Berlo et al., 2015). Through observations and
interviews to users in the AEC industry, it is concluded that IFC is the most effective
technology to support a standardised collaboration process with BIM. Solibri Model Checker
(SMC) and Tekla BIMsight are examples of software applications that work on IFC data and,

15

what is more, exchange data through BCF. Nevertheless, it is also interesting that some
interviewed users find that collaboration is not about standardising a data flow or process,
but about connecting to other team members by knowing which data is needed during any
giving time in the process; which again, corresponds to the definition of IDM’s objective.

An actual implementation of open BIM standards, object type libraries (OTL), systems
engineering (SE) and an Information Delivery Manual (IDM) is described in Hans Hoeber’s
paper (Hans Hoeber & Daan Alsem, 2016). The explained approach shows IDM as the
methodology to define the required timing, frequency, content and format of information
exchange, COINS as the information exchange format and VISI as the formalisation of the
communication process between the actors in a construction project. In other words, IDM
and VISI manage the actual information transactions between partners addressing the
information requirements of actors involved over the life-cycle; and COINS manages the
content of the message by providing interoperability.

Despite the fact that this approach supports and concludes that information can be
managed through different open BIM standards in a project life-cycle, it holds that the
standardization of the communication process is an important principle to provide a suitable
communication framework able to meet the business needs; which disagrees with the
opinion of interviewed users by Leon van Berlo (L. van Berlo et al., 2015) and his findings.

On the contrary to Miettinen’s point about increasing collaboration in the construction
industry (Miettinen & Paavola, 2014), the documented case study from Neff (Neff, Fiore-
Silfvast, & Dossick, 2010) argues that BIM and digital models amplify the disciplinary
representation of the building by architects, engineers and buildings, pointing out the
organisational and cultural differences between project participants.

“With paper, meeting participants had some openness to infer what drawings could
represent or how they might function in three-dimensional space. With digital models, this
interpretative flexibility was taken away and was replaced with explicitness about what was
possible for the building”(Neff, Fiore-Silfvast, & Dossick, 2010).

It holds that the cognitive distinctions of what the building is and what it will become cannot
be simultaneously represented in BIM due to its explicitness and concludes that digital
models do not have the interpretative flexibility to maintain negotiations across knowledge
boundaries. Nevertheless, this can be argued by Leon van Berlo (L. A. H. M. van Berlo et al.,
2012), who discuss that the users do not aim at creating a perfect BIM model, but focus on
doing a good engineering task by using other’s IFC data as a reference. In fact, according to
its findings, the user never works in or from data in a central repository but only with their
own database or model instance and taking responsibility for their own data.

The reluctance of some users within the AEC industry to adopt open BIM standards and IT
technologies has been also mentioned in other articles (L. van Berlo et al., 2015; W. Shen et
al., 2010). For instance, Gu and London (Gu & London, 2010) explained that collaboration is
still primarily based on the exchange of 2D drawings although most disciplines are now
working in a 3D environment due to the lack of trust on completeness and accuracy of 3D
models from the users, which differs from other authors (Grilo & Jardim-Goncalves, 2010;
Krijnen & van Berlo, 2016) who present BIM as the transition from 2D CAD drawings to

16

semantically rich information models that allow visualization, understanding and
construction to take place in 3D dimensions; increasing productivity and efficiency of the
construction processes as a result.

Gu and London (Gu & London, 2010) add that the registration of communication and
information exchange is something that is not generally captured in the BIM model and
users demand. As a conclusion, they state that the BIM approach is a relevant factor for an
industry where projects are characterised by multidisciplinary and multi-organizational
teams. However, like it has been mentioned by other authors (L. A. H. M. van Berlo et al.,
2012; L. van Berlo et al., 2015; Thomas Froese, 2003), efforts should be focused on creating a
Collaborative BIM Decision Network able to assign responsibilities and activities
interdependencies, conduct design reviews and validations in order to facilitate BIM
adoption.

According to Grilo and Jardim-Goncalves (Grilo & Jardim-Goncalves, 2010), BIM adoption
requires interoperability to support its implementation within the AEC industry. And
overcoming the interoperability it is not only a matter Information and Communication
Technology (ICT) problems but also addressing business processes along with new
management relationships, culture, employees, values and management of contractual
issues between interacting parties. In fact, governments are developing requirements
documents to define and limit the scope of information to a right level of detail and project
phase when exchanging building models (Krijnen & van Berlo, 2016), which can be partially
solved through IDM initiative (Y.-C. Lee et al., 2015).

2.3 Information Delivery Manual (IDM)

The importance of creating a framework for information management and collaboration
between parties in order to ensure that information is reusable and retrievable has been
pointed out in several articles during the previous chapter. Specifically the ISO 29481-
1:2010 “Building information modelling - Information delivery manual - Part 1: Methodology
and format” standard developed by buildingSMART has been mentioned by several authors
(L. A. H. M. van Berlo et al., 2012; Hans Hoeber & Daan Alsem, 2016; Y.-C. Lee et al., 2015) as
the methodology to capture and specify processes and information flow during the lifecycle
of a facility.

Due to the fragmented nature of the construction industry and because construction
projects usually bring together different companies, engineering and architectural
departments; it is necessary to establish an organisation to know which and when different
kinds of information have to be communicated in order to increase the efficiency of the
collaboration process (BuildingSMART, 2011). In fact, according to Kvan (Kvan, 2000), in
order to be successful in a collaborative project, teams and activities involved in the process
must be defined and their outcomes and interdependencies identified.

To that purpose, the main objective of IDM methodology is to have a well-defined
communication process between the parties so that the necessary data are communicated
to all parties involved in a certain process at the right time and in the right format (Asier
Mediavilla et al., 2015). In other words, it indicates where the most important processes in
the whole captured process are located, which the exchanged and needed information for

17

the process realisation is, how the information should be delivered, and who the actors
(using the information) involved in those processes are (Figure 6).

Its implementation brings benefits not only to BIM users but also to software solution
providers. On the one hand, BIM users are given an easy to understand language description
of building construction processes, information requirements and expected results. On the
other hand, it gives BIM software developers a functional breakdown of the processes and
the IFC capabilities that need to be supported for each functional part (Jeff Wix & Jan
Karlshøj, 2010).

Figure 6. BPMN diagram (Source: IDMC 004, BuildingSMART)

It is mentioned by van Berlo, Bomhof and Korpershoek (L.A.H.M. van Berlo, F. Bomhof, & G.
Korpershoek, 2014) the existence of a BIM protocol generator (still in beta testing) for
addressing IDM’s goals and objectives. It captures the BIM working methods in a project,
identifies the preferred working method from project partners and adds them to a BIM
project protocol. To get this information, project participants are sent a questionnaire
through which the needed information and some basic capabilities of each project partner
are studied and captured.

“When partner A with software X needs information from partner B with software X, the text
in the generated BIM protocol will probably state that they will exchange data with software
X. When one of them uses other software but both know how to handle IFC the BIM protocol
generator will plot a text that information between A and B will be exchanged with IFC. This
way the whole collaboration network will become clear and it will show where problems
might occur” (“BIM protocol generator,” 2014).

18

Once generated, the first BIM protocol draft should not be considered as final. As it is
explained in its description, this generator facilitates the creation of an official document,
saving hours of interviews and meetings to identify working methods. However, it is
recommendable to participants to meet after its creation to revise and supplement it in
order to define the final collaboration framework.

Other past studies are more focused on the organisation of project objectives in a computing
environment. Hitchcock (Hitchcock, 1995), for instance, presents a simple and flexible
hierarchical organisation of the project requirements and their associated data that could
help BIM software developers to visualise how project information should be able to flow in
both forward and backwards directions between all the phases of the project lifecycle. As it
is explained, such organisation of project objectives shows the relation between design
intent elements and its evolution over time too.

“Making project objectives explicit and representable in a consistent format, much of the
currently implicit (or even hidden, misrepresented, misunderstood) intent behind design,
construction, and operation decisions can be more clearly communicated, and the overall
building process can be more efficiently and effectively performed and managed”(Hitchcock,
1995).

On the whole, several papers (Grilo & Jardim-Goncalves, 2010; Miettinen & Paavola, 2014;
Xu et al., 2014) coincide in that BIM-enabled projects with interactive feedback on design
decision consequences that are able to keep track and meet project objectives could
generate greater savings and more efficient processes.

2.4 BIM Collaboration Format (BCF)

BIM Collaboration Format is an open standard that defines a XML-based schema to
exchange written comments related to a specific IFC file. The implementation of BCF for the
description of views on particular building elements and verbalization of related issues is one
of the potential directions for its application (Jakob Beetz et al., 2011).

When used for management and communication of issues, a BCF file holds a description of
the issue, a status, links to a BIM model and objects, a picture of the issue and a camera
orientation (bcf XML v1); then such BCF file is packed in a ZIP file that will be later
transferred by regular file sharing means. In 2014, the bcfXML v2 included the option to
append documents (document reference) and elements of a data model (BIM snippet) as
well as the option to include more viewpoints and snapshots. Nevertheless, according to the
review carried out by Treldal, Parsianfar and Karlshøj (Treldal et al., 2016), the current
implementation of BCF in tools that support tasks’ management shows that no tool is able to
export a BCF file that contains all specifications defined in the current bcfXML v2 (Figure 7).
Amongst the tools they analysed, we can find: BCFier, KUBUS BIMCollab, Trimble Connect,
Solibri Model Checker, DDS Viewer, BIMTrack and Revitzo.

19

Figure 7. Summary of results from bcfXML v2 exports – displaying missing, incorrect, supported and not supported content (Source: Paper “Using BCF as a mediator for task management in
building design”, 2016)

20

Because during a real project the amount of BCF files generated could be really big, along
with the release of bcfXML v2 a RESTful API was developed to allow a BCF server to
automatically synchronise BCF tasks and avoid file exchange (Linhard, K. & Steinmann, R.,
2015). In fact, an extension to BCF is presented (L. van Berlo & Krijnen, 2014) where project
partners were able to create issues, manage them online and assess them in the BIM model
through a BCF server; so that an overview of the status of both project and individual objects
is created. Amongst the most important findings, it agrees with other authors (L. A. H. M.
van Berlo et al., 2012; Hitchcock, 1995) on that is difficult to make project members work on
the same software platform due to the fragmented nature of the industry, and therefore
working with different aspect models can be more effective.

A comparison between the specifications of BCF and IDM Part 2 is also analysed by Treldal,
Parsianfar and Karlshøj (Treldal et al., 2016) concluding that both standards have many
similarities but neither standard is superior to the other. For that reason, it is believed that a
harmonisation of the two standards is better than selecting one of them for tasks’ and/or
requirements management: “IDM Part 2 is based on organising transactions and messages
in predefined or at least hierarchical order. This can be valuable in documenting agreements,
but it runs the risk of making everyday tasks overly complicated to define. In this light, it is
better to use the BCF specification as the starting point for a harmonisation, and to use the
principles from IDM Part 2 to add additional methodology and attributes”(Treldal et al.,
2016).

Expanding the scope of the BCF specification to include methodologies from IDM Part 2 will
make the specification more complex according to Treldal, Parsianfar and Karlshøj (Treldal
et al., 2016), for that reason it proposes to follow the same expansion structure from IFC,
dividing the BCF data schema architecture in different modules.

The idea of using a task management server is aligned with the previously described reasons
for developing the BCF API web service to avoid BCF file exchange. Although managing
confidential information from different companies on a central server could be a challenge.
Investigations (L. A. H. M. van Berlo et al., 2012) have shown that a decentralised solution is
more appropriate with model serves used only as reference models to one another. It
suggests that tools like BCF could be used to communicate with their dedicated server and,
where a tool needs information on tasks from other servers, they could use BCF to query
other servers for the information required. For that purpose, it is preferable if the BCF
specification used URI’s instead of only GUIDs to identify not only the unique tasks but also
the location of the task.

On the other hand, the literature regarding the implementation of BCF for anything different
that issue management is scarce. In fact, as it has been mentioned before by Leon van Berlo
(L.A.H.M. van Berlo et al., 2014), there is not a lot of experience with BIM information in the
requirements stage of the projects. It is true that the original purpose of BCF was informal
communication during the design phases (Asier Mediavilla et al., 2015), however, an added
value for the BCF application range would be to study tasks’ management as well as
validation and documentation of project requirements (Treldal et al., 2016).

21

2.5 Requirements’ management

Clients’ requirements cover aspects that go from the overall goals, activities and spatial
needs to very detailed material and condition requirements. This documentation is the
starting point of any design process, but the design is by nature an iterative process;
therefore changes are made and client requirements evolve. However, usually, the
requirements documentation is not updated accordingly to these changes, which can lead to
an end result which is really different from the original documented requirements. And if
requirements are not satisfied, the quality of the design and construction process is
questionable.

Concerning the management of requirements, some research has been done so far. For
instance, a project ontology that explicitly represents the functional requirements, designed
forms and predicted and observed behaviours of the product, organisation and process
(POP) of the project has been introduced by García, Kiviniemi and Ekstrom (García, Kiviniemi,
& Ekstrom, 2003).

Through the Extreme Collaboration (XC) and Virtual Design and Construction (VDC) project
development methods, the shared visualizations of the POP models allowed designers to see
the impact of their design choices on both their own and related disciplines as well as give
the opportunity for all designers to review the design choices of other disciplines. As a result,
“capturing, representing and sharing the desired, predicted and observed project information
allowed the project team to check how the evolving design satisfied specifications, predicted
potential conflicts as well as learn from successful and not successful cases” (García et al.,
2003).

Following the same reasoning, a requirement management interface is suggested later on
(Arto Kiviniemi & Martin Fischer, 2004) by linking a unique requirements model to multiple
design alternatives in product model based design tools (Figure 8 and Figure 9).

The practical importance of this requirements interface is that it represents a solution for
the management of complex project information that, together with the duration and
changing actors in different project phases, makes it impossible for participants in a design
process to remember every relevant requirement and, what is more, the relationship and
influence of each in the design solutions.

Figure 8. Proposed model hierarchy and connections (Source: paper “Requirements Management Interface to
Building Product Models”, 2004)

22

Figure 9. Proposed concept to link detailed spatial requirements to a product model (Source: paper
“Requirements Management Interface to Building Product Models”, 2004)

In previous chapters, Gu and London (Gu & London, 2010) mentioned that current design
tools do not support recording of client’s requirements and its evolution is usually not
communicated to the whole project team. Moreover, it is believed (Arto Kiviniemi & Martin
Fischer, 2004) that there is a lack of theory to link the requirements to the product model
based design systems, due to the fact that there is no connection between requirements and
design documents and because requirements are not updated coherently and in an easily
accessible format. In addition, it also agrees with Leon van Berlo (L. A. H. M. van Berlo et al.,
2012) on that a good solution to the availability of information and requirements
management includes the verification of “fuzzy” requirements (like human interpretable
descriptions) and an appropriate level of detail; which means to find exactly the relevant
information for the ongoing design task from the project data.

Another important aspect of a comprehensive solution regarding the management of
requirements is their traceability. The requirements history and their evolution during the
design process are addressed through the development of a prototype system called
DesingTrack (Ozkaya & Akin, 2007). However, the findings that arose during their research
into the requirements – design relationships in architectural design are, for future research,
as important as the development of the prototype itself.

First of all, establishing a requirements structure was one of the faced problems during their
research because relationships between requirements and design are observed during
design sessions rather than during data modelling. It is asserted that the dependencies
between requirements and designs often are more complex than that can be captured with
a predefined model, they are instance-based. For that reason, it is important to think
whether the integrated design environment approach is compatible with the natural flow of
the design and what it takes for the users to adjust to such a mental model; which brings

23

back the point of Grilo and Jardim-Gocalves (Grilo & Jardim-Goncalves, 2010) about the fact
that introducing a management framework into the process is not only a ICT matter but also
cultural.

Secondly, requirements management should not be considered a front-end task during the
design process or as an activity that is addressed marginally; but it should be in correlation
with form exploration. Any architectural design project begins with a set of given
requirements which can be as well defined as a pre-prepared program, or as fuzzy as a list of
spaces and soft expectations. According to Ozkaya and Akin (Ozkaya & Akin, 2007),
understanding and capturing the repeating requirements patterns and used relationships
between them is the first step for future research, which requires the generation of a lot of
different examples.

The approach from Kiviniemi and Fischer (Arto Kiviniemi & Martin Fischer, 2004) is discussed
by Ozkaya and Akin (Ozkaya & Akin, 2007) too. It holds that extending the building
information model with another model that gathers all possible requirements attributes
ignores the fact that in architectural design semantic difference occur very often in
representing design attributes, while extending DesingTrack to enable the use of IFC as a
classification superset makes building information model transparent to the user allowing its
use with other models.

As it has been mentioned by different authors, requirements management involves more
than an ICT approach, it requires a systems integration that needs to fit into the working
environment so it adapts to the collaborating workflow. Collaboration (including
communication, document management and interoperability) is claimed (W. Shen et al.,
2010) to be the most frequent issue in the construction industry due to its complex and
multidisciplinary collaborating teams, the construction project lifecycle, and the use of
heterogeneous software systems/tools.

When it comes to BIM and IFC, current validation tools, like SMC, use a similar methodology
(import IFC file, parse, store, and retrieve IFC instance) and for that reason it is believed (Y.-
C. Lee et al., 2015) that there is a possible integrated approach for validation of BIM data.
However, still an automated rule checking process for the validation of project design and
requirements requires that efforts are focused on reinterpreting requirements that are
provided in a natural language into something formally understood (Krijnen & van Berlo,
2016), which has been shown to be a laborious task (Ozkaya & Akin, 2007).

2.6 Semantic Web

According to Beetz, Leeuwen and de Vries (Jakob Beetz, Jos P. van Leeuwen, & Bauke de
Vries, 2006): “One of the most elemental and agreed upon widely accepted visions of the
Semantic Web initiative is to create a network of interconnected knowledge resources rather
than loosely coupled documents that are merely compatible on a syntactical level. The goal is
to make these resources discoverable, retrievable, interpretable and processable for pieces of
software that act on behalf of a user”.

During the early 2000s, researchers started introducing the Semantic Web technology in the
AEC industry as an opportunity to enhance the machine readability and interpretability of
distributed information and as a way of standardising the information exchange between

24

softwares (Jakob Beetz et al., 2009). First investigations (T. Elghamrawy & Boukamp, 2008;
Pan, Anumba, & Ren, 2004) pointed out the improvements that using semantic web
technologies could bring in terms of information exchange in the construction field.

In the next years and considering the introduction of IFC in the AEC domain as well, the use
of semantic web technologies represented the possibility to address interoperability issues
by allowing linking diverse information models. For instance, Pauwels and van Deursen
(Pieter Pauwels & Davy Van Deursen, 2012) discussed how IFC models can be made available
as RDF graphs in the semantic web and how they can be linked to other information;
concluding with the linked data strategy as a valid approach for addressing interoperability
issues.

This tendency of using semantic web technologies is embraced in the technical roadmap of
BuldingSMART as well. Moreover, there are several papers (Abanda, Tah, & Keivani, 2013;
Edward Corry et al., 2014; Tarek Elghamrawy & Boukamp, 2010; Hans A. Schevers et al.,
2007; Pieter Pauwels, Zhang, & Lee, 2017; L. Shen & Chua, 2011) that discuss and support
how Semantic Web technology can ease the collection of information by providing a
network of connected data and preventing building designers from having to spend time on
data preparation and manual entry into applications, like for instance, energy analysis
(Niknam & Karshenas, 2015). In addition, construction cost estimating is also included in the
range of expected benefits. By linking building information models to and from external data
sources provided by material suppliers the data can be accessed, combined and shared in a
straightforward manner in a machine – processable representation (Pieter Pauwels, Seppo
Törmä, Jakob Beetz, & T. Liebich, 2015).

Another example is the one in the article “Connecting building component catalogues with
BIM models using semantic technologies: An application for precast concrete components”
(Gonçal Costa & Leandro Madrazo, 2015), where it is aimed to assist the design team in the
assembly and dimensioning of structural components during the project phase by combining
both types of information: building component catalogues with BIM models.

The truth is that current implementations of BIM are limited regarding the collaboration
between actors in the design process when it comes to building information exchange. So
the necessity of moving from modelling approaches based information to innovative
representation systems based on knowledge exists (Rezgui, Boddy, Wetherill, & Cooper,
2011; Simeone & Cursi, 2016; Tamer E. El-Diraby, 2013). In other words, the point is to
change from a model based on information (which offers a lot of information but it is not
manageable) to a model based on knowledge (so actors only receive information that is
needed).

By modelling concepts and relationships among the technological components that are
contained in a BIM model, it is possible to manage the semantic level of representation in
order to make sure that every actor in the building design process access only the
information that makes him understand design choices and, therefore, collaborate in a more
efficient way. These concepts and relationships are represented in an ontology, which
contains entities (domain objects), relations between them, the attributes (properties) of
these entities and their values (Svetel & Pejanović, 2010). In order to formalise an ontology,
specific technologies and standards like the Resource Description Framework (RDF) and the

25

Ontology Web Language (OWL) are used; so when software applications communicate using,
OWL, for example, relations can be made between different ontologies to improve
interoperability.

2.6.1 Resource Description Framework (RDF) and SPARQL
The meaning of concepts could be expressed by using RDF as the data model for
representing information about entities.

“RDF is, first and foremost, a system for modelling data. It gives up in compactness what it
gains in flexibility. Every relationship between any two data elements is explicitly
represented, allowing for a very simple model of merging data. A relationship (expressed in a
familiar form of subject/predicate/object) is either present or it is not. Merging data is thus
reduced to a simple matter of considering all such statements from all sources, together in a
single place” (Allemang & Hendler, 2011a).

Information is represented as directed labelled graphs (RDF graphs) where each node
represents a concept or object in the world, and it is identified with a Unique Resource
Identifier (URI) (Pieter Pauwels et al., 2017). URIs have a global scope, associating a URI with
a resource means that anyone can link to it, refer to it, or retrieve a representation of it
(Shadbolt, Berners-Lee, & Hall, 2006). What is more, URIs ensure that concepts are not just
bare terms devised by someone, but are connected to unique definitions on the Web (and
that is the strength of this technique).

An RDF graph can be serialised using different syntaxes like RDF/XML (Figure 10), N-triples,
Turtle (TTL) and Notation-3. The structure of an RDF graph can be improved by using RDF
vocabularies or ontologies. The most basic elements are contained in the RDF Schema
(RDFS) vocabulary (specifications of classes, subclasses, comments and data types) and more
expressive elements are also available within OWL vocabulary.

Figure 10. Example of RDF triple structure (Source: paper “Using semantic web technologies to access soft AEC
data”, 2014)

26

According to Beetz (J. Beetz, 2014), the advantage of using RDF for modelling the
information is the capability to store an arbitrary number of states into a graph. In this way,
a single GUID could identify a whole cluster of concepts, their values and relationships.
Moreover, it is believed (Jakob Beetz et al., 2009) that using graph query languages to
operate on large ontologies like average IFC models is less complex than the use of complete
rule and reasoning engines.

Currently, several initiatives about representing building information as RDF graphs or using
semantic web technologies can be found. For instance, an initial study is carried out to show
how diverse streams of information can be captured and linked with other building data in
order to broaden the range of data silos available for building performance optimisations
(Edward Corry et al., 2014). As it is explained, their work is ongoing and is focused on
converting data silos to RDF and developing a performance framework (Figure 11) capable of
capturing and interpreting this data.

Figure 11. Semantic web based building performance assessment platform (Source: paper “Using semantic web
technologies to access soft AEC data”, 2014)

Another example (Hans A. Schevers et al., 2007) shows how a digital facility model of the
Sydney Opera House was aimed to be developed by using RDF and OWL. This model enables
IFC objects to be connected to OWL objects, creating a service oriented software
environment.

Moreover, an ontology for monitoring and controlling energy consumption is developed and
extended through a collection of different papers (H. Wicaksono, Rogalski, & Kusnady, 2010;
Hendro Wicaksono, Dobreva, Häfner, & Rogalski, 2013). This ontology is carried out by
building an RDF representation of a building model and using an OWL ontology for the
building information.

27

Nevertheless, representation of data is useless without means to access it. In order to do it,
the standard for retrieving the data uses a query language called SPARQL (SPARQL Protocol
and RDF Query Language). It provides means for querying information from an RDF graph or
to transform a graph into a new form (Allemang & Hendler, 2011b; J. Beetz, Coebergh,
Botter, Zlatanova, & De Laat, 2014). Basically, queries are matched against data graphs
(Figure 12) by specifying on their (queries) graph patterns what information is requested
from the data graph. The structure of the query follows the graph pattern including
resources and variables, indicating how entities that match variables are related to one
another.

Figure 12. Example query structure against data graph

SPARQL implementations are documented in several papers together with the use of
semantic web technologies in the AEC industry. In fact, the original ontology developed by
Wicaksono (H. Wicaksono et al., 2010) is extended by including another OWL ontology
inspired by IFC, while a SPARQL endpoint is built on top of the used rule engine in order to
query the results of the rules. Similar approaches (Bouzidi, Fies, Faron-Zucker, Zarli, & Thanh,
2012; Zarli, A.Yurchyshyna, Le Thanh, & Faron Zucker, 2008) rely entirely on SPARQL SELECT
and CONSTRUCT queries for rule checking.

On the other hand, Pauwels (P. Pauwels et al., 2011) points out that SPARQL it is useful for a
one-by-one querying but it does not allow an equally automated rule checking process as a
combination of a dedicated rule language and a rule engine can provide. In this approach, an
information description language and a rule language stemming from the semantic web field
are investigated as a possible enhancement of IFC for building performance checking.

Amongst other examples, SPARQL queries are proposed (Jakob Beetz et al., 2006) to convert
on demand IFC geometry into alternative geometric representations. In addition, in other
papers (Jakob Beetz, Bauke de Vries, & Jos van Leeuwen, 2007; Matthias Weise & Pieter
Pauwels, 2015) SPARQL queries are used as well to generate partial model views from RDF-
encoded IFC models.

Concerning cost estimation, it was proposed by Lee, Kim and Yu (S.-K. Lee, Kim, & Yu, 2014)
to extract information from an ifcXML file and parse the information as RDF instances of two
small ontologies: a work item ontology and a work condition ontology. SPARQL queries are

28

used later for retrieving the information from the resulting graph that is held in a SPARQL
endpoint.

“When an expert inputs work item queries as a form of SPARQL via the SPARQL endpoint, the
query layer submits them to the ARQ engine, which subsequently retrieves the relevant work
item from the knowledge base. Results of the SPARQL queries are returned in XML format,
which is easy to use in a cost estimating application” (S.-K. Lee et al., 2014).

Nikham and Karshenas (Niknam & Karshenas, 2017) present a shared ontology approach to
the semantic representation of building information where SPARQL queries are used to
integrate data from various AEC-FM domain knowledge bases. As it is justified in the paper,
no discrepancies were observed when comparing the results coming from different SPARQL
queries for inter-domain information access with similar information that was manually
extracted from design, cost and schedule documents.

Finally, concerning SPARQL and the query language, the existence of the web application
SPARKLIS developed by Sebastian Ferré should be mentioned. “Sparklis is a query builder in
natural language that allows people to explore and query SPARQL endpoints with all the
power of SPARQL and without any knowledge of SPARQL.”(“Sparklis | DBpedia,” 2017).

By using this web application, no previous knowledge of the RDFS schema or the vocabulary
is needed in order to discover and consult the contents of any endpoint. In addition, at the
same time the user explores the information stored in the SPARQL endpoint, queries are
generated according to filters that the user has implemented by using natural language.

29

3. Methodology

3.1 Introduction

This chapter of the thesis contains the description of the methodology that was carried out
during the research stage at the company Verhoeven en Leenders (V&L). The approach
studies the existing validation framework, at both the Building Structures and the Civil
Division of V&L, by reading the available company documentation and interviewing several
employees regarding three actual projects provided by the company. These projects have
been used as a source of information for the study of requirements management and
exchange of information workflow. As a result, a System Breakdown Structure
(SBS)/Requirements Breakdown Structure (RBS) matrix and a process map of the exchange
of information workflow have been elaborated.

The SBS/RBS matrix and process maps are explained and discussed in sections 3.5 Results
and 3.6 Discussion of this chapter.

3.2 Building Structures vs. Civil Division

Verhoeven en Leenders is a structural engineering company which specialises in the design,
calculation and modelling of construction projects in the fields of building structures and
infrastructure. Therefore, the company is divided into two work divisions and namely,
Building Structures Division and Civil Division.

Considering the scope of this thesis, the initial understanding of these divisions was that
they differ on the management of requirements coming from the client at the beginning of
the design phase. According to experts within the company, the strict demands for project
management and organisation in civil projects coming from the clients (e.g. RWS) make it
compulsory to handle all of the project’s requirements through system engineering
management tools (Relatics). In this way, the client can rely on a management tool for the
future maintenance of the project after its completion. In order to gain a better insight into
how requirements are structured and managed by the use of Systems Engineering
management tools throughout the design and construction of a project, one of the civil
projects of the company, where both are applied, was investigated and namely, the bicycle
park Vijfhoek.

In the SE schema (Figure 13) a flowchart displaying the sequencing of tasks during the design
process, as well as the input and output information for each one of the steps, is presented.

30

Perform

requirement

analysis

Start integral

design process

Contractual

requirements

Requirement

matrix

Compose SBS

Requirement

matrix

Contractual

requirements

SBS

Compose WBSSBS WBS

Deadlines

Determine system

interactions

System

interactions

register

Determine risks Risk folder

1. Setting up the design basis

2. Compose

verification plan

Work packages

WBS Verification plan

3: Conceptualize

alternatives,

compare and

choose

WBS
Requirement

matrix

System

interactions

register

Risk folder

Trade-off matrix

Deduct

requirements

Definite

alternative

chosen?

no yes

4. Elaborate

chosen alternative

Starting points

document

Calculations

Design reports

VGM-plan design

phase

System

interactions

register

Risk folder

5. Perform

verification
Verification plan

Drawings

Verification report

Design

completely

verified?

6. Control

completeness of

the verification

Verification report Verification invoice

yes

no

Completed

integral design

process

= parts for third parties (Main contractor)

= parts V&L

= parts V&L and third parties (integral)

BIM coordination

model

Figure 13. Systems engineering framework (Source: Systems Engineering Handbook V&L)

When we compare the well-structured workflow in the design of a civil project (Figure 13)
with the workflow within the Building Structures Division, where no framework for the
sequencing of tasks and the information exchange between stakeholders has been
established, it becomes clear that project requirements are being poorly managed. The lack
of a systematical management framework results in the loss of valuable project information
due to the fact that the decision-making process, the design iterations and the tasks
performed by the engineer are not explicitly documented. This issue also results in the

31

absence of a traceable record of requirements during the different project phases. Another
aspect, which additionally complicates the matter, is the fact that when it comes to building
structures projects, it is the architect who is more in contact with the client and carries out
the first drafts of the project. In other words, the architect manages the demands of the
client by creating the first architectural model that will be later sent to the structural
engineer and modeller, who will cooperate in the creation of the structural design.
Therefore, the requirements associated with the structure are a derivative of the
architectural design.

If we compare both situations, we can conclude that the influence on the requirements’
management for the engineers in V&L is greater in civil projects due to the fact that client
requirements are delivered directly to them; while in a building structures project, where
the architect has the lead, requirements are already managed and defined by him/her in the
architectural model. In fact, requirements that concern a structural engineer are also
different from the ones that are relevant for an architect. What is more, as it was pointed
out by experts in V&L, engineers can count on a more developed framework for Systems
Engineering (SE) management within civil projects because SE is demanded as a process. On
the other hand, SE is less developed within building structures projects because it is not
demanded yet.

When we look at the collaboration workflow between the structural engineer and the BIM
modeller for the development of the structural model, BIM Collaboration Format (BCF) is
being used between them for the exchange of information; specifically, clash
detection/revision. However, information shared between these two parties through BCF
only contains comments or indications regarding flaws or decisions in the design made by
the draftsman that will interfere with the compliance of the client’s requirements. The
primary form of communication between the two parties, however, still remains either in
the form of 2D sketches, remarks marked in colour directly on the 2D drawings (floor plans,
sections) of the project or simply face-to-face feedback. These practices further confirm the
inconsistent nature of information management within the division. For that reason, it is
interesting to check whether it is possible to take a step further with BCF and extend the
exchange of comments into requirements verification.

3.3 Verhoeven en Leenders: organisation and projects

The project’s design phases, the level of development (LOD) levels associated with them, as
well as all actors involved in them and their responsibilities are defined in the Quality
Manual (Dutch: Kwaliteitshandboek) of the company. This manual clarifies how each design
phase should be carried out and which information/documents should be transferred
between the collaborating parties. The manual also distinguishes between Building
Structures and Civil projects.

The different project’s design phases in which V&L are usually involved in are the following:

 VO = Preliminary Design (Dutch: Voorlopig Ontwerp) = LOD200

 DO = Final Design (Dutch: Definitief Ontwerp) = LOD300

 UO = Execution design – (Dutch: Uitvoering Ontwerp)

32

o UO-PV = Design Execution (Dutch: Uitvoering Ontwerp – Productie
Voorbereiding) = LOD350

o UO-WT = Implementation Design (Dutch: Uitvoering Ontwerp –
Werktekening) = LOD400

The corresponding levels of detail (LOD) for the different design phases of a Building
Structures project in the company are also explained in the table below.

Table 1. Levels of detail (LOD) in V&L (Source: Systems Engineering Handbook V&L)

LOD 200 (VO)

In this phase, the starting points for the structural design are defined.

Modeler The modeller makes 2D drawings of the primary supporting structure based
on the drawings (floor plans, sections) and 3D model received from the
architect.

Engineer The structural engineer makes basic calculations of the loads for each floor,
based on the 3D model and drawings (floor plans, sections) of the architect
and also in consideration of the room categories the building.

LOD 300 (DO)

In this phase, the structural design and the corresponding calculations are prepared.

Modeler In this phase, the structural model for the primary supporting structure, as
well as the drawings of the construction details are carried out with the
help of Revit or Tekla Structures.

Engineer The engineer prepares the official design calculations, consisting of
calculations of individual elements and/or systems with their
corresponding forces and reactions, as well as determines the profiles and
material quality of the elements.

LOD 350 (UO-PV)

In this phase, the structural design is prepared for further development by third
parties. Data for this purpose shall be provided by other parties (contractor, architect,
MEP consultant/engineer etc.).

Modeler The modeller applies the necessary changes/additions to the model
including the deviations related to the openings.

Engineer The engineer must calculate the openings and recesses in the structure
which are classified into three categories and namely, structural,
architectural and installation openings.

LOD 400 (UO-WT)

In this phase, concrete works for the in-situ concrete are elaborated on for the
execution of the structural design.

Modeler If possible, the modeller adds reinforcement data in the 3D model in
Revit/Tekla. Otherwise, the same information is displayed in the 2D
structural drawings.

Engineer The drawings of the formwork including measurements are prepared for
the concrete components poured in situ and eventually, a plan of the piles
is also prepared.

33

3.3.1 Case studies
Three actual projects were studied during the research stage of this thesis in order to find
similarities and differences not only in terms of requirements’ management but also in
regards to the contents of the calculation documents, depending on the level of detail and
the design phase. The first two projects belong to the Building Structures division and the
third one is a part of the Civil division (Figure 14). The names of the projects are:

1. Academy Vanderlande te Veghel (Academy)
2. Nieuwbouw MAVO Schravenlant XL te Schiedam (School)
3. Fietsparkeergarage Vijfhoek (Bike parking)

Figure 14. Case studies from V&L

Regarding the civil project (Fietsparkeegarage), SE was implemented through a systems
engineering management tool (Relatics) since the beginning of the project for the
management of requirements. As a result, the engineers working on the project used an SBS
and an RBS for the organisation of the work packages, for clash detection and for keeping an
updated record of the different tasks performed during the different design phases.

Upon taking a look at the building structures projects, only the school project (Nieuwbouw
MAVO Schravenlant XL te Schiedam) counted on Systems Engineering principles for the
tracking of project requirements. It consisted of an Excel sheet, provided by the company in
charge of the preliminary design of the project and was thus a very simplified attempt at
using SE. Regarding the academy project, no SE or any other type of tool for the capturing
and managing of information was used.

The civil project was used as an initial source of information or as an example of the
successful implementation of SE in a construction project. The Relatics organisation and

34

different tree structures were useful to gain insight about how requirements are organised
and how they relate to physical objects; their level of detail, and the way these requirements
evolve during the different design phases of the project.

It should be pointed out that the design phase at which V&L started working on the project
is different for each of the building structures projects. In other words, V&L was in charge of
the project design since the preliminary design in the academy while for the school, it was
another company who made the preliminary design of the project and V&L continued with
the final design. This fact has additionally impacted the way requirements are organised in
both projects because for the school the continuity between the preliminary design phase
and final design phase had to be assured.

In addition, the legal structure of both projects is also different due to the difference in
contract choice (Figure 15). The contract type for the academy project is a UAV contract,
which presupposes a traditional way of working (Figure 16). The school project, however,
has a UAV-GC contract where the way of working between the different project's
stakeholders is integrated and thus, collaborative (Figure 17).

Figure 15. Case studies classified by contract type

The collaboration workflow for the MAVO project (Figure 17) is thoroughly analysed and
documented as process maps (communication and input/output workflow) in the results of
this methodology/approach.

35

Figure 16. Parties involved in the workflow for UAV contract (traditional)

Figure 17. Parties involved in the workflow for UAV-GC contract (collaborative)

36

3.4 Verhoeven en Leenders: systems engineering

V&L counts on a Systems Engineering (SE) manual that provides the guidelines for
implementing SE during the design phase of a construction project (Figure 13). The main
benefit of Systems Engineering for the AEC domain is the possibility to capture and organise
vast quantities of information while making the information easily traceable and accessible
through the implementation of a tree structure. Although there can be various types of tree
structures related to a construction project (e.g. process, requirements, objects…), the ones
that are useful for this thesis and therefore, will be used in this investigation, are the System
Breakdown Structure (SBS) and the Requirement Breakdown Structure (RBS).

According to the SE Handbook from V&L, the SBS is a hierarchical description of the physical
parts composing a certain project, while the RBS is a summary of all the identified
requirements in a construction project which should be directly related to the components
from the SBS object tree. The SBS divides an entire system into different parts until an
individual system element is obtained and the system cannot be further divided into
components. Each component should obtain a unique number, which serves as an identifier
and in addition, it should be assigned to a discipline responsible for its completion (e.g.
structural engineering, MEP engineering). When talking about requirements, however, a
distinction needs to be made between the different types of requirements that exist in a
construction project:

 Functional requirements (Dutch: Functie-eisen)
Requirements relating to the functions which need to be realised; they indicate ‘what
the system should do’.

 Aspect requirements (Dutch: Aspecteisen)
These are requirements relating to supporting functions or aspects of the system, for
example, requirements regarding management and maintenance, design, the
stability of the system.

 Object requirements (Dutch: Objecteisen)
Requirements related to objects that have an impact on, for example, the shape,
colour, strength, and dimensions. These requirements arise as a result of the design
choices of client and contractor.

 System Interaction requirements (Dutch: Raakvlakeisen)
Requirements which come as a result of relations between the system and the
system’s environment (external requirements) as well as from interactions between
different components of the system (internal interactions/clashes).
For example, external interactions could be the nuisance caused to the neighbours of
a construction site; an internal interaction could be the clash between physical
objects in the model.

 Process requirements (Dutch: Proceseisen)
Requirements for activities which are necessary to be performed in order to
successfully and timely achieve an objective (e.g. piling may take place from ... to ...
hours).

To each requirement, a unique identification number is assigned, as well as a requirement
description, parent requirement, responsible person and connection to an object (or objects)

37

to which the requirement should be applied. Each of these types of requirements, except
the Process requirements, is later subdivided according to the hierarchy in Figure 18,
depending on the level of detail of the construction project.

Figure 18.Hierarchy of requirements (Source: systems engineering handbook from V&L)

1. Policy requirements
These are requirements regarding amongst others, capacity and social security. They
are intended for planners, urban designers, etc.

2. Use requirements
They relate to the functioning of a building structure. Examples for this are variations
in movement, comfort level or safety. These requirements are inputs for architects,
traffic engineering designers, etc.

3. Performance requirements
They provide information on the expected performance of a structure. For example,
they concern the embankment of pavements and are the basis for the structural
engineer.

4. Construction requirements
They relate to the behaviour of the structure, its sustainability, strength and stiffness,
distortion, and are also part of the input for the designer.

5. Building material requirements
They determine the choice of materials. These requirements apply to the planning
engineer and the contractor.

1. Policy require-
ments

2. Use requirements

3. Performance
requirements

4. Construction requirements

5. Building material requirements

6. Raw material requirements

38

6. Raw material requirements
They relate to the raw materials comprising the various building materials. They are
described in terms of tensile strength, maximum elongation or particle-size
distribution.

3.5 Results

The results consist of a System Breakdown Structure (SBS)/Requirements Breakdown
Structure (RBS) matrix and two types of process map elaborated through the consultation of
documents related to the three case studies projects described previously in this chapter.

The SBS/RBS matrix is based on the information coming from all three case studies. On the
other hand, the process maps are elaborated based only on the MAVO project (School). The
reason to use this project is that from the building structure’s projects, this is the only one
that systems engineering was applied partially.

The SBS/RBS matrix is presented as a template for building structure projects that contains
the possible building objects and requirements that are present in this type construction
projects; and the applicability relation between requirements and objects. On the other
hand, the resulting process maps are divided into two types: communication workflow and
input/output workflow. Although both types contain the same information, the
communication workflow is focused on which tasks are carried out by whom and when
these tasks are happening during the design process. On the other hand, the input/output
workflow shows thoroughly which documents are needed as an input for every task
contained in the communication process map as well as which documents are the expected
output coming from every task.

3.5.1 Requirements’ System Breakdown Structure
The SBS/RBS matrix can be found in section 7.2 Appendix II: Requirements’ System
Breakdown Structure. The resulting schema after analyzing project elements and
requirements in the defined case studies is a matrix that combines the tree structure of
common building objects (SBS) and requirements (RBS) identified for Building Structure’s
projects. The matrix goes from a level of detail LOD200 to LOD300. Moreover, the “dots” in
the matrix are used to show which requirements apply to which building objects.

Concerning the building objects (SBS), in the LOD 200 the “Building Structure” is defined as
the main top level, which is divided into “1.Primary structure”, “2.Secondary structure” and
“3.Temporary structure”. This level (LOD200) contains building objects that are normally
connected with each other in the building structure and/or act like a system, such as the
“1.1Building levels”, the “1.2Façade” or the “1.3Staircase”. For that reason, with regard to
requirements, the requirement that applies to the building objects in the LOD200 is the
distributed load bearing (F1), which is a functional requirement and could be represented as
dead load, live load, snow load, wind load or an additional load. Specifically, all loads apply
to all building objects in this level except for the wind load, which does not apply to
“1.1Building levels” and the “1.3Staircase”; and snow load which does not apply for the
“1.3Staircase” as well. This tree structure defined for the “Primary structure” applies for the
“Secondary structure” and the “Temporary Structure” too.

39

As the level of detail increases, the LOD300 contains more building objects which are
contained in the previously defined LOD200 building objects. In this way, a building object in
a “1.1Building level” could be a “1.1.1Floor slab”, “1.1.2Beam”, “1.1.3Column”,
“1.1.4Structural wall”, “1.1.5Footing” or “1.1.6Pile”; and inside the “1.2Façade”, there is the
“1.2.1Wind braces”. Regarding the building object “1.3Staircase”, requirements from
LOD300 apply also to it, although it cannot be subdivided into a simpler building object.

The requirements that are applicable to the building objects in the LOD300 are loadbearing
(Functional requirement), stability (Functional requirement), material quality (Object
requirement), prevention (Aspect requirement), usability (Aspect requirement), and external
and internal system interactions (System Interaction requirements). Concerning load bearing
(F1), although it was also considered for LOD200 too, in LOD300 the load bearing
requirements that are applied to building objects are represented by normal forces, shear
forces and moments.

Stability (F2) is represented by wind load, earthquake load and second order deflection.
Material quality (O1) is represented by strength and stiffness. Aspect requirements
prevention (A2) and usability (A2) are represented by fire resistance, crash load; and
deflection and crack width, respectively.

Finally, external system interactions (S1) are represented by ground water, soil and nuisance
while the internal system interactions (S2) are represented by clashes and element
connections.

With respect to the applicability of all these requirements to the different building objects in
the LOD300, the requirements that apply to all objects contained in this level (LOD300) are
normal force (F1); shear force (F1), strength (O1), stiffness (O1), nuisance (S1), clashes (S2)
and element connections (S2).

On the other hand, moment (F1) is applicable to all building objects as well except for the
“1.3Staircase”. For the functional requirement stability (F2), wind load is applicable to
“1.1.2Beam”, “1.1.3Column”, “1.1.4Structural wall”, “1.2.1Wind braces” and “1.3Staircase”;
earthquake load is applicable to all building objects except for the “1.3Staircase”; and
second order deflection is applicable to all building objects except for the “1.1.5Footing”,
“1.1.6Pile” and “1.3Staircase”. In the same way as second order deflection, prevention
aspect requirements (A1) fire resistance and crash load are applicable to all building objects
except for the “1.1.5Footing”, “1.1.6Pile” and “1.3Staircase”.

Concerning usability aspect requirement (A2), deflection requirement is applicable to all
building objects except for the “1.1.5Footing”, “1.1.6Pile”; while crack width is applicable to
all building objects except for the “1.2.1Wind braces”.

Lastly, external system interactions (S1) ground water and soil apply only to “1.1.5Footing”
and “1.1.6Pile”.

3.5.2 Process map: communication workflow
The communication workflow process map for the MAVO project (School) case study can be
found in section 7.3 Appendix III: Process map MAVO project (Communication workflow).
The process map is divided into two stages: preliminary design (VO) and final design (DO),

40

being the last one where the project is located on time at the moment that this process map
was created.

Regarding the VO, the tasks contained in the process, as well as the parties' responsibilities
and their dependencies are explained next:

First of all, it is the client who defines the project requirements as a first task (Task 1). These
requirements are gathered and formalised as different PDF files by the project manager
(ARCADIS), who creates the “Programma van Eisen (PvE)” with all general, technical and
process requirements of the project (Task 2). Once the PvE is ready, it is sent to the architect
(Frencken Scholl) and the structural engineer (Pieters Bouwtechniek) so they can start
creating the first drafts of the architectural model (LOD 200) and the starting points (LOD
200) respectively. During the elaboration of these tasks (Tasks 3 and 4), both architect and
structural engineer are in contact with the external advisors, who are the ones elaborating
advice reports like geotechnical, acoustic or ground studies (Task 5).

Next step after the architectural model and the starting points from the structural engineer
are ready is that the project manager gathers the results coming from these two parties and
carries out a verification of the requirements (Task 7). In case any of the resulting documents
do not meet the requirements from the PvE, then the project manager will inform the liable
party (architect or structural engineer) in order to edit and update their work according to
their indications. Specifically, in this case study, the architects have also an internal checking
before the check by the project manager is done where they compare the architectural
model with the PvE originally received by the project manager (Task 6).

Finally, if the project manager confirms that all requirements are met, then the preliminary
design is over and the final design stage starts. This confirmation is carried out by
elaborating different reports that will contain the functional and technical verifications, and
a deviation report to indicate how much the preliminary design differs from the original
requirements.

Concerning the DO, for this case study, the parties involved in it were different from the
ones that carried out the VO, so that means that there was a new project manager (SMT),
architect (Vendev) and a structural engineer (V&L) in charge of continuing with the designs
and making the calculations. For that reason, all documents generated during the VO were
shared with the new parties responsible for executing the final design.

The first task of the DO was for the new project manager (SMT) to verify all documents
coming from the previous phase (Task 1), and as a result, create a verification Excel sheet
that was shared with the new architect (Vendev) and a structural engineer (V&L). This Excel
sheet will represent the only document that is used for the implementation of systems
engineering during the DO of the MAVO project.

Once the architect and the structural engineer receive this verification document, which
they will use as a task list for their own work, they will start creating the new architectural
model (LOD 300) and making the calculations (LOD 300) for the final design, respectively
(Task 2 and 3). Both architect and a structural engineer will collaborate with external parties
who will create the MEP installations and building physics design in the same way previous
parties did during the VO (Task 4).

41

During the DO, the structural engineer will be in charge of creating a structural model as
well. This structural model will be based on the architectural model (LOD 300) that the
architect has elaborated in task 2 and the calculations they made (Task 3). The creation of
this structural model (Task 5) involves an internal verification process (Task 7) of the model
(clash detection) and the calculated requirements, which sets up the scenario for the thesis’
scope. Basically, there is a verification/communication loop (Task 7) between the BIM
modeller (the one creating the structural model) and the structural engineer (the one
making the calculations) where information is exchanged through BCF zip files and face-to-
face feedback, which represents a poor internal validation framework. For that reason, as it
will be explained in the discussion of results, with the developed prototype it is aimed to
improve the internal validation framework making it capable of keeping track of all
modifications, amongst other functionalities.

At the same time, architects will also carry out an internal verification process in order to
make sure that they meet the requirements (Task 6).

After structural and architectural models are finished, the project manager will be verifying
the requirements (Task 8) in the same way it was done during the VO, and it will only after
the project manager confirms that both architectural and structural engineer meet the
requirements that the final design will be closed.

3.5.3 Process map: input/output workflow
The input/output workflow process map for the MAVO project (School) case study can be
found in section 7.4 Appendix IV: Process map MAVO project (Input/output workflow).
Basically, it contains the description of the same design process that was described in the
communication workflow process map. The difference is that the importance this time lies
on which documents are needed as an input for every task (activity column in the process
map) and which documents are obtained as an output, while in the previous representation
the importance was on tasks and the parties.

Preliminary design (VO):

For the task/activity 1 and 2, the input document will be the client’s demands and the
output the “Programma van Eisen (PvE)”. It should be pointed out that client’s demands are
not necessarily a document, but also could be a meeting between the client and the project
manager where the client informs what he wants to build.

For activities 3 and 4, which are the definition of the 2D drawings by the architect and the
definition of the starting points by the structural engineer, the PvE will be the input
document. The output will be the 2D drawings (LOD 200) and the starting points (LOD 200).

The previous output (2D drawings and starting points) is the input for activity 5, where the
external parties elaborate the advice reports (output activity 5) that will be used again by the
architect and structural engineer for activities 3 and 4 as input.

Concerning the architectural internal verification (activity 6), the input needed will be the
PvE and the 2D drawings, and the output will be the comparison document where a
deviation of the design regarding the original requirements is made. On the other hand, the
verification of requirements carried out by the project manager (activity 7) will require the

42

2D drawings and the comparison document made by the architects; and the starting points
made by the structural engineer. The output of this verification will contain PDF files with
the technical and functional verification and a deviation report in relation to the original
client requirements.

Final Design (DO):

As it was mentioned for the communication workflow, the parties involved in the final
design are different from the ones that elaborated the preliminary design. Therefore, for the
verification of the VO, all documents created in this stage will be the input for activity 1,
obtaining as output a verification table (Excel sheet) and comments (PDF file) that will be
used as task list by the new parties in charge of the DO.

The activities 2 and 3 will be using the verification table, the comments made by the project
manager, the original 2D drawings and the starting points created in the VO. The output will
be the architectural model (LOD 300) made by the architect and the calculations (LOD 300)
made by the structural engineer in V&L.

Similarly to the VO workflow, the architectural model and calculations will be the input for
the external parties in charge of creating the MEP installations model and the building
physics (activity 4), whose output (MEP installations design and building physics) will be sent
back to the architect and structural engineer as an input for the loop where the 3D and
structural model are defined (activities 2 and 5).

Although both architect and structural engineer have an internal verification of the model in
relation to the client requirements (activities 6 and 7), it is the structural verification (activity
7) where the scope of this thesis will focus its attention. This internal verification of the
structural model is happening between the BIM modeler and the structural engineer, and it
creates a communication loop where BCF zip files, which contain comments about issues
that were found in the model by the structural engineer, are exchanged as output for the
verification (activity 7) and input for the definition of the structural model (activity 5).

Once the architectural, structural and integrated model are finished, then, the project
manager, also by making use of the initial verification table, will check whether all models
comply with the requirements (activity 8), creating as final output the final design model and
closing the final design stage.

3.6 Discussion

Firstly, creating the SBS/RBS matrix resulted in gaining insight about which building elements
and requirements are usually contained in building structures and civil projects. By
inspecting project documentation (mainly calculations and advisory reports) it was possible
to compare which similarities and differences existed between the same building elements
and how they were calculated and checked against requirements. Moreover, the feedback
coming from the personnel in V&L was really valuable in order to understand which
requirements were relevant for the matrix as well as to which elements they were applicable
to.

43

It should be pointed out that, despite inspecting thoroughly three different construction
projects and interviewing engineers in V&L, the obtained matrix is far from being considered
as a final or a universal template that will be applicable to new upcoming projects in the
building structures division of V&L. The stated applicability relationships between building
objects and requirements should be considered dynamic and never static. Moreover, the list
of building objects and requirements included are based on 3 different projects, so these
lists can be improved with further research on more projects.

On the other hand, the elaborated matrix sets a helpful template of identified common
building objects and requirements in Building Structures projects that, when implemented in
an actual project, could be used to create an initial list/overview of building objects and
requirements. In addition, this matrix could be the starting point for facing important ideas
mentioned during the literature review such as the fact that current design tools do not
support recording of client’s requirements (Gu & London, 2010), the fact that there is no
connection between requirements and design documents (Arto Kiviniemi & Martin Fischer,
2004), to reinterpret fuzzy requirements provided in natural language into something
formally understood (Krijnen & van Berlo, 2016) and to capture requirements patterns, used
relationships and their evolution during the design process (Ozkaya & Akin, 2007).

The truth is that by elaborating this matrix in the beginning of every project, engineers will
count on a document that connects requirements and building objects during the design
phase and therefore supports the recording of client’s requirements. Moreover, as soon as
this task is integrated into the design process of the company, requirements patterns and
relationships will become easily recognisable with every different project, as well as the
reinterpretation of fuzzy requirements coming from the client.

Secondly, after carrying out the analysis of the Preliminary Design (VO) and the Final Design
(DO) design processes for the MAVO project (School), including the representation of both
communication and input/output workflow as process maps; a better understanding of how
parties involved in the design process collaborate and share information has been obtained.
Moreover, concerning the scope of this thesis, after elaborating these process maps it was
easier to identify the actors and information involved in the internal verification process
(tasks 5 and 7) that the structural engineer makes for the structural model (Jeff Wix & Jan
Karlshøj, 2010).

As it is explained in the description of the results, the verification loop in V&L occurs
between the BIM modeler (in charge of defining the structural model), and the structural
engineer, who makes the calculations of the structure and the one in charge of verifying that
the structural model complies with the calculations and, therefore, client’s requirements.

It was observed during the research stage at the company that for this verification, only
face-to-face feedback, 2D sketches or BCF zip files containing simple comments were
exchanged between the BIM modeller and the structural engineer. This behaviour, which
was mentioned in the literature review by several authors (L. van Berlo et al., 2015; Gu &
London, 2010; W. Shen et al., 2010), is justified by the authors due to the lack of trust on
completeness and accuracy of 3D models. Nevertheless, it is believed that for engineers in
V&L, the fact that their desks in the office are next to each other makes it easier for them to

44

discuss face-to-face if something in the model needs to be changed, rather than creating a
BCF or make an official request about it.

Nevertheless, although this way of interaction could be simple and effective in the office
environment, the truth is that all these changes are not being registered in any log that can
be consulted for future validation. What is more, these changes are justified only by the
knowledge of the structural engineer concerning the client requirements. It is only because
the structural engineer has previously consulted the verification table (Excel sheet), provided
by the project manager, that he knows how the structural model should be and why changes
need to be done.

The analysis of the design process has helped not only to identify which are the flaws of the
current performance but also to know which parts of the process we want to maintain and
which ones should be removed and/or improved.

To begin with, the possibility for all decisions to be registered during the design process with
respect to the structural model is something to take into account. If every element has an
edition history, it would be possible to track the design changes and evolution of
requirements in the model.

Secondly, BCF is a well-known and used tool for informal communication in the design
process; however, it is mainly used for exchanging simple comments because other features,
for instance referencing documents, are not provided by any of the software tools that
support this technology (Treldal et al., 2016). Moreover, although file exchange has been
overcome by web-based BCF management tools that synchronize BCF issues without having
to export BCF ZIP files (“BIMcollab,” 2017; Linhard, K. & Steinmann, R., 2015; L. van Berlo &
Krijnen, 2014), the stored BCF data still requires human interpretation when filtering or
retrieving the BCF information. In such way, when projects that could generate large
amounts of issues are considered, the management of this information could become an
overwhelming task.

Last but not least, the way IFC models are validated nowadays using BCF is based on the BCF
issues that have been previously created for the IFC model. In other words, elements are
checked because BCF issues were created about them. So it could be that objects without
any BCF information have been checked but no remark was necessary to be done, or on the
contrary, they have not been properly checked. Consequently, an opportunity to mark
objects “as closed” would provide the structural engineer with a useful functionality for
validation of objects and the possibility to enrich the information that the model can offer.

Finally, addressing the discussed points will be the objective of this thesis through the
development of a tool (described in section 4. Tool development) that aims to provide a
solution to the identified functionalities by combining BCF with Semantic Web technologies.

45

4. Tool development

4.1 Introduction

This chapter deals with the description of the developed tool combines BCF and Semantic
Web technologies for the purpose of internal validation attestation.

The application, which has been programmed using Python, connects the informal
communication provided by the BCF with the Semantic Web technologies. In this way, the
user is able to create BCF issues for a given IFC model within an RDF environment.
Specifically, the application allows the user to create BCF issues in the same way it is possible
with other software tools (like SMC or Tekla), but with the advantage that information does
not require its serialization as BCF zip files. Instead, while keeping the same structure that
the original BCF schema has, the data is stored as an RDF context that is uploaded to an RDF
repository. The repository works as a SPARQL endpoint, and all the created BCF information
is stored and retrieved directly from this web repository through the desktop application by
using SPARQL queries.

Moreover, the application also provides backwards and external compatibility with the BCF
Manager from KUBUS so that the information created through it is compatible with current
BCF management tools. In such manner, it is possible to serialize the RDF contexts previously
created for a given model as the “old” BCF zip files, read them in the BCF Manager, edit
them, upload them back in the repository in order to update the information in the SPARQL
endpoint, and visualize those changes/updates in the desktop viewer as a result.

This chapter also contains a validation of the generated data and data visualization,
limitations analysis and a final discussion of the results achieved with recommendations for
further developments or upgrades.

4.2 Case study

The project that has been used as case study once the tool is developed is the Nieuwbouw
MAVO Schravenlant XL te Schiedam (School), which is described in section 3.3.1 Case
studies. The school is located in Schiedam, near the Burgemeester of Haarenlaan and one
side of the new building borders the water (Figure 19).

The elements of the IFC model of the project (Figure 20), which was provided by V&L, are
used for the creation of BCF information within an RDF environment, the visualization of
different BCF status and, on the whole, to run tests for the functionalities that have been
developed.

46

Figure 19. Location of the MAVO XL Schiedam (Source: Google Maps and V&L documentation)

47

Figure 20. Structural model of the MAVO XL Schiedam project (IFC, Source: V&L)

4.3 Use case diagram

The discussion in the methodology (section 3.6 Discussion) pointed out some important
ideas with respect to the functionalities that the developed tool should be able to provide to
the actors involved in the internal validation of the structural model. For that reason, based
on those points and feedback coming from the supervisors, the list in Table 2 enumerates
the functionalities that the developed tool should be able to address.

Table 2. Functionalities of the developed tool

Nº Functionalities
1 Create BCF/Add comment (Create BCF information as RDF contexts)

2 Visualize BCF comments’ history (Retrieve BCF information)

3 Visualize BCF status (Retrieve BCF information)

4 Visualize building objects according to assigned BCFs (Retrieve BCF information)

5 Mark building objects “as closed” using BCF (Create BCF information as RDF contexts)

6 Serialize RDF contexts as “old” BCF zip files (Backwards compatibility)

7 Upload BCF zip files and update RDF contexts in the repository (External compatibility)

In order to capture the interaction of the engineers with the developed tool during the
internal design validation process, a use case diagram (Figure 21) and three workflow

48

examples in section 7.8 Appendix VIII: Flowcharts of the developed tool (Figure 70) are also
elaborated. Apart from the initial process map (Figure 3) presented in 1.1 Problem
definition/objective of the thesis.

Desktop viewer

1. Create BCF/Add comment

5. Mark building object as closed

6. Serialize RDF contexts

7. Update RDF4J repository

2. Visualize BCF comments' history

3. Visualize BCF status

Structural
engineer

BIM
modeler

4. Visualize building objects
according to assigned BCFs

Figure 21. Use case diagram of the developed tool

The use case diagram presents two actors involved: the structural engineer and the BIM
modeller; and the functionalities (Table 2) that each of them will be able to carry out
through the desktop viewer. The three workflow examples that both actors will be able to
perform when using the desktop viewer for internal validation are explained next.

The first workflow example presents a case where the structural engineer is revising the
structural model created by the BIM modeller for the first time. The first task, once the IFC
model is loaded into the viewer, is to revise the model elements (or building objects) that
the structural model contains in order to check whether the building objects comply with the
project requirements regarding every building aspect (dimensions, properties, clashes…). In
case the structural engineer notices an error in a building object, he will use the desktop
viewer to create a BCF issue with the necessary information, so that the BIM modeller
understands what is meant to be changed, that will be automatically uploaded and serialized
as an RDF context in the RDF repository. On the other hand, if the inspected building object
has no remarks to be made, then the structural engineer will mark the building object as
closed, creating a “closure” BCF. The “closure” BCF will be created as an RDF context in the
RDF repository in the same way the normal BCF issue was created before, but the
information of the BCF will indicate that the building object has been checked and,
therefore, the BCF status is closed (Author, date and comment will be also specified).

The second workflow example represents the step after the structural engineer has finished
revising the structural model. In this workflow example, the BIM modeller will load the same
IFC file containing the structural model, and the first task will be to visualize the BCF issues

49

that have been assigned to him by the structural engineer. By introducing his name after
clicking the “Show assigned objects” button, the desktop viewer will show only the building
objects of the structural model that have BCF information that is meant to be solved
specifically by him. The second task will be to visualize the BCF comments history and status
by clicking on the “Check object status” button. Once the BIM modeller understands what
needs to be changed, the BIM modeller will update the structural model (Task 3) in an
appropriate the design software (Revit or Tekla) and will use the desktop viewer to add a
comment (Task 4) indicating that the issue is solved. The comment will be added to the
existing RDF context created previously by the structural engineer by selecting the building
object again in the desktop viewer and clicking the “Create new BCF / RDF” button.

Finally, third workflow example brings back the structural engineer as the main actor, who
will be revising the structural model again in order to check that all BCF issues he created on
his first revision have been solved by the assigned engineers. To that end, the structural
engineer will be visualizing the BCF comments’ history of the updated building objects and
he will check them against the project requirements. In case the building object does still not
comply with the requirements after the changes, then he will be adding a new comment to
the existing RDF context so that the BIM modeller corrects it. On the other hand, if the
building object is approved, then the structural engineer will mark it “as closed” in order to
close the BCF status and validate the building object.

The three workflow examples could be used as a loop that the users should follow until all
building objects in the BIM model are marked as closed, which means that the model is
validated.

4.4 Ontology: BCF schema

The ontology for the BCF schema was created as the template that all BCF issues generated
through the developed tool will follow when modelling the BCF information in an RDF
format. The original XSD Schema for the BCF specification on which the ontology is based
can be found in the appendix, specifically in section 7.7 Appendix VII: BCF Schema (XSD), as
well as the developed ontology for the BCF schema, which can be found in section 7.6
Appendix VI: Ontology BCF schema (TTL).

The BCF ontology was created using TopBraid Composer software tool. In order to translate
the XSD schema’s elements and attributes; classes, sub-classes and properties (data type
and object type) were created and serialized in a turtle (TTL) file. Although most of the
papers discussed in the literature review provide an overview about the status in the AEC
field concerning representation of IFC models as ontologies and the use of Semantic Web
technologies to connect data and improve interoperability, other authors (Natalya F. Noy &
Deborah L. McGuinness, 2001) and specifically the chapters 3, 5 and 7 of the book “Semantic
Web for the Working Ontologist” (Allemang & Hendler, 2011b, 2011a, 2011c) were useful for
the practical development of the ontology.

50

4.4.1 Describing the ontology
Classes

 fbf:Markup

 fbf:Header

 fbf:File

 fbf:Topic

 fbf:Comment

 fbf:Viewpoints

 fbf:BimSnippet

 fbf:Document Reference

 fbf:Related Topic

 fbf:Viewpoint

Properties

Owl:ObjectProperty

 fbf:containsHeader

 fbf:containsFile

 fbf:containsTopic

 fbf:containsComment

 fbf:containsViewpoints

 fbf:containsViewpoint

 fbf:containsRelatedTopic

 fbf:containsDocumentReference

 fbf:containsBimSnippet

Owl:Datatype Property

 fbf:hasAssignedTo

 fbf:hasAuthor

 fbf:hasBimSnippetIsExternal

 fbf:hasBimSnippetReference

 fbf:hasComment

 fbf:hasCommentDate

 fbf:hasCommentGuid

 fbf:hasCommentModifiedAuthor

 fbf:hasCommentModifiedDate

 fbf:hasCreationAuthor

 fbf:hasCreationDate

 fbf:hasDocumentReferencedDescription

 fbf:hasDocumentReferenceGuid

 fbf:hasDocumentReferenceIsExternal

 fbf:hasDueDate

 fbf:hasFileDate

 fbf:hasFileIsExternal

51

 fbf:hasFileName

 fbf:hasFileReference

 fbf:hasIfcProject

 fbf:hasIfcSpatialStructureElement

 fbf:hasLabels

 fbf:hasModifiedAuthor

 fbf:hasModifiedDate

 fbf:hasPriority

 fbf:hasReferencedDocument

 fbf:hasReferenceLink

 fbf:hasReferenceSchema

 fbf:hasRelatedTopicGuid

 fbf:hasSnapshot

 fbf:hasSnippetType

 fbf:hasStage

 fbf:hasTitle

 fbf:hasTopicDescription

 fbf:hasTopicGuid

 fbf:hasTopicIndex

 fbf:hasTopicStatus

 fbf:hasTopicType

 fbf:hasViewpoint

 fbf:hasViewpointGuid

 fbf:hasViewpointsGuid

 fbf:hasViewpointsIndex

The domain and ranges of all properties can be visualized at the next figures (Figure 22,
Figure 23, Figure 24, Figure 25, Figure 26, Figure 27, Figure 28 and Figure 29), where the
relation between the different classes is described.

Markup is the main element of the BCF issue; it contains a Header, a Topic, a Comment and
a Viewpoints (Figure 22). One markup is related to one Header and Topic, but it can have
more than one comment or viewpoint attached in the same issue (Markup).

fbf:Markup

fbf:Header

fbf:Topic fbf:Comment

fbf:Viewpoints
fbf:containsTopic

fbf:containsHeader

fbf:containsComment

fbf:containsViewpoints

Figure 22. RDF schema – Part 1

52

The Header contains a File, which has as “Datatype Properties” the next attributes:
FileName, FileDate, FileReference, Ifcproject, IfcSpatialStructureElement and FileIsExternal
(Figure 23).

fbf:Header

fbf:File

fbf:containsFile

xsd:stringfbf:hasIfcProject

xsd:string

fbf:hasIfcSpatialStructureElement

xsd:boolean

fbf:hasFileIsExternalxsd:dateTime

fbf:hasFileDate

xsd:string fbf:hasFileName

xsd:string

fbf:hasFileReference

Figure 23. RDF schema – Part 2

The Viewpoints contain the following “Datatype Properties”: Snapshot, Viewpoint,
ViewpointIndex and ViewpointGuid (Figure 24).

fbf:Viewpoints

xsd:string

fbf:hasSnapshot

xsd:string

fbf:hasViewpoint

xsd:string

fbf:hasViewpointsGuid

xsd:integer

fbf:hasViewpointsIndex

Figure 24. RDF Schema – Part 3

The Comment contains as “DataType Properties” a CommentDate, a
CommentModifiedAuthor, a CommentGuid, an Author, a CommentModifiedDate and a
Comment. In addition, it also contains the class Viewpoint, which contains a ViewpointGuid
as DataType Property too (Figure 25).

53

fbf:Comment

fbf:Viewpoint

fbf:containsViewpoint

xsd:string

fbf:hasAuthor

xsd:string

fbf:hasComment

xsd:dateTime fbf:hasCommentDate

xsd:string

fbf:hasCommentModifiedAuthor

xsd:string

fbf:hasCommentGuid

xsd:dateTime

fbf:hasCommentModifiedDate

xsd:string

fbf:hasViewpointGuid

Figure 25. RDF Schema – Part 4

The Topic contains several classes apart from DataType Properties. These classes also
contain other DataType Properties. All classes, properties and their hierarchical relations
(Figure 26, Figure 27, Figure 28 and Figure 29) are shown next:

 AssignedTo

 CreationAuthor

 CreationDate

 DueDate

 Labels

 ModifiedAuthor

 ModifiedDate

 Priority

 ReferenceLink

 Stage

 Title

 TopicDescription

 TopicGuid

 TopicIndex

 TopicStatus

 TopicType

 BimSnippet
- BimSnippetIsExternal
- BimSnippetReference

- ReferenceSchema
- SnippetType

54

 Document Reference

- DocumentReferenceDescription
- DocumentReferenceGuid

- DocumentReferenceIsExternal
- ReferencedDocument

 RelatedTopic

- RelatedTopicGuid

fbf:Topic

fbf:BimSnippet

fbf:DocumentReference

fbf:RelatedTopic

fbf:containsRelatedTopic

fbf:containsDocumentReference

fbf:containsBimSnippet

xsd:string
fbf:hasAssignedTo

xsd:string

fbf:hasCreationAuthor

xsd:dateTime

fbf:hasCreationDate

xsd:dateTime

fbf:hasDueDate

xsd:string

fbf:hasLabels

xsd:string

fbf:hasModifiedAuthor

xsd:dateTime

fbf:hasModifiedDate

xsd:string

fbf:hasPriority

xsd:string

fbf:hasReferenceLink

xsd:string

fbf:hasStage

xsd:string

fbf:hasTitle

xsd:string

fbf:hasTopicDescription

xsd:string

fbf:hasTopicGuid

xsd:integer

fbf:hasTopicIndex

xsd:string

fbf:hasTopicStatus

xsd:string

fbf:hasTopicType

Figure 26. RDF Schema – Part 5.1

fbf:Topic

fbf:BimSnippet

fbf:containsBimSnippet

xsd:boolean

fbf:hasBimSnippetIsExternal

xsd:string

fbf:hasBimSnippetReference

xsd:string

fbf:hasSnipetType

xsd:string

fbf:hasReferenceSchema

Figure 27. RDF Schema – Part 5.2

55

fbf:Topic

fbf:DocumentReference

xsd:string

fbf:hasDocumentReferenceDescription

fbf:containsDocumentReference

xsd:string

fbf:hasDocumentReferenceGuid

xsd:boolean

fbf:hasDocumentReferenceIsExternal

xsd:string

fbf:hasDocumentReferencedDocument

Figure 28. RDF Schema – Part 5.3

fbf:Topic

fbf:RelatedTopic

xsd:string

fbf:hasRelatedTopicGuid

fbf:containsRelatedTopic

Figure 29. RDF Schema – Part 5.4

4.5 Prototype development

The functionalities and workflow examples that the developed tool provides have been
previously explained. However, how these functionalities are actually implemented and how
the information is managed within the RDF environment is explained in depth in this section
while showing the interface’s layout and how the modelled information looks like.
Moreover, the complete Python code for the developed tool can be found in section 7.5
Appendix V: Application code (Python).

The layout of the interface is divided into two tabs. The first tab is called “3D viewer” (Figure
30) and it contains the necessary buttons to carry out the functionalities 1 to 5 from Table 2.
On the other hand, tab 2 is called “Backwards and external compatibility” (Figure 31) and it
contains the necessary buttons to carry out functionalities 6 and 7 from Table 2.

56

Figure 30. 3D viewer tab

Figure 31. Backwards and external compatibility tab

57

4.5.1 Tab 1: 3D viewer
This tab provides the user with all functionalities related to the creation and visualization of
BCF information with respect to the structural model. The buttons that can be found in it are
listed next:

1. Open IFC file
2. Create new BCF / RDF
3. Check object status
4. Show closed objects
5. Show open objects
6. Show assigned objects
7. Mark as closed
8. Show selected object only
9. Hide selected object
10. Show all model objects
11. Show files attached

After loading the IFC model by clicking on the open IFC button (1), the viewer shows the
selected IFC model (Figure 32).

Figure 32. 3D viewer tab – Loaded model

In case the user would like to create a BCF issue about a building object, by clicking the
“Create new BCF / RDF” button (2) the BCF interface appears (Figure 33). Once the necessary
information has been filled in with the entry boxes from the BCF interface, the RDF context
containing the filled BCF information is created in the RDF repository (Figure 34) after
clicking on the “Accept and close” button.

58

Figure 33. BCF creator interface

Figure 34. List of RDF contexts in the RDF4J repository

59

It should be pointed out that the BCF interface (Figure 33) includes parts of the BCF
specification that are not supported by other model checking or BCF management softwares
(such as Solibri or BCF Manager). These parts are, for instance, the “Referenced Document”
which allows the user to attach a scanned sketch or a PDF calculation that will be stored in
the FTP-server of the company. In this way, links to explanatory documents (Figure 35) can
be obtained by clicking the “Show files attached” button (11), so that these kinds of
documents are being stored and retrieved in/from the company server automatically and
users don’t have to spend time looking for them.

Figure 35. Show files attached button example

A closer look into the RDF contexts contained in the RDF repository shows how all the
information that has been introduced in the BCF creator interface has been stored as RDF
triples. For instance, the RDF context 1, which can be seen in Figure 37, lists a total of 73
triples that contain the BCF information of a building element. The structure follows the RDF
schema introduced in section 4.4 Ontology: BCF schema, which also originates and is based
on the knowledge discussed by the authors mentioned in the literature review (section 2.6
Semantic Web). Moreover, the key to link all these triples to a single building element is the
GUID (J. Beetz et al., 2014), which is specified in the Topic of the BCF (Figure 36).

Figure 36. Triple containing the Topic GUID of the RDF context 1

60

Figure 37. Part of the RDF triples contained in an RDF context

After BCF information has been already created, the user can check the BCF status of the
building objects as well as their comments’ history by clicking on the “Check object status”
button (3). Moreover, in order to visualize the BCF status of the building objects, there are
two buttons that can be clicked: the “Show closed objects” button (4) and the “Show open
objects” button (5). The first button (4) colours all the building objects with a “Closed” BCF
status green, and makes the rest of the objects disappear. On the other hand, the second
button (5) shows only the building objects that whether have no BCF information or have an
“Active” or “Resolved” BCF status, and makes the “closed” building objects disappear. The
building objects that have no BCF information are coloured yellow, the “Active” are coloured
red and the “Resolved” building objects are coloured orange. An example of the structural
model with all building objects coloured according to their BCF status is shown in Figure 38.

Figure 38. Building objects coloured according to their BCF status

61

Table 3. Visualization of BCF status – Colour code

BCF status Colour
Active Red

Resolved Orange

Closed Green

No BCF information Yellow

The functionalities that create and retrieve BCF information (Table 2) are based on SPARQL
queries that access the RDF repository and check the available BCF information based on
the GUID of the selected building object (or all the building objects depending on the
functionality). For instance, the query (Figure 40) used for the visualization of the BCF status
(buttons 4 and 5) checks whether BCF information exists, specifically the triple concerning
the Topic Status (Figure 39), in order to colour all the building objects in the loaded IFC
model based on the colour codes from Table 3.

Figure 39. Triple containing the Topic Status from RDF context 1

“PREFIX fbf:<http://example.org/bcfschema#>

SELECT ?Status

WHERE {

?Markup fbf:containsTopic ?b.

?b fbf:hasTopicGuid "%s".

?b fbf:hasTopicStatus ?Status.

?Markup fbf:containsComment ?c.

?c fbf:hasCommentDate ?Date.

}

ORDER BY ?Date” % guid_selection

Figure 40. Query example

In case the query applies to all building objects in the IFC model, then a loop is used to
access all GUIDs in the structural model (Figure 41).

for room in rooms:

q = """

PREFIX fbf:<http://example.org/bcfschema#>

SELECT ?Status

WHERE {

?Markup fbf:containsTopic ?b.

?b fbf:hasTopicGuid "%s".

?b fbf:hasTopicStatus ?Status.

?Markup fbf:containsComment ?c.

?c fbf:hasCommentDate ?Date.

}

ORDER BY ?Date""" % room.GlobalId

Figure 41. Query example 2

62

The “Show assigned objects” button (6) allows the user to visualize only the building objects
that have a BCF issue that has been assigned to the user. When this button is clicked, a small
interface appears (Figure 42) where the user can introduce his name. Then a query retrieves
the information from the RDF repository and shows only the building objects which have the
name of the user as the object of the triple “fbf:hasAssignedTo” (Figure 43).

Figure 42. Assigned To interface

Figure 43. Assigned To triple in the RDF context 1

Another important functionality is the one in the “Mark as closed” button (7). This button
models BCF information as a new RDF context in the same way it was done for the “Create
new BCF / RDF” button (2). However, in the interface that appears once the button is clicked
(Figure 44), the topic status for the selected building object is predefined as closed and the
user is able to introduce only his name, the stage of development and a comment to justify
why the building object is being closed (if necessary).

Figure 44. Interface for the “Mark as closed” button

Finally, the “show selected object only” button (8), the “hide selected object” button (9) and
the “show all model objects” button (10) do not have an influence in the way the BCF
information is modelled. They are located on the right corner of the interface and their
purpose is only to ease the visualization of the structural model by showing/hiding building
objects in order to visualize only the building objects that are relevant for the user.

63

4.5.2 Tab 2: Backwards and external compatibility
This tab deals with the compatibility of the BCF information stored in the RDF repository
with the BCF Manager tool developed by KUBUS. The buttons that are displayed on this tab
are:

1. Download RDF contexts
2. Select BCF here

The first button called “Download RDF contexts” allows the user to download the existing
BCF information in the RDF repository as a BCF zip file. Basically, it serializes every RDF
context from the repository as a folder in the created BCF zip file using the expanded version
of Topic GUID of the context (also the GUID of the building object associated with the BCF)
as the name of the folder (Figure 45).

Figure 45. Contents of BCF zip files

Inside every folder, there is a BCF file called “Markup” (Figure 46) which contains the BCF
information that was created through the desktop viewer as an RDF context, but in an XML
format (Figure 47). Specifically, this XML file is created by generating first an XML template
containing the elements and attributes fields of the original BCF schema (section 7.7
Appendix VII: BCF Schema (XSD)), and filling the fields with the values stored in the RDF
context; all of it programmed using Python.

Figure 46. Content of folders inside the BCF zip file

64

Figure 47. BCF information serialized as XML file

Once the RDF contexts have been serialized inside the BCF zip file, their contents can be
visualized and edited using the BCF Manager from KUBUS (“BIMcollab,” 2017). As it can be
seen in Figure 48, the seven RDF contexts (and their BCF information) that were created and
stored in the RDF repository using the desktop viewer (Figure 34) appear.

65

Figure 48. Visualization of downloaded RDF contexts in the BCF Manager from KUBUS

After the appropriate changes have been done and the new BCF zip file has been saved in
the BCF Manager, the new BCF information can be uploaded back to the RDF repository by
using the second button included in this tab, called “Select BCF here”. By just selecting the
BCF zip file again, the new comments and BCF status are added to their respective RDF
contexts, updating like this the information in the RDF repository.

This is also programmed in Python by using the same template that was implemented for
creating the RDF contexts and triples on the first tab (button 2 called “Create new BCF /
RDF”). However, the information to be filled in the triples’ objects (Literals) will not come
from the entry boxes of the BCF interface this time, but from the filled fields in the XML
“markup” files (.bcf) inside every folder of the updated BCF zip file.

4.6 Prototype validation

This chapter deals with the validation of the developed tool in terms of correctness and
completeness of the generated data and data visualization. To that end, the snapshots of the
RDF4J workbench together with the software BCF Manager from KUBUS is used as means to
check whether the created data using the developed tool is visualized completely and
correctly.

For the purpose of the validation, a new RDF context containing the BCF information
specified in Figure 49 has been created for the selected column in Figure 50.

66

Figure 49. BCF information for prototype validation

Figure 50. Selected column for prototype validation

67

The new RDF context (number 8) appears in the RDF repository as well as the 61 triples that
the RDF context consists of (Figure 51). Moreover, Table 4 shows specifically the triples that
have been created based on the introduced information.

Figure 51. RDF context 8 for prototype validation

The details of the comment, as well as the BCF status, can be visualized in the desktop
viewer too (Figure 52).

Figure 52. Visualization of the new BCF information in the developed desktop viewer

68

Table 4. Comparison between the introduced (BCF interface) and generated (RDF triples) information

Element Value
Filename

Introduced value (BCF interface): VL16153DO_20170323.ifc

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:File8 fbf:hasFileName “VL16153DO 20170323.ifc” <file://C:/fakepath/RDFtest8.rdf>

File date

Introduced value (BCF interface): 2017-08-08 13:37:46

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:File8 fbf:hasFileDate 2017-08-08 13:37:46 <file://C:/fakepath/RDFtest8.rdf>

File reference

Introduced value (BCF interface): C:/Users/Fran/Downloads/VL16153DO_20170323.ifc

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:File8 fbf:hasFileReference
“C:/Users/Fran/Downloads/VL1615

3DO_20170323.ifc”
<file://C:/fakepath/RDFtest8.rdf>

Topic Type

Introduced value (BCF interface): Error

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasTopicType “Error” <file://C:/fakepath/RDFtest8.rdf>

Topic Status

Introduced value (BCF interface): Active

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasTopicStatus “Active” <file://C:/fakepath/RDFtest8.rdf>

Title

Introduced value (BCF interface): No material properties

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasTitle “No material properties” <file://C:/fakepath/RDFtest8.rdf>

Priority

Introduced value (BCF interface): Major

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasPriority “Major” <file://C:/fakepath/RDFtest8.rdf>

Labels

Introduced value (BCF interface): Specifications

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasLabels “Specifications” <file://C:/fakepath/RDFtest8.rdf>

69

Creation Date

Introduced value (BCF interface): 2017-08-08 13:37:46

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasCreationDate “2017-08-08 13:37:46” <file://C:/fakepath/RDFtest8.rdf>

Creation Author

Introduced value (BCF interface): Jakob

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasCreationAuthor “Jakob” <file://C:/fakepath/RDFtest8.rdf>

Due date

Introduced value (BCF interface): 11-08-2017

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasDueDate “11-08-2017” <file://C:/fakepath/RDFtest8.rdf>

Assigned To

Introduced value (BCF interface): Francisco

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasAssignedTo “Francisco” <file://C:/fakepath/RDFtest8.rdf>

Stage

Introduced value (BCF interface): PD

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasStage “PD” <file://C:/fakepath/RDFtest8.rdf>

Topic description

Introduced value (BCF interface): The column has no material properties specified

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Topic8 fbf:hasTopicDescription
“The column has no material

properties specified”
<file://C:/fakepath/RDFtest8.rdf>

Referenced Document

Introduced value (BCF interface): ftp://Francisco@sparql.verhoeven-leenders.nl:2121/Referenced%20Documents/VL16153-DO-BER-001.pdf

Triple (RDF repository):

Subject Predicate Object RDF context

fbfd:DocumentReference8 fbf:hasReferencedDocument
“ftp://Francisco@sparql.verhoeven-
leenders.nl:2121/Referenced%20Do
cuments/VL16153-DO-BER-001.pdf”

<file://C:/fakepath/RDFtest8.rdf>

Document description

Introduced value (BCF interface): Calculations

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:DocumentReference8 fbf:hasDocumentReferenceDescription “Calculations” <file://C:/fakepath/RDFtest8.rdf>

70

Comment Date

Introduced value (BCF interface): 2017-08-08 13:37:46

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Comment8 fbf:hasCommentDate “2017-08-08 13:37:46” <file://C:/fakepath/RDFtest8.rdf>

Author

Introduced value (BCF interface): Jakob

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Comment8 fbf:hasAuthor “Jakob” <file://C:/fakepath/RDFtest8.rdf>

Comment

Introduced value (BCF interface): Please add the material properties to the column

Triple (RDF repository):
Subject Predicate Object RDF context

fbfd:Comment8 fbf:hasComment
“Please add the material properties

to the column”
<file://C:/fakepath/RDFtest8.rdf>

71

On the other hand, Figure 53 and Figure 54 illustrate how the same BCF information can be
visualized in the BCF Manager from KUBUS. The new RDF context 8 appears listed as a new
topic in the BCF manager together with the date, title, status, description, priority, labels,
stage (called milestone in the BCF manager interface), and who the topic is assigned to. In
addition, the comment that is related to this topic is shown as well, including the comment’s
date and author.

Information that cannot be visualized is the referenced document; however, this is due to
the fact that the BCF Manager from KUBUS does not support such functionality. Therefore,
although the appropriate lines of code for translating this information are included in the
final version of the code, they are commented.

Figure 53. Visualization of RDF context 8 in the BCF Manager

72

Figure 54. Visualization of RDF context 8 in the BCF Manager 2

Finally, in case the BCF information is edited in the BCF Manager, specifically by adding more
comments and changing the BCF status to “Resolved” (Figure 55), Figure 56 shows how the
new comment’s triples are added to the RDF context 8 once BCF information has been
uploaded back to the RDF repository. The RDF context 8 now lists 67 triples due to the new
comment. In addition, the topic status has been updated as well to “Resolved”.

Figure 55. Edition of the RDF context 8 in the BCF Manager

73

Figure 56. Visualization of the edited RDF context 8 in the RDF4J repository

The edited and new BCF information can be visualized in the desktop viewer as well (Figure
57), where the column has changed its colour from red to orange and the new comment
appears on the property box.

Figure 57. Visualization of the edited RDF context 8 in the developed tool

74

4.7 Prototype limitations

Previously in this chapter, it was validated that the prototype is able to perform the
identified and necessary use cases for the purpose of internal design validation attestation;
however, due to the academic nature of this prototype, some limitations exist.

First of all, the current level of development of the tool allows the user to create only one
BCF per building object. In such way, if an RDF context has already been created for a
building object, the next time that a BCF needs to be created for the same building object
the desktop viewer only allows the addition of comments to the existing RDF context. In
other words, it is not possible to have more than one BCF topic per building object.

The main reason it was decided to keep a 1:1 relation between the BCF topics and the
building objects is because when the BCF information is retrieved using queries, the BCF
information that is printed in the property box is based on the GUID of the building object.
That means that if more than one BCF topic exists for the same building object when the
status or comments’ history of that building object is retrieved, the desktop viewer prints all
the information mixed in the property box. And the way the prototype is designed (and/or
programmed) currently, it is not possible to filter or distinguish between different topics.

Secondly, in order to create BCF information, whether it is creating a new BCF issue or
marking a building object as closed, it can only be done selecting building objects one by
one. For instance, given the situation that several columns have been already checked by the
structural engineer, it will not be possible to mark all of them as closed at once, which
considering the practical use, decreases the performance speed with which the user can
operate or manage building objects and BCF information with the developed tool.

Thirdly, the desktop viewer does not support viewpoints and snapshots of the IFC model
when creating BCF issues. Although for practical purposes, they play an important role in the
description of BCF data, implementing them was considered on top of the scope of this
thesis due to time and programming complexity reasons. In fact, it can be noticed that both,
snapshots and viewpoints files, were missing in the serialized BCF zip files during the
explanation of the prototype development and its validation. Nevertheless, it did not affect
the development of the tool or its academic value.

Solutions to the explained limitations are suggested and discussed in both section 4.8
Prototype discussion and section 5.1 Limitations and recommendations (for possible follow-
up research).

4.8 Prototype discussion

After developing, validating and analysing the limitations of the prototype, there are some
points that could be discussed as a conclusion of what the benefits, downsides and, on the
whole, the findings of this development are.

First of all, modelling the BCF information as triples in RDF contexts has improved the
interoperability of the BCF data due to the fact that the data itself is connected through the
GUID of the building object that the BCF information is related to. In such manner, BCF
information is linked to the IFC model being the building object’s GUID the key of that link.

75

This puts into practice the statements of Jakob Beetz (J. Beetz et al., 2014), who indicates
that one of the benefits of using RDF for modelling the information was that a single GUID
could identify a whole cluster of concepts, their values and relationships.

Nevertheless, this way of modelling information has shown to have downsides as well if the
recovery of information is not filtered properly. It has been explained in section 4.7
Prototype limitations that without a way of distinguishing between several BCF topics for the
same building object’s GUID, the relation between the BCF topics and the building object’s
GUID had to be 1:1, otherwise information will be mixed (Figure 58) when retrieving it using
SPARQL queries even if comments are filtered by multiple factors (ORDER BY).

Figure 58. Example showing the mixed comments coming from different topics related to the same object

A solution could be possibly found in the way information is queried by adapting the design
of the SPARQL query and adding a second identifier on top of the building object’s GUID.
This second identifier would filter all comments related to the same building object
depending on which markup (topic) they belong to. Nevertheless, this solution will require
the user to modify the queries in the back-end of the prototype everytime he wants to
specify the markup’s ID that acts as the second identifier. For that reason, a graphic user
interface (GUI) that allows adding this second identifier is suggested to prevent the user
from edition in a back-end level (Figure 59). The proposed GUI would appear when retrieving
comments (Check object status button) from a building object with more than one
topic/issue assigned. In this way, the back-end of the GUI will query the existing topics’ title
and description in order to display them to the user. Then the user is able to select the
topic/issue that he/she wants to consult, and after confirming the selection, only the
comments of the selected topic/issue will be displayed in the property box.

76

Figure 59. Sketch of the proposed Graphical User Interface 1

On the other hand, as a consequence of relating a single building object to multiple
topics/issues, an extra GUI when creating BCF data is also needed in order to allow the user
to decide whether to create a new BCF topic or add comments to an existing BCF topic.
Currently, when creating new BCF data (Create new BCF / RDF button), the programmed
back-end displays an interface to add comments when BCF information is already related to
the selected building object. For that reason, the suggested GUI (Figure 60) for this case
would appear when creating new BCF information in order to ask the user if he/she wants to
create a new topic or, on the contrary, he/she wants to add information to an existing BCF
topic (displaying a list of the existing topics so that the user can select the BCF topic he wants
to add comments to in the same way as when retrieving comments).

Figure 60. Sketch of the proposed Graphical User Interface 2

Secondly, storing all BCF information as RDF contexts in an SPARQL endpoint prevents users
from exchanging BCF zip files that are exported as the output of their revision of the

77

structural model. The approach to this particular point has been also addressed by other
authors by developing an API capable of automatically synchronising BCF tasks and avoid file
exchange (“BIMcollab,” 2017; Linhard, K. & Steinmann, R., 2015; L. van Berlo & Krijnen,
2014). The point is that, without files, the limitation of managing a large amount of files
(Thomas Froese, 2003) is overcome and automated (Krijnen & van Berlo, 2016; Y.-C. Lee et
al., 2015). Therefore, time and effort are no longer spent organising the information, but in
retrieving and filtering it.

In addition, this semantic approach allows users to access only the required information in
the SPARQL endpoint. For instance, the “Referenced Document” or “Check object status”
functionalities present clear examples of how information could be accessed by using
SPARQL queries based on the building object’s GUID. Comments that have been made about
a building object or the connection to an explanatory document can be obtained instantly,
saving users the time of having to look for it. However, the predefined SPARQL queries that
have been designed for the identified use cases and functionalities limit the
implementations’ range to the ones that have been actually designed for this thesis. For that
reason, knowledge in composing SPARQL queries as well as the RDFS schema is required by
the user in case new functionalities (or at least different from the ones programmed for this
thesis development) need to be developed. In this situation, the web application SPARKLIS
(described in section 2.6 Semantic Web) represents a useful tool for users that do not know
the RDFS schema and/or do not have much experience with the query language. This is
because it allows them to explore the data of any SPARQL endpoint while building queries in
natural language (“Sparklis - Semantic Web Standards,” 2017).

On the other hand, the fact that the BCF information is linked to the IFC model by the GUID
of the building objects in the IFC model makes the BCF information directly dependable on
the existence of the building object in the IFC model. In other words, given the situation that
a building object in the IFC model is erased, the connection to any related BCF information
previously created will be broken and, therefore, it will not be retrievable anymore through
the desktop viewer. However, it would be always possible to query GUIDs in BCFs that do
not have an instance in the IFC model. Moreover, using only a single GUID as the identifier of
a BCF issue could also limit the description of the issue in case more than one building
object’s GUID is involved in the description of the same issue.

Thirdly, the backwards and external compatibility with current BCF management tools
represents an important part of the development carried out in this thesis as well. According
to the findings of Leon van Berlo (L. A. H. M. van Berlo et al., 2012), it is difficult to make the
different parties collaborating in a construction project work with the same tools. In fact, it is
mentioned that “engineers should be free to choose their own software tools in order to
achieve a higher performance in the execution of their engineering tasks” (L. A. H. M. van
Berlo et al., 2012). For that reason, these two functionalities provide a bridge between the
semantic approach carried out in this thesis and other strategies.

Fourthly, concerning management of requirements, the functionalities of the developed tool
are more focused on providing communication between the structural engineer and the BIM
modeller. However, the truth is that in combination with the linking of requirements from
the project that this thesis is part of (Stancheva, 2017), the visualization of project
requirements that are linked to the building objects in the IFC model is also possible. In this

78

way, requirements management is closer to be in correlation with form exploration and not
a front end task that is addressed marginally (Ozkaya & Akin, 2007).

Last but not least, the current design of the RDF structure is basically the equivalent of the
XML markup file structure. The BCF information that is being modelled as RDF contexts by
the developed prototype keeps the hierarchical relationships of the XSD schema’s elements
and attributes (section 7.7 Appendix VII: BCF Schema (XSD)). Moreover, each RDF context
will contain only RDF triples that are related to the same building object’s GUID, creating one
RDF context per building object’s GUID.

Although this way of structuring the information eases its visualization in the RDF repository,
it is partially not necessary. The point of the semantic approach usage is that the user does
not have to visualize an endless list of triples when looking for the information, but just
retrieve the information that is useful for him by knowing how the information is structured
and using the appropriate SPARQL queries.

For that reason, the design of differentiated RDF contexts could have been omitted (Figure
61 and Figure 62) as well as part of the hierarchy of the XML file (Figure 63). Specifically, the
hierarchical relationship of the XML elements that can be modelled only once per “Markup”
(File and Topic classes) could have been left out while it should be maintained for the XML
elements that can have multiple instances (Comment and Viewpoints classes) in order to
associate the “Markup” to those several instances. In such manner, the building object’s
GUID would be directly associated with the Markup class as a Data Type Property as well as
the Data Type properties that were modelled inside the File and Topic’s classes, making the
last ones disappear. This will simplify the structure of the SPARQL queries by avoiding the
hierarchical relationships between the Markup and the File and Topic classes. Concerning
Comment and Viewpoints’ classes, they would be modelled in the same way they are
currently designed.

In case more than one Topic is created per building object given the hypothesis that the
explained limitation is solved, then the Topic class would have to be modelled in the same
way it was done originally because it will have multiple instances. However, even if
Comment classes are related to their own Topic instead of the markup, comments will be
still connected through the same building object’s GUID, which will mix the information
when retrieving it.

79

Figure 61. RDF repository with no contexts

Figure 62. Query of triples in the RDF repository with no contexts

PREFIX fbf:<http://example.org/bcfschema#>
SELECT ?Markup ?Title ?Date ?Comment
WHERE {

?Markup fbf:hasTitle ?Title.
?Markup fbf:containsComment ?c.
?c fbf:hasComment ?Comment.
?c fbf:hasCommentDate ?Date.
}

ORDER BY ?Markup ?Date
Figure 63. Query example without hierarchy

80

81

5. Conclusion

As a conclusion of the thesis, an answer to each of the initially considered research
questions will be given based on the knowledge and insight gained during the research,
development and validation stages.

1. Can Semantic Web technologies be integrated into a building structures design process

for internal validation and attestation using BCF?

First of all, any internal design validation process requires that the actors involved in it are
able to communicate in order to share feedback regarding the validation of the model. The
prototype provides this functionality by first creating BCF information, then linking it to any
building element (based on its GUID) in the IFC model and storing it in a SPARQL endpoint.
Moreover, this information can be later retrieved through the desktop viewer as well by
using SPARQL queries. It can be consulted as text, when retrieving the comments’ history of
the building element, or visualized in the viewer by colouring building elements, which will
inform the users what elements are active, resolved, closed or have no information.

Secondly, in order to validate the design, the desktop viewer allows the user to create BCF
information that will mark the building element as closed. This BCF closed status should be
considered by the actors involved in the validation process as the final status that all
elements in the model should be able to reach in order to consider an IFC model as
validated.

Thirdly, the attestation part is covered automatically by storing any BCF information created
as triples in the SPARQL endpoint, so that any building element will have an edition history.
This building element’s history can be consulted in the future in case some past decision
about a property needs to be checked.

Last but not least, three different workflow examples (presented in section 7.8 Appendix
VIII: Flowcharts of the developed tool) were elaborated and suggested as well to show how
the prototype can be integrated into the design process of any project. These examples
demonstrate how the structural engineer and BIM modeller can collaborate and make use of
the prototype to revise and validate any structural model.

To conclude, the developed prototype is the result of researching the application linked data
for the purpose of internal design validation and attestation. It can be confirmed that the
studied approach successfully combines the semantic web technologies (RDF and SPARQL)
with the use of BCF in the IfcOpenShell desktop viewer and improves the interoperability of
the BCF data by connecting it with the IFC model. What is more, it provides any design
process with the necessary functionalities to perform the validation and attestation of the
BIM model.

2. Is BCF a capable tool for the management of requirements?

First of all, concerning management of requirements, it should be put into context that the
requirements within the scope of this thesis refer to internal requirements that relate to the
creation of a structural model. In other words, internal requirements have to do with
changes and/ or requests in the structural model based on calculation or design properties
that the model and its elements should have.

82

In this way, the research and development carried out in this thesis have managed to
combine BCF with the Semantic Web technologies for the purpose of internal design
validation attestation. Its combination has been proved not only to bring benefits in terms of
data interoperability by connecting BCF data and the IFC model, but also provide the user
with a framework (prototype) that keeps track of design changes and/or requests and
internal communication.

A clear example is the possibility to visualize the stage of validation of every building
element by connecting (and later retrieving using SPARQL queries) a BCF status to a building
element in the IFC model, or to visualize a comments’ history related to a building element.

On the other hand, external requirements concern the validation of the model but with
regards to the information/requirements demanded by external parties that will base their
work in future building project phases on the provided model. These external requirements
can be also linked to the IFC model by using Semantic Web and Linked Data principles as it is
described in Miryana Stancheva’s thesis (Stancheva, 2017). Therefore, requirements can be
retrieved as well if they have been previously linked to the building element.

To sum up, the BCF specification has been proven to manage and deal with internal
requirements by connecting BCF data to the IFC model; while on the other hand, Miryana
Stancheva’s thesis (Stancheva, 2017) has managed to link external requirements to the IFC
model as well. The truth is that, although the approach has divided external and internal
requirements into two different theses, they both work with Linked Open Data; and
therefore, there is an opportunity to combine the both internal and external requirements’
ontologies.

3. What differences exist between the implementation of systems engineering

management tools (Relatics) in building structure projects and civil projects?

First of all, the conditions demanded by clients in building structure’s projects are not as
strict as the one in infrastructure projects. Management of requirements is only carried out
by using a systems engineering management tool such as Relatics in the civil division due to
the strict framework demanded by some clients when it comes to civil projects. Basically,
client’s request this process so that they can make use of it for the maintenance and
operations phases of the building lifecycle. It is convenient for them that requirements
management has been implemented from the beginning of the design, otherwise, they will
have to start from scratch in case they want to use it after the infrastructure is completed
and delivered.

Moreover, for the same reason that clients demand a well-defined management system of
requirements as a process requirement, the framework for Systems Engineering (SE)
management within civil projects is more developed. On the other hand, SE is less developed
within building structures projects because it is not demanded yet.

Secondly, using a system engineering management tool such as Relatics in building
structures projects will suppose the structural engineer to repeat the work he is already
doing regarding management of requirements by using the verification table (Excel sheet). It
was observed during the research at V&L that the influence on the requirements’
management for engineers in V&L is greater in civil projects due to the fact that the client

83

requirements are delivered directly to them; while in a building structures project,
requirements are already managed and defined by the architect in the architectural model.
For that reason, it is more feasible to implement a systems engineering management tool
from the beginning of the project design in civil projects than in building structure projects
because requirements have already been handled and documented by other party when
structural engineers start their work in the building structures project’s design. In fact,
requirements that concern a structural engineer are also different from the ones that are
relevant for an architect.

In addition, regardless a system engineering management tool is implemented in a civil or a
building structures’ project, the truth is that usually these tools handle requirements
separately with respect to the BIM models’ design. Specifically with Relatics, management of
requirements and modelling the building structural model are two different tasks. On the
other hand, the semantic approach that is addressed within the scope of the project that
this thesis is part of gets closer to the idea of connecting requirements management with
form exploration supported by Ozkaya and Akin (Ozkaya & Akin, 2007).

4. What requirements apply specifically to projects in the building structures sector and

which requirements have a general scope? And how will these requirements look like in a

structural engineering context?

Regarding the structural engineering context, requirements that apply to it are gathered and
classified in the elaborated System Breakdown Structure (SBS)/Requirements Breakdown
Structure (RBS) matrix (section 7.2 Appendix II: Requirements’ System Breakdown
Structure). On the other hand, the matrix has also helped to understand that concepts such
as project specific or general requirements are far from being precise to identify
requirements’ types. This is because it was observed by researching different construction
projects (both civil and building structures) that client’s requirements can take many forms
and be accurate or fuzzy depending on what the client demands. In fact, the key to improve
the perception of requirements is to understand that the same requirement can be general
and accurate at the same time; and that it is the level of detail of the requirement what
determines to which building element or system it can be applied.

The requirements’ types are first classified according to what the requirement’s objective is
related to. This could be a function that needs to be realised by a building element or system
(Functional requirement), to supporting functions or aspects of the system (Aspect
requirements), to objects that have an impact on an element or system’s shape, colour or
strength (Object requirements), to interactions between the building elements or their
environment (System Interaction requirements) and to activities that are necessary to be
performed (Process requirements).

Moreover, each of these five types of requirements can be divided into six more different
types depending on the level of detail of the construction project, except for the process
requirements. These could be requirements regarding capacity or social security amongst
others (Policy requirements), related to the functioning of the building structure (Use
requirements), the performance of the structure (Performance requirements), the
behaviour of the structure, sustainability, strength and stiffness (Construction

84

requirements), the choice of materials (Building material requirements) and the raw
materials comprising the various building materials (Raw material requirements).

Based on these classifications and three construction projects, the obtained matrix for a
structural engineering context presents: load bearing (normal forces, shear force and
moment) and stability (wind load, earthquake load and second order deflection) as
functional requirements, material quality (strength and stiffness) as object requirement,
prevention (fire resistance and crash load) and usability (deflection and crack width) as
aspect requirements; and external system interactions (groundwater impact, soil impact,
nuisance impact) and internal system interactions (element clashes, element connections)
as system interactions requirements.

5. How can BCF information be structured and stored using Semantic Web technologies

(RDF)? Can this information be accessed and used for internal validation attestation of

requirements (SPARQL endpoint)?

The first step to represent any type of information as RDF triples is to structure the
information as an ontology. In such manner, the ontology that has been created for the
purpose of this thesis is based completely on the structure of the BCF specification. This
means that all the elements and attributes that the BCF specification contains in the XSD
schema have been modelled as RDF triples, including hierarchal relationships (4.4 Ontology:
BCF schema). Moreover, this equality is maintained for the storage as well, being each of the
RDF contexts created in the RDF repository the equivalent of the traditional XML file.
However, although this exact representation is how the current prototype models the
information, is not completely necessary.

It was observed after the elaboration of the ontology that the classification of values like
Filename, File date or File reference under the class File, and in turn the classification of the
last one under the Header class, were not necessary when modelling the information. It is a
fact that these elements contained under the File class refer to the same Markup, and that
the distinction between File and Topic’s sub-elements is done only for the purpose of
structuring the information when visualizing it. For that reason, when represented as RDF
triples, the Filename, File date or File reference and the equivalent sub-elements inside the
class Topic can be directly related to the Markup class. In addition, triples for different issues
can be added to the same repository without creating a new RDF context each time.

Concerning the recovery and usage of the information stored, several functionalities have
been programmed to provide users with the identified use cases. Each of the functionalities
has successfully retrieved specific BCF data from the repository using SPARQL queries and
the queried information has been used for showing/hiding building elements in the model or
directly printed in a property box so the user can see it.

On the whole, it is concluded that hierarchical relationships could be omitted for classes
which do not have multiple instances within the same Markup (File and Topic). In fact,
without those hierarchical relationships, the SPARQL queries that are currently used could
be simpler. On the other hand, due to the fact that the version bcfXML v2 allows having
more than one Comment and Viewpoint in the same Markup, a hierarchical relationship

85

between the class and the values contained is needed so the values of each instance are
gathered at once.

5.1 Limitations and recommendations (for possible follow-up research)

This section brings together several recommendations for further research and possible
improvements of both the research and the developed prototype based on the insight
gained through the elaboration on this thesis. Due to the scope of thesis and its limited time
frame, some of these recommendations have not been developed or thoroughly covered in
this thesis, and for that reason, they could be considered the starting point of upcoming
investigations.

Firstly, the elaborated matrix which gathers requirements and building objects identified in
building structure projects sets a template which has room for improvement. Because the
research on management of requirements and its organization was carried out based on
three different projects, the list of identified requirements could be increased/reduced as
soon as more projects are inspected. What is more, the three studied projects were
provided by the same company, so it is also possible that the obtained results are company
oriented. For that reason, more projects coming from several companies would bring a more
representative identification of requirements and building objects.

In addition, the same applies to the identified use cases and functionalities for the
developed prototype. The exchange of information processes were analysed only for the
three case studies (projects) provided by the company, so the workflow captured by the
prototype could be considered company oriented as well. Therefore, studying design
processes and information exchange processes in other companies could bring in more
useful functionalities and/or use cases.

Secondly, the approach presented in this thesis has managed to represent BCF information
in an RDF format. Amongst the most immediate advantages we find the fact that BCF zip
files are no longer exported when creating BCF data, and that the BCF information is linked
to the IFC model creating a small network of interconnected knowledge concerning BCF data
and the IFC model. However, the approach presents more possibilities in the long run.

BCF information is now machine-processable and retrievable. What is more, there is an
opportunity to combine it with data sets from other domains that use RDF as main data
format as well in order to create a bigger network of interconnected knowledge. In this way,
further research should be focused on the study of possible combinations of the BCF data
with other resources or data sets (such as costs). In fact, a possible starting point would be
to study the combination of the ontologies from this thesis and the one from Miryana
Stancheva (Stancheva, 2017). As it is described in Figure 64, while this thesis deals with
internal requirements, hers does with external ones. However, now that both types of
requirements are represented as ontologies, their combination could be studied using the
same Semantic Web and Linked Data principles.

86

IFC model

External
requirements

Internal
requirements

?

Figure 64. Combination of thesis for further research

Nevertheless, although the combinations of the BCF data can be done with as many data
sets as domains are involved in the AEC industry, the data sets should be semantically
represented and exchanged (e.g. RDF format) before the combination between domains is
considered. To that end, governmental strategies that compel industry stakeholders to
adapt their information exchange workflows in order to include RDF as a minimum
requirement will be necessary in the long run (such as the UK’s government strategy for
Level 2 BIM status adoption by 2016). For instance, governments could give extra points to a
company that counts on RDF for knowledge management when awarding a project in a
tendering process.

Industry stakeholders should be introduced to the benefits that the semantic approach could
bring as well, which are currently considered complementary to BIM softwares and/or
undisclosed to some of them. Promoting pilot projects between universities and companies
that show the benefits to other companies within the AEC field in terms of time saved when
consulting information or interoperability could be an option too. In any case, the means
would include collaboration between private and public sectors, industry bodies, software
developers and researchers.

87

Thirdly, concerning the ontology development, there are some suggestions about the
modelling of classes, properties and the relationships between them. These suggestions are
considered relevant because they had an influence in the way the ontology was modelled.

- First of all, in case a property domain and/or range apply to several classes, it is
important to keep a relation 1:1 regarding the domain and range relation and never
include several classes as a domain or range of the same property. Instead, it is
advisable to create a superclass that contains all classes, and include that super class
as domain and/or range. Otherwise, different classes considered as the domain of
the same property will intersect each other instead of being united.

- Secondly, the hierarchical relationship between classes in represented as an “is-a”
relation between the class and the sub-class, and not a “belongs to” relation. In other
words, you want to have a class A and a subclass B if the instances of classes A and B
are the same and you want B to inherit the properties of A. On the other hand, when
you have a hierarchical relation relationship between classes but still they are not the
same, then each class should be modelled independently and be related to each
other through another property. The same applies for properties and sub-properties
relationships.

- Thirdly, classes should be named with a capital first letter and they always should be
singular. Concerning properties, they are named with a lower case first letter.

- Last but not least, not all elements coming from the original XSD schema are
translated as classes in the ontology. Only the “Complex Type” elements from the
XSD schema were modelled as a class, using “Data Type” properties to describe the
rest of the elements. Moreover, “Object Type” properties were used to define the
hierarchy of the XSD schema, creating one property for each hierarchical relationship
between two classes in order to maintain the 1:1 relation regarding domain and
ranges.

Fourthly, the back-end of the prototype was written and developed while learning from
scratch how the Python programming language works. For that reason, the final version of
the prototype’s code (section 7.5 Appendix V: Application code (Python)) can be improved.
For instance, the text boxes where users can introduce information do not provide error
handling. This means that if “integers” are written were “strings” are supposed to be
written, or vice versa, the prototype will not be able to inform the user that the information
has not been correctly introduced. Moreover, there are other programming issues that could
be easily overcome by an ICT programmer, such as the fact that you need to manually
introduce the name of users or BCF responsibilities. In a professional system, this would be
provided by a user administrator.

On the other hand, the highlighted and discussed limitations of the developed prototype
(section 4.7 Prototype limitations and section 4.8 Prototype discussion) could be the
beginning for further upgrades of the prototype as well.

An interesting point is related to the creation and association of more than one BCF issue
per building object. It was explained in section 4.7 Prototype limitations that if more than
one BCF issue per building element exists (connected through the same GUID); the retrieved
information would be mixed. In fact, even if comments are associated with the Topic instead
of the Markup, still BCF data will be mixed because both comments are linked to the building

88

object with the same GUID. So the proposed and sketched solution in section 4.8 Prototype
discussion suggests a Graphical User Interface (GUI) that allows the user to add a second
subidentifier that will filter the comments appearing in the property box depending on to
which topic they belong to. The GUI’s back-end will be able to query (SPARQL) and display
the current list topics (title and description) that are related to a building element, and then
use the ID of the selected topic to query the comments associated with it.

It was also explained in section 4.8 Prototype discussion that as a consequence of relating
one building object to multiple topics/issues, a second GUI will be necessary when creating
BCF data. This is because the current back-end only allows adding comments to the existing
BCF issue in case the selected building object contains already information. So the proposed
and sketched solution would ask the user first if he/she wants to create a new BCF topic or
add information to an existing one, and in the last case, the back-end of the GUI will query
and display a list of the existing topics so the user can select to which the information should
be added (similarly to the first GUI when filtering comments).

Another discussed limitation is the fact that it was only possible to create BCF information by
selecting building elements one by one. This could be overcome by adding loops in each
function that has been designed in the prototype. Currently, when a function is run, the
variable in the code is substituted by the GUID of the building element that is selected
(guid_selection) in the viewer. In case the GUID selection contains more than one GUID,
then a loop in the function will run the same functionality for every GUID included in the
GUID selection.

The last limitation in section 4.7 Prototype limitations concerns the attachment of snapshots
and viewpoints of the building object that is selected in the viewer. As it was explained,
creating a visual description of the element that the BCF issue is related to is not possible
with the developed prototype. However, including this functionality should be considered
for practical purposes in the design process. Model checking software applications (SMC)
already allow the attachment of this visual information when creating and exporting BCF
data. The snapshot is stored as a PNG file in the same markup folder that contains the XML
file with the BCF information, and the viewpoint’s coordinates are stored in the same folder
as well, but as a different XML file.

Research on the Open Cascade documentation (“Documentation | OPEN CASCADE,” 2017)
will help to design the back-end that will capture and generate the snapshot as a PNG file,
and the 3d viewer coordinates as an XML file the moment that the BCF is created. However,
once this information is generated, it is necessary to study how it would be stored as RDF
triples and later retrieved or serialized. On the one hand, the PNG file could be stored in the
FTP-server similarly to the way PDF files were stored when referencing a documents, while
the coordinates of the viewpoint can be stored in the same way other elements (such as
filename or file date) were represented as RDF triples. On the other hand, in case RDF triples
are serialized as a XML markup file inside the BCF ZIP file, the PNG file has to be serialized
and included within the same folder that the XML markup is, so that any BCF management
tool can access it. Concerning the coordinates, it would be necessary to program (Python)
the serialization of another XML file containing them in the same way the XML markup
contains the BCF data.

89

Finally, although it is not mentioned as a limitation in section 4.7 Prototype limitations, the
organization of RDF triples was done by storing triples at the same repository (called
“VL17001Fran”). As the IFC model used for the validation of the tool was also the same, then
all triples inside the repository were related to the same IFC model. However, for further
development of the prototype and practical purposes, it is advisable to create a preliminary
step where the user can select the repository that he/she would like to store the future
created information. In this way, the triples could be stored in the repositories by projects.

90

91

6. References

Abanda, F. H., Tah, J. H. M., & Keivani, R. (2013). Trends in built environment semantic Web

applications: Where are we today? Expert Systems with Applications, 40(14), 5563–

5577. https://doi.org/10.1016/j.eswa.2013.04.027

Alexander Kossiakoff, William N. Sweet, Samuel J. Seymour, & Steven M. Biemer. (2011).

Systems Engineering Principles and Practice. A JOHN WILEY & SONS, INC.

PUBLICATION.

Allemang, D., & Hendler, J. (2011a). Chapter 3 - RDF—The basis of the Semantic Web. In

Semantic Web for the Working Ontologist (Second Edition) (pp. 27–50). Boston:

Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-385965-5.10003-2

Allemang, D., & Hendler, J. (2011b). Chapter 5 - Querying the Semantic Web—SPARQL. In

Semantic Web for the Working Ontologist (Second Edition) (pp. 61–112). Boston:

Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-385965-5.10005-6

Allemang, D., & Hendler, J. (2011c). Chapter 7 - RDF schema. In Semantic Web for the

Working Ontologist (Second Edition) (pp. 125–152). Boston: Morgan Kaufmann.

https://doi.org/10.1016/B978-0-12-385965-5.10007-X

Arto Kiviniemi, & Martin Fischer. (2004). Requirements Management Interface to Building

Product Models.

Asier Mediavilla, José Luis Izkara, & Iñaki Prieto. (2015). HOLISTEEC – Plataforma

colaborativa en la nube basada en BIM para el diseño de edificios energéticamente

eficientes. Retrieved May 11, 2017, from

https://www.researchgate.net/publication/308304305_HOLISTEEC_-

_Plataforma_colaborativa_en_la_nube_basada_en_BIM_para_el_diseno_de_edificio

s_energeticamente_eficientes

Autodesk. (2017). Autodesk. Retrieved April 3, 2017, from

http://www.autodesk.com/solutions/bim/overview

Azhar, S., Hein, M., & Sketo, B. (2014). Building Information Modeling (BIM): Benefits, Risks

and Challenges. ResearchGate. Retrieved from

https://www.researchgate.net/publication/237569739_Building_Information_Model

ing_BIM_Benefits_Risks_and_Challenges

Beetz, J., Coebergh, W., Botter, R., Zlatanova, S., & De Laat, R. (2014). Interoperable data

models for infrastructural artefacts - a novel IFC extension method using RDF

vocabularies exemplified with quay wall structures for harbors. eWork and eBusiness

in Architecture, Engineering and Construction: ECPPM 2014, Vienna, (Austria), 17-

19th Sept., 2014; Authors Version. Retrieved from

https://repository.tudelft.nl/islandora/object/uuid%3Abb9a7dff-52c7-4aaf-a6b8-

898432270620

Beetz, Jakob, Berlo, L. van, Laat, R. de, & Bonsma, P. (2011). Advances in the development

and application of an open source model server for building information. Retrieved

92

April 3, 2017, from http://repository.tue.nl/a7689318-b00c-4b2d-9ede-

4fd7d9cb5895

Beetz, Jakob, van Leeuwen, J., & de Vries, B. (2009). IfcOWL: A case of transforming EXPRESS

schemas into ontologies. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 23(01), 89. https://doi.org/10.1017/S0890060409000122

Berlo, L. A. H. M. van, Beetz, J., Bos, P., Hendriks, H., & Tongeren, R. C. J. van. (2012).

Collaborative engineering with IFC : new insights and technology. Retrieved April 3,

2017, from http://repository.tue.nl/fc4f57d4-6dfb-45b0-9170-41faeb19664c

Berlo, L. van, Derks, G., Pennavaire, C., & Bos, P. (2015). Collaborative Engineering with IFC:

common practice in the Netherlands.

BIM protocol generator. (2014, May 24). Retrieved April 4, 2017, from

http://bimprotocolgenerator.com/about/

BIMcollab. (2017). Retrieved August 23, 2017, from

http://www.bimcollab.com/en/BIMcollab/BIMcollab

Bouzidi, K. R., Fies, B., Faron-Zucker, C., Zarli, A., & Thanh, N. L. (2012). Semantic Web

Approach to Ease Regulation Compliance Checking in Construction Industry. Future

Internet, 4(3), 830–851. https://doi.org/10.3390/fi4030830

BuildingSMART. (2011). Information Delivery Manuals — buildingSMART. Retrieved April 3,

2017, from http://iug.buildingsmart.org/idms/

BuildingSMART. (2017). BuildingSMART. Retrieved April 3, 2017, from

http://buildingsmart.org/

Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., & O’Riain, S. (2013). Linking building

data in the cloud: Integrating cross-domain building data using linked data. Advanced

Engineering Informatics, 27(2), 206–219. https://doi.org/10.1016/j.aei.2012.10.003

Documentation | OPEN CASCADE. (2017). Retrieved September 12, 2017, from

https://www.opencascade.com/content/documentation

Edward Corry, James O’Donnell, Edward Curry, Daniel Coakley, Pieter Pauwels, & Marcus

Keane. (2014, June). Using semantic web technologies to access soft AEC data -

ScienceDirect. Retrieved July 19, 2017, from

http://www.sciencedirect.com/science/article/pii/S1474034614000366

Elghamrawy, T., & Boukamp, F. (2008). A vision for a framework to support management

and learning from construction problems (pp. 1–10). Presented at the Improving the

management of Construction Projects through IT adoption, University of Talca.

Retrieved from https://researchbank.rmit.edu.au/view/rmit:13820

Elghamrawy, Tarek, & Boukamp, F. (2010). Managing construction information using RFID-

based semantic contexts. Automation in Construction, 19(8), 1056–1066.

https://doi.org/10.1016/j.autcon.2010.07.015

García, A. C. B., Kiviniemi, A., & Ekstrom, M. (2003, November 21). Building a project

ontology with extreme collaboration and virtual design and construction. Retrieved

April 5, 2017, from

93

https://www.researchgate.net/publication/222524380_Building_a_project_ontology

_with_extreme_collaboration_and_virtual_design_and_construction

Gonçal Costa, & Leandro Madrazo. (2015, June). Connecting building component catalogues

with BIM models using semantic technologies: An application for precast concrete

components. Retrieved July 20, 2017, from

https://www.researchgate.net/publication/279520321_Connecting_building_compo

nent_catalogues_with_BIM_models_using_semantic_technologies_An_application_f

or_precast_concrete_components

Grilo, A., & Jardim-Goncalves, R. (2010). Value proposition on interoperability of BIM and

collaborative working environments. ResearchGate.

https://doi.org/http://dx.doi.org/10.1016/j.autcon.2009.11.003

Gu, N., & London, K. (2010). Understanding and facilitating BIM adoption in the AEC

industry. Automation in Construction, 19(8), 988–999.

https://doi.org/10.1016/j.autcon.2010.09.002

Hans A. Schevers, John Mitchell, Paul Akhurst, & Chris Linning. (2007, July). Towards digital

facility modelling for Sydney Opera House using IFC and semantic web technology.

Retrieved July 19, 2017, from

https://www.researchgate.net/publication/27483940_Towards_digital_facility_mod

elling_for_Sydney_Opera_House_using_IFC_and_semantic_web_technology

Hans Hoeber, & Daan Alsem. (2016). Life-cycle information management using open-

standard BIM. Retrieved April 15, 2017, from

https://www.researchgate.net/publication/310667357_Life-

cycle_information_management_using_open-standard_BIM

Hitchcock, R. (1995). Improving Building Life-Cycle Information Management Through

Documentation and Communication of Project Objectives.

INCOSE. (2017). INCOSE. Retrieved April 3, 2017, from

http://www.incose.org/AboutSE/WhatIsSE

J. Beetz. (2014). A Scalable Network of Concept Libraries Using Distributed Graph Databases.

Computing in Civil and Building Engineering (2014).

https://doi.org/10.1061/9780784413616.071

Jakob Beetz, Bauke de Vries, & Jos van Leeuwen. (2007). RDF-based distributed functional

part specifications for the facilitation of service-based architectures.

Jakob Beetz, Jos P. van Leeuwen, & Bauke de Vries. (2006, January). Towards a topological

reasoning service for IFC-based building information models in a Semantic Web

context. Retrieved July 17, 2017, from

https://www.researchgate.net/publication/228613888_Towards_a_topological_reas

oning_service_for_IFC-

based_building_information_models_in_a_Semantic_Web_context

94

Jeff Wix, & Jan Karlshøj. (2010, May 12). Information Delivery Manual Guide to Components

and Development Methods. Retrieved from

http://iug.buildingsmart.org/idms/development/IDMC_004_1_2.pdf

Krijnen, T., & van Berlo, L. (2016). Methodologies for requirement checking on building

models.

Kvan, T. (2000). Collaborative design: what is it? Automation in Construction, 9(4), 409–415.

https://doi.org/10.1016/S0926-5805(99)00025-4

L.A.H.M. van Berlo, F. Bomhof, & G. Korpershoek. (2014). Creating the Dutch National BIM

Levels of Development.

Lee, S.-K., Kim, K.-R., & Yu, J.-H. (2014). BIM and ontology-based approach for building cost

estimation. Automation in Construction, 41, 96–105.

https://doi.org/10.1016/j.autcon.2013.10.020

Lee, Y.-C., Eastman, C. M., & Lee, J.-K. (2015). Validations for ensuring the interoperability of

data exchange of a building information model. ResearchGate.

https://doi.org/http://dx.doi.org/10.1016/j.autcon.2015.07.010

Linhard, K., & Steinmann, R. (2015). BIM-collaboration processes – from fuzziness to

practical implementation. Retrieved from

https://books.google.nl/books?hl=es&lr=&id=uemsBAAAQBAJ&oi=fnd&pg=PA27&dq

=BIM-

collaboration+processes+%E2%80%93+from+fuzziness+to+practical+implementation.

&ots=aetkG6vFgG&sig=9ae1_TIGwZlajsjynnZpIbiy02w#v=onepage&q=BIM-

collaboration%20processes%20%E2%80%93%20from%20fuzziness%20to%20practica

l%20implementation.&f=false

Matthias Weise, & Pieter Pauwels. (2015). Best practices for publishing and linking BIM data:

Scoping of IFC models.

Miettinen, R., & Paavola, S. (2014). Beyond the BIM utopia: Approaches to the development

and implementation of building information modeling. Automation in Construction,

43, 84–91. https://doi.org/10.1016/j.autcon.2014.03.009

Natalya F. Noy, & Deborah L. McGuinness. (2001, March). Ontology Development 101: A

Guide to Creating Your First Ontology. Retrieved August 1, 2017, from http://www-

ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-

abstract.html

Neff, G., Fiore-Silfvast, B., & Dossick, C. S. (2010). A Case Study of the Failure of Digital

Communication to Cross Knowledge Boundaries in Virtual Construction. Information,

Communication & Society, 13(4), 556–573.

https://doi.org/10.1080/13691181003645970

Niknam, M., & Karshenas, S. (2015). Sustainable Design of Buildings using Semantic BIM and

Semantic Web Services. Procedia Engineering, 118, 909–917.

https://doi.org/10.1016/j.proeng.2015.08.530

95

Niknam, M., & Karshenas, S. (2017). A shared ontology approach to semantic representation

of BIM data. Automation in Construction, 80, 22–36.

https://doi.org/10.1016/j.autcon.2017.03.013

Ozkaya, I., & Akin, Ö. (2007). Tool support for computer-aided requirement traceability in

architectural design: The case of DesignTrack. Automation in Construction, 16(5),

674–684. https://doi.org/10.1016/j.autcon.2006.11.006

Pan, J., Anumba, C., & Ren, Z. (2004). Potential application of the semantic web in

construction. Proceedings of the 20th Annual Conference of the Association of

Researchers in Construction Management (ARCOM), 923–929.

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van de Walle, R., &

Van Campenhout, J. (2011). A semantic rule checking environment for building

performance checking. Automation in Construction, 20(5), 506–518.

https://doi.org/10.1016/j.autcon.2010.11.017

Pauwels, Pieter, & Terkaj, W. (2016). EXPRESS to OWL for construction industry: Towards a

recommendable and usable ifcOWL ontology. Automation in Construction,

63(Supplement C), 100–133. https://doi.org/10.1016/j.autcon.2015.12.003

Pauwels, Pieter, Zhang, S., & Lee, Y.-C. (2017). Semantic web technologies in AEC industry: A

literature overview. Automation in Construction, 73, 145–165.

https://doi.org/10.1016/j.autcon.2016.10.003

Pieter Pauwels, & Davy Van Deursen. (2012, March). IFC-to-RDF: Adaptation, Aggregation

and Enrichment. Retrieved July 17, 2017, from

https://www.researchgate.net/publication/266478243_IFC-to-

RDF_Adaptation_Aggregation_and_Enrichment

Pieter Pauwels, Seppo Törmä, Jakob Beetz, & T. Liebich. (2015, September). Linked Data in

Architecture and Construction. Retrieved July 18, 2017, from

https://www.researchgate.net/publication/281612334_Linked_Data_in_Architecture

_and_Construction

Relatics. (2017). Relatics. Retrieved January 27, 2017, from https://www.relatics.com/

Rezgui, Y., Boddy, S., Wetherill, M., & Cooper, G. (2011). Past, present and future of

information and knowledge sharing in the construction industry: Towards semantic

service-based e-construction? Computer-Aided Design, 43(5), 502–515.

https://doi.org/10.1016/j.cad.2009.06.005

Riet, M. van de. (2016, February). Semantic model enrichment for BIM-enabled risk-based

operation and maintenance. A case study approach with Industry Foundation Classes.

Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The Semantic Web Revisited. IEEE Intelligent

Systems, 21(3), 96–101. https://doi.org/10.1109/MIS.2006.62

Shen, L., & Chua, D. (2011). Application of Building Information Modeling (BIM) and

Information Technology (IT) for Project Collaboration. International Conference on

Engineering, Project, and Production Management (EPPM), 67–76.

96

Shen, W., Hao, Q., Mak, H., Neelamkavil, J., Xie, H., Dickinson, J., … Xue, H. (2010). Systems

integration and collaboration in architecture, engineering, construction, and facilities

management: A review. Advanced Engineering Informatics, 24(2), 196–207.

https://doi.org/10.1016/j.aei.2009.09.001

Simeone, D., & Cursi, S. (2016). The role of semantic enrichment in Building Information

Modelling. Tema:Technology,Engineering,Materials and Architecture, 2(2), 22–30.

https://doi.org/10.17410/tema.v2i2.105

Sparklis | DBpedia. (2017). Retrieved September 6, 2017, from

http://wiki.dbpedia.org/projects/sparklis

Sparklis - Semantic Web Standards. (2017). Retrieved September 5, 2017, from

https://www.w3.org/2001/sw/wiki/Sparklis

Stancheva, M. (2017, September). Improving the management of structural engineering

requirements in the design phase. Linking project requirements to BIM, based on the

Semantic Web and Linked Data principles.

Svetel, I., & Pejanović, M. (2010). The Role of the Semantic Web for Knowledge Management

in the Construction Industry. Informatica, 34(3). Retrieved from

http://www.informatica.si/index.php/informatica/article/view/307

Tamer E. El-Diraby. (2013). Domain Ontology for Construction Knowledge. Journal of

Construction Engineering and Management, 139(7), 768–784.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0000646

Thomas Froese. (2003). Future directions for IFC-based interoperability.

Treldal, N., Parsianfar, H., & Karlshøj, J. (2016, August). Using BCF as a mediator for task

management in building design. Retrieved April 20, 2017, from

https://www.researchgate.net/publication/308113942_USING_BCF_AS_A_MEDIATO

R_FOR_TASK_MANAGEMENT_IN_BUILDING_DESIGN

van Berlo, L., & Krijnen, T. (2014). Using the BIM Collaboration Format in a Server Based

Workflow. Procedia Environmental Sciences, 22, 325–332.

https://doi.org/10.1016/j.proenv.2014.11.031

Vanlande, R., Nicolle, C., & Cruz, C. (2008). IFC and building lifecycle management.

Automation in Construction, 18(1), 70–78.

https://doi.org/10.1016/j.autcon.2008.05.001

Ven, N. van de. (2017, February). Mutation management in BIM models during Operations &

Maintenance. Managing Operations & Maintenance building models with the use of

Industry Foundation Classes and Linked Data.

Wicaksono, H., Rogalski, S., & Kusnady, E. (2010). Knowledge-based intelligent energy

management using building automation system. In 2010 Conference Proceedings IPEC

(pp. 1140–1145). https://doi.org/10.1109/IPECON.2010.5696994

Wicaksono, Hendro, Dobreva, P., Häfner, P., & Rogalski, S. (2013). Ontology Development

towards Expressive and Reasoning-enabled Building Information Model for an

Intelligent Energy Management System. 5th International Conference on Knowledge

97

Engineering and Ontology Development, KEOD 2013; Vilamoura, Algarve; Portugal;

19 September 2013 through 22 September 2013. Retrieved from

https://publikationen.bibliothek.kit.edu/1000040882

Xu, X., Ma, L., & Ding, L. (2014). A Framework for BIM-Enabled Life-Cycle Information

Management of Construction Project. International Journal of Advanced Robotic

Systems, 11(8), 126. https://doi.org/10.5772/58445

Zarli, A., A.Yurchyshyna, Le Thanh, N., & Faron Zucker, C. (2008). Towards an ontology-based

approach for formalizing expert knowledge in the conformity-checking model in

construction. In eWork and eBusiness in Architecture, Engineering and Construction

(Vols. 1–0, pp. 447–456). Taylor & Francis.

https://doi.org/10.1201/9780203883327.ch50

Zhang, C., & Beetz, J. (2014, September). Model View Checking: Automated Validation for

IFC Building Models. Retrieved August 17, 2017, from

https://www.researchgate.net/publication/266326324_Model_View_Checking_Auto

mated_Validation_for_IFC_Building_Models

99

7. Appendices

7.1 Appendix I: Concept matrix

The concepts contained in the concept matrix are enumerated next:

1. Building Information Modeling (BIM)
2. IFC and interoperability
3. BIM implementation and adoption
4. Collaboration technologies and Information Delivery Manual (IDM)
5. BIM Collaboration Format (BCF)
6. Requirements, issues, tasks and life-cycle information management
7. Semantic web, RDF and SPARQL

Table 5. References’ concept matrix

Articles
Concepts

1 2 3 4 5 6 7

Beyond the BIM utopia: Approaches to the development and implementation of building information modeling (2014) X X

Collaborative engineering with IFC : new insights and technology (2012) X X X X

Future directions for IFC-based interoperability (2003) X X

Life-cycle information management using open-standard BIM (2016) X X X X

Value proposition on interoperability of BIM and collaborative working environments (2010) X X

Collaborative Engineering with IFC: common practice in the Netherlands (2015) X X X X

A Case Study of the Failure of Digital Communication to Cross Knowledge Boundaries in Virtual Construction (2010) X X

Systems integration and collaboration in architecture, engineering, construction, and facilities management: A review (2010) X X X X

Understanding and facilitating BIM adoption in the AEC industry (2010) X X

Methodologies for requirement checking on building models (2016) X X

Validations for ensuring the interoperability of data exchange of a building information model (2015) X X X

Collaborative design: what is it? (2000) X

HOLISTEEC – Plataforma colaborativa en la nube basada en BIM para el diseño de edificios energéticamente eficientes (2015) X X X X

Information Delivery Manual Guide to Components and Development Methods (2010) X

Creating the Dutch National BIM Levels of Development (2014) X X

Improving Building Life-Cycle Information Management Through Documentation and Communication of Project Objectives (1995) X

100

A Framework for BIM-Enabled Life-Cycle Information Management of Construction Project (2014) X X X X

Advances in the development and application of an open source model server for building information (2011) X X X X

BIM-collaboration processes – from fuzziness to practical implementation (2015) X X X X

Using the BIM Collaboration Format in a Server Based Workflow (2014) X X

Using BCF as a mediator for task management in building design (2016) X X X X

Building a project ontology with extreme collaboration and virtual design and construction (2003) X X

Requirements Management Interface to Building Product Models (2004) X X

Tool support for computer-aided requirement traceability in architectural design: The case of DesignTrack (2007) X X

Trends in built environment semantic Web applications: Where are we today? (2013) X

Systems Engineering Principles and Practice (2011) X

Chapter 3 - RDF—The basis of the Semantic Web. In Semantic Web for the Working Ontologist (2011) X

Chapter 5 - Querying the Semantic Web—SPARQL. In Semantic Web for the Working Ontologist (2011) X

Building Information Modeling (BIM): Benefits, Risks and Challenges (2014) X X

Interoperable data models for infrastructural artefacts - a novel IFC extension method using RDF vocabularies exemplified with quay
wall structures for harbors (2014)

 X

IfcOWL: A case of transforming EXPRESS schemas into ontologies (2009) X

Semantic Web Approach to Ease Regulation Compliance Checking in Construction Industry (2012) X

Information Delivery Manuals — buildingSMART (2011) X

Using semantic web technologies to access soft AEC data (2014) X

A vision for a framework to support management and learning from construction problems (2008) X

Managing construction information using RFID-based semantic contexts (2010) X

Connecting building component catalogues with BIM models using semantic technologies: An application for precast concrete
components (2015)

 X

Towards digital facility modelling for Sydney Opera House using IFC and semantic web technology (2007) X

A Scalable Network of Concept Libraries Using Distributed Graph Databases (2014) X

RDF-based distributed functional part specifications for the facilitation of service-based architectures (2007) X

Towards a topological reasoning service for IFC-based building information models in a Semantic Web context (2006) X

BIM and ontology-based approach for building cost estimation (2014) X X

Best practices for publishing and linking BIM data: Scoping of IFC models (2015) X X

Sustainable Design of Buildings using Semantic BIM and Semantic Web Services (2015) X

A shared ontology approach to semantic representation of BIM data (2017) X

101

Potential application of the semantic web in construction (2004) X

A semantic rule checking environment for building performance checking (2011) X

Semantic web technologies in AEC industry: A literature overview (2017) X

IFC-to-RDF: Adaptation, Aggregation and Enrichment (2012) X

Linked Data in Architecture and Construction (2015) X

Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-
construction? (2011)

 X

The Semantic Web Revisited (2006) X

Application of Building Information Modeling (BIM) and Information Technology (IT) for Project Collaboration (2011) X X

The role of semantic enrichment in Building Information Modelling (2016) X

The Role of the Semantic Web for Knowledge Management in the Construction Industry (2010) X

Domain Ontology for Construction Knowledge (2013) X

Knowledge-based intelligent energy management using building automation system (2010) X

Ontology Development towards Expressive and Reasoning-enabled Building Information Model for an Intelligent Energy
Management System (2013)

 X

Towards an ontology-based approach for formalizing expert knowledge in the conformity-checking model in construction (2008) X

102

7.2 Appendix II: Requirements’ System Breakdown Structure

1
Primary

Structure

1.1
Building Level

1.2
Facade

1.1.2
Beam

1.1.3
Column

1.1.4
Structural

Wall

1.1.5
Footing

1.1.6
Pile

1.2.1
Wind braces

1.3
Staircase

O1
Material Quality

A1
Prevention

Sy
st

em
 R

eq
ui

re
m

en
ts

S1 External
system

interactions

S2
Internal
system

Interactions

Clashes

Element
connections

Ground water

Soil

Strength

F2
Stability

Stiffness

Dead load

Live load

Wind load

Deflection

Snow load
F1

Loadbearing

Fire resistance

Functional requirements
Aspect requirements
Object requirements
System Interaction requirements

F
A
O
S

A2
Usability

LOD200

LOD300
1.1.1

Floor slab

Wind load

Earthquake load

Additional load

Crack width

Crash load

Nuisance

Second order
deflection

2
Secondary
Structure

3
Temporary
Structure

Building
Structure

F1
Loadbearing

Normal forces

Shear force

Moment

Figure 65. Requirements’ System Breakdown Structure

103

7.3 Appendix III: Process map MAVO project (Communication workflow)

Figure 66. Communication workflow – MAVO project (Preliminary Design)

104

Figure 67. Communication workflow – MAVO project (Final Design)

105

7.4 Appendix IV: Process map MAVO project (Input/output workflow)

Figure 68. Input/output workflow – MAVO project (Preliminary Design)

106

Figure 69. Input/output workflow – MAVO project (Final design)

107

7.5 Appendix V: Application code (Python)

import os

import datetime

import uuid

import shutil

import glob

import zipfile

import xml.etree.cElementTree as ET

import ifcopenshell.guid

import ifcopenshell, ifcopenshell.geom

settings = ifcopenshell.geom.settings()

settings.set(settings.USE_PYTHON_OPENCASCADE, True)

from PyQt4 import QtCore, QtGui

from OCC.Display.backend import get_backend

get_backend("qt-pyqt4")

import OCC.Display.qtDisplay

from OCC.Display.qtDisplay import qtViewer3d

from OCC.gp import *

import OCC.Bnd, OCC.BRepBndLib

from OCC.Aspect import Aspect_GT_Rectangular, Aspect_GDM_Lines

from OCC.BRepPrimAPI import BRepPrimAPI_MakeBox

from rdflib import ConjunctiveGraph, Graph, Literal, URIRef,

Namespace, XSD, RDF

import urllib

import httplib2

from Tkinter import *

from Tkinter import W, E

import tkMessageBox

from tkFileDialog import askopenfilename

import Tkinter as tk

from ftplib import FTP

from SPARQLWrapper import SPARQLWrapper, RDFXML

guid_selection = None

class ProductViewer(qtViewer3d):

 def __init__(self, *args):

 qtViewer3d.__init__(self)

 self.objects = {}

 @staticmethod

 def Hash(shape):

 return shape.HashCode(1 << 30)

 displayed_shapes = {}

 def Show(self, key, shape, color=None):

 self.objects[ProductViewer.Hash(shape)] = key

 qclr = OCC.Quantity.Quantity_Color(.35, .25, .1,

OCC.Quantity.Quantity_TOC_RGB)

 ais = self._display.DisplayColoredShape(shape, qclr)

 self.displayed_shapes[key] = ais

108

 self._display.FitAll()

 def ColorasActive(self, key):

 ais = self.displayed_shapes[key]

 qclr = OCC.Quantity.Quantity_Color(1, 0, 0,

OCC.Quantity.Quantity_TOC_RGB)

 ais.GetObject().SetColor(qclr)

 def ColorasNoCheck(self,key):

 ais = self.displayed_shapes[key]

 qclr = OCC.Quantity.Quantity_Color(1, 1, 0,

OCC.Quantity.Quantity_TOC_RGB)

 ais.GetObject().SetColor(qclr)

 def ColorasResolved(self, key):

 ais = self.displayed_shapes[key]

 qclr = OCC.Quantity.Quantity_Color(1, 0.5, 0,

OCC.Quantity.Quantity_TOC_RGB)

 ais.GetObject().SetColor(qclr)

 def ColorasClosed(self, key):

 ais = self.displayed_shapes[key]

 qclr = OCC.Quantity.Quantity_Color(0, 0.7, 0,

OCC.Quantity.Quantity_TOC_RGB)

 ais.GetObject().SetColor(qclr)

 def Show2(self,key):

 ais = self.displayed_shapes[key]

 self._display.Context.Display(ais)

 def Hide(self, key):

 ais = self.displayed_shapes[key]

 self._display.Context.Erase(ais)

 def mouseReleaseEvent(self, *args):

 # Process selection by parent class

 qtViewer3d.mouseReleaseEvent(self, *args)

 if self._display.selected_shape:

 global guid_selection

 global selected_shape

 selected_shape = self._display.selected_shapes

 guid_selection =

(self.objects[ProductViewer.Hash(self._display.selected_shape)])

 # guid_selection = [self.objects[ProductViewer.Hash(x)]

for x in self._display.selected_shapes]

 print guid_selection

Main class of the application

class initUI(object):

 def __init__(self, *args):

 # Constructing an application

 app = QtGui.QApplication(sys.argv)

 # Viewer initialization

 self.main = Main(self)

 self.main.show()

 self.main.canvas.InitDriver()

 self.main.statusBar()

 self.display = self.main.canvas._display

109

 # Methods to feed the viewer with content

 self.geometry_box()

 self.geometry_grid()

 # Raise a system exit

 sys.exit(app.exec_())

 def geometry_box(self):

 box = BRepPrimAPI_MakeBox(10., 10., 10.).Shape()

 self.display.DisplayShape(box)

 self.display.FitAll()

 def geometry_grid(self):

 ax3 = gp_Ax3(gp_Pnt(0, 0, 0), gp_Dir(0, 0, 1))

 self.display.GetViewer().GetObject().SetPrivilegedPlane(ax3)

self.display.GetViewer().GetObject().SetRectangularGridValues(0, 0,

10, 10, 0)

self.display.GetViewer().GetObject().SetRectangularGridGraphicValues(1

0, 10, 0)

self.display.GetViewer().GetObject().ActivateGrid(Aspect_GT_Rectangula

r, Aspect_GDM_Lines)

 self.display.FitAll()

class MyApp(tk.Tk):

 def open_file(self):

 global file_path

 filename = askopenfilename()

 file_path = os.path._getfullpathname(filename)

 return file_path

 def __init__(self, ifcfilename, ifcfilelocation, dateandtime):

 tk.Tk.__init__(self)

 # Header

 self.label1 = tk.Label(self, text="Header", font="Verdana 14

bold")

 self.label1.grid(row=0, column=0, sticky=E + W)

 # File Elements

 self.label2 = tk.Label(self, text="File Elements",

font="Verdana 10 italic")

 self.label2.grid(row=1, column=0, sticky=E + W)

 # FileName

 self.label3 = tk.Label(self, text="FileName: ")

 self.label3.grid(row=2, column=0, sticky=W)

 self.filename = tk.StringVar()

 self.filename.set(ifcfilename)

 self.entry1 = tk.Entry(self, textvariable=self.filename)

 self.entry1.grid(row=2, column=1)

 # FileDate

 self.label4 = tk.Label(self, text="FileDate: ")

 self.label4.grid(row=3, column=0, sticky=W)

110

 self.filedate = tk.StringVar()

 self.filedate.set(dateandtime)

 self.entry2 = tk.Entry(self, textvariable=self.filedate)

 self.entry2.grid(row=3, column=1)

 # FileReference

 self.label5 = tk.Label(self, text="FileReference: ")

 self.label5.grid(row=4, column=0, sticky=W)

 self.filereference = tk.StringVar()

 self.filereference.set(ifcfilelocation)

 self.entry3 = tk.Entry(self, textvariable=self.filereference)

 self.entry3.grid(row=4, column=1)

 # Blank line

 self.label6 = tk.Label(self, text="")

 self.label6.grid(row=5, column=0, sticky=E + W)

 # Topic

 self.label7 = tk.Label(self, text="Topic", font="Verdana 14

bold")

 self.label7.grid(row=6, column=0, sticky=E + W)

 # Topic Attributes

 self.label8 = tk.Label(self, text="Topic Attributes",

font="Verdana 10 italic")

 self.label8.grid(row=7, column=0, sticky=E + W)

 # TopicType

 self.label9 = tk.Label(self, text="TopicType: ")

 self.label9.grid(row=8, column=0, sticky=W)

 self.entry4 = tk.Spinbox(self, value=("Issue", "Fault",

"Clash", "Request", "Inquiry", "Remark", "Undefined", "Error"))

 self.entry4.grid(row=8, column=1)

 # TopicStatus

 self.label10 = tk.Label(self, text="TopicStatus: ")

 self.label10.grid(row=9, column=0, sticky=W)

 self.entry5 = tk.Spinbox(self, value=("Active", "Resolved",

"Closed"))

 self.entry5.grid(row=9, column=1)

 # Topic Elements

 self.label11 = tk.Label(self, text="Topic Elements",

font="Verdana 10 italic")

 self.label11.grid(row=10, column=0, sticky=E + W)

 # Reference Link

 self.label12 = tk.Label(self, text="Reference Link: ")

 self.label12.grid(row=11, column=0, sticky=W)

 self.entry6 = tk.Entry(self)

 self.entry6.grid(row=11, column=1)

 # Title

111

 self.label13 = tk.Label(self, text="Title: ")

 self.label13.grid(row=12, column=0, sticky=W)

 self.entry7 = tk.Entry(self)

 self.entry7.grid(row=12, column=1)

 # Priority

 self.label14 = tk.Label(self, text="Priority: ")

 self.label14.grid(row=13, column=0, sticky=W)

 self.entry8 = tk.Spinbox(self, value=("Critical", "Major",

"Normal", "Minor", "On hold", "Undefined"))

 self.entry8.grid(row=13, column=1)

 # Topic Index

 self.label15 = tk.Label(self, text="Topic Index: ")

 self.label15.grid(row=14, column=0, sticky=W)

 self.entry9 = tk.Entry(self)

 self.entry9.grid(row=14, column=1)

 # Labels

 self.label16 = tk.Label(self, text="Labels: ")

 self.label16.grid(row=15, column=0, sticky=W)

 self.entry10 = tk.Spinbox(self, value=("Architecture",

"Structure", "Mechanical", "Electrical", "Specifications",

"Technology", "Undefined"))

 self.entry10.grid(row=15, column=1)

 # Creation Date

 self.label17 = tk.Label(self, text="Creation Date: ")

 self.label17.grid(row=16, column=0, sticky=W)

 self.entry11 = tk.Entry(self, textvariable=self.filedate)

 self.entry11.grid(row=16, column=1)

 # Creation Author

 self.label18 = tk.Label(self, text="Creation Author: ")

 self.label18.grid(row=17, column=0, sticky=W)

 self.entry12 = tk.Entry(self)

 self.entry12.grid(row=17, column=1)

 # Topic Modified Date

 self.label19 = tk.Label(self, text="Topic modified date: ")

 self.label19.grid(row=18, column=0, sticky=W)

 self.entry13 = tk.Entry(self)

 self.entry13.grid(row=18, column=1)

 # Topic Modified Author

 self.label20 = tk.Label(self, text="Topic modified author: ")

 self.label20.grid(row=19, column=0, sticky=W)

 self.entry14 = tk.Entry(self)

 self.entry14.grid(row=19, column=1)

 # DueDate

 self.label21 = tk.Label(self, text="DueDate: ")

112

 self.label21.grid(row=20, column=0, sticky=W)

 self.entry15 = tk.Entry(self)

 self.entry15.grid(row=20, column=1)

 # Assigned to

 self.label22 = tk.Label(self, text="Assigned to: ")

 self.label22.grid(row=21, column=0, sticky=W)

 self.entry16 = tk.Entry(self)

 self.entry16.grid(row=21, column=1)

 # Stage

 self.label23 = tk.Label(self, text="Stage: ")

 self.label23.grid(row=22, column=0, sticky=W)

 self.entry17 = tk.Entry(self)

 self.entry17.grid(row=22, column=1)

 # Topic Description

 self.label24 = tk.Label(self, text="Topic Description: ")

 self.label24.grid(row=23, column=0, sticky=W)

 self.entry18 = tk.Entry(self)

 self.entry18.grid(row=23, column=1)

 # Bim Snippet

 self.label25 = tk.Label(self, text="BimSnippet elements",

font="Verdana 10 italic")

 self.label25.grid(row=24, column=0, sticky=E + W)

 # Bim Snippet Reference

 self.label26 = tk.Label(self, text="BimSnippet Reference: ")

 self.label26.grid(row=25, column=0, sticky=W)

 self.entry19 = tk.Entry(self)

 self.entry19.grid(row=25, column=1)

 # Reference Schema

 self.label27 = tk.Label(self, text="Reference schema: ")

 self.label27.grid(row=26, column=0, sticky=W)

 self.entry20 = tk.Entry(self)

 self.entry20.grid(row=26, column=1)

 # Document reference

 self.label28 = tk.Label(self, text="Document Reference

elements", font="Verdana 10 italic")

 self.label28.grid(row=27, column=0, sticky=E + W)

 # Referenced document

 self.label29 = tk.Label(self, text="Referenced document: ")

 self.label29.grid(row=28, column=0, sticky=W)

 self.entry21 = tk.Entry(self)

 self.entry21.grid(row=28, column=1)

 # Document description

 self.label30 = tk.Label(self, text="Document description: ")

 self.label30.grid(row=29, column=0, sticky=W)

113

 self.entry22 = tk.Entry(self)

 self.entry22.grid(row=29, column=1)

 # Comment

 self.label31 = tk.Label(self, text="Comment", font="Verdana 14

bold")

 self.label31.grid(row=0, column=5, sticky=E + W)

 # Comment elements

 self.label32 = tk.Label(self, text="Comment Elements",

font="Verdana 10 italic")

 self.label32.grid(row=1, column=5, sticky=E + W)

 # Comment date

 self.label33 = tk.Label(self, text="Comment date: ")

 self.label33.grid(row=2, column=5, sticky=W)

 self.entry23 = tk.Entry(self, textvariable=self.filedate)

 self.entry23.grid(row=2, column=6)

 # Author

 self.label34 = tk.Label(self, text="Author: ")

 self.label34.grid(row=3, column=5, sticky=W)

 self.entry24 = tk.Entry(self)

 self.entry24.grid(row=3, column=6)

 # Comment of comment

 self.label35 = tk.Label(self, text="Comment: ")

 self.label35.grid(row=4, column=5, sticky=W)

 self.entry25 = tk.Entry(self)

 self.entry25.grid(row=4, column=6)

 # Comment modified date

 self.label36 = tk.Label(self, text="Modified date: ")

 self.label36.grid(row=5, column=5, sticky=W)

 self.entry26 = tk.Entry(self)

 self.entry26.grid(row=5, column=6)

 # Comment modified author

 self.label37 = tk.Label(self, text="Modified author: ")

 self.label37.grid(row=6, column=5, sticky=W)

 self.entry27 = tk.Entry(self)

 self.entry27.grid(row=6, column=6)

 # blank line

 self.label38 = tk.Label(self, text="")

 self.label38.grid(row=7, column=5, sticky=E + W)

 # Viewpoints

 self.label40 = tk.Label(self, text="Viewpoints", font="Verdana

14 bold")

 self.label40.grid(row=8, column=5, sticky=E + W)

 # Viewpoints elements

 self.label41 = tk.Label(self, text="Viewpoints elements",

114

font="Verdana 10 italic")

 self.label41.grid(row=9, column=5, sticky=E + W)

 # Viewpoint

 self.label42 = tk.Label(self, text="Viewpoint: ")

 self.label42.grid(row=10, column=5, sticky=W)

 self.entry28 = tk.Entry(self)

 self.entry28.grid(row=10, column=6)

 # Snapshot

 self.label43 = tk.Label(self, text="Snapshot: ")

 self.label43.grid(row=11, column=5, sticky=W)

 self.entry29 = tk.Entry(self)

 self.entry29.grid(row=11, column=6)

 # Viewpoint index

 self.label44 = tk.Label(self, text="Viewpoint index: ")

 self.label44.grid(row=12, column=5, sticky=W)

 self.entry30 = tk.Entry(self)

 self.entry30.grid(row=12, column=6)

 # blank line

 self.label39 = tk.Label(self, text="")

 self.label39.grid(row=13, column=5, sticky=E + W)

 # Close button

 close_button = tk.Button(self, text="Accept and close",

command=self.close)

 close_button.grid(row=14, column=6, sticky=E)

 # Browse button

 browse_button = tk.Button(self, text="Browse",

command=self.select_file)

 browse_button.grid(row=28, column=2, sticky=E)

 def select_file(self):

 fp = self.open_file()

 self.entry21.delete(0, "end")

 self.entry21.insert(0, fp)

 def close(self):

 # First all entry values are added to a list

 global result

 result = []

 result.append(self.entry1.get())

 result.append(self.entry2.get())

 result.append(self.entry3.get())

 result.append(self.entry4.get())

 result.append(self.entry5.get())

 result.append(self.entry6.get())

 result.append(self.entry7.get())

 result.append(self.entry8.get())

 result.append(self.entry9.get())

 result.append(self.entry10.get())

 result.append(self.entry11.get())

 result.append(self.entry12.get())

 result.append(self.entry13.get())

115

 result.append(self.entry14.get())

 result.append(self.entry15.get())

 result.append(self.entry16.get())

 result.append(self.entry17.get())

 result.append(self.entry18.get())

 result.append(self.entry19.get())

 result.append(self.entry20.get())

 result.append(self.entry21.get())

 result.append(self.entry22.get())

 result.append(self.entry23.get())

 result.append(self.entry24.get())

 result.append(self.entry25.get())

 result.append(self.entry26.get())

 result.append(self.entry27.get())

 result.append(self.entry28.get())

 result.append(self.entry29.get())

 result.append(self.entry30.get())

 # show confirmation message

 tkMessageBox.showinfo("Message", "RDF file uploaded

successfully")

 # close UI

 self.destroy()

 def mainloop(self):

 tk.Tk.mainloop(self)

 return result

class MyApp2(tk.Tk):

 def __init__(self, dateandtime):

 tk.Tk.__init__(self)

 # configure grid columns

 self.columnconfigure(0, pad=3)

 self.columnconfigure(1, pad=3)

 # configure grid rows

 self.rowconfigure(0, pad=3)

 self.rowconfigure(1, pad=3)

 self.rowconfigure(2, pad=3)

 self.rowconfigure(3, pad=3)

 self.rowconfigure(4, pad=3)

 self.rowconfigure(5, pad=3)

 self.rowconfigure(6, pad=3)

 self.rowconfigure(7, pad=3)

 self.rowconfigure(8, pad=3)

 self.rowconfigure(9, pad=3)

 self.rowconfigure(10, pad=3)

 # Topic

 self.label7 = tk.Label(self, text="Topic", font="Verdana 14

bold")

 self.label7.grid(row=0, column=0, sticky=E + W)

 # Topic Attributes

 self.label8 = tk.Label(self, text="Topic Attributes",

font="Verdana 10 italic")

 self.label8.grid(row=1, column=0, sticky=E + W)

 # TopicStatus

116

 self.label10 = tk.Label(self, text="TopicStatus: ")

 self.label10.grid(row=2, column=0, sticky=W)

 self.entry5 = tk.Spinbox(self, value=("Active", "Resolved",

"Closed"))

 self.entry5.grid(row=2, column=1)

 # Blank line

 self.label6 = tk.Label(self, text="")

 self.label6.grid(row=3, column=0, sticky=E + W)

 # Comment

 self.label31 = tk.Label(self, text="Comment", font="Verdana 14

bold")

 self.label31.grid(row=4, column=0, sticky=E + W)

 # Comment elements

 self.label32 = tk.Label(self, text="Comment Elements",

font="Verdana 10 italic")

 self.label32.grid(row=5, column=0, sticky=E + W)

 # Comment date

 self.label33 = tk.Label(self, text="Comment date: ")

 self.label33.grid(row=6, column=0, sticky=W)

 self.filedate = tk.StringVar()

 self.filedate.set(dateandtime)

 self.entry23 = tk.Entry(self, textvariable=self.filedate)

 self.entry23.grid(row=6, column=1)

 # Author

 self.label34 = tk.Label(self, text="Author: ")

 self.label34.grid(row=7, column=0, sticky=W)

 self.entry24 = tk.Entry(self)

 self.entry24.grid(row=7, column=1)

 # Comment of comment

 self.label35 = tk.Label(self, text="Comment: ")

 self.label35.grid(row=8, column=0, sticky=W)

 self.entry25 = tk.Entry(self)

 self.entry25.grid(row=8, column=1)

 # blank line

 self.label38 = tk.Label(self, text="")

 self.label38.grid(row=9, column=0, sticky=E + W)

 # Close button

 close_button = tk.Button(self, text="Accept and close",

command=self.close)

 close_button.grid(row=10, column=1, sticky=E)

 def close(self):

 # First all entry values are added to a list

 global result

 result = []

 result.append(self.entry5.get())

 result.append(self.entry23.get())

117

 result.append(self.entry24.get())

 result.append(self.entry25.get())

 # show confirmation message

 tkMessageBox.showinfo("Message", "RDF file uploaded

successfully")

 # close UI

 self.destroy()

 def mainloop(self):

 tk.Tk.mainloop(self)

 return result

class MyApp3(tk.Tk):

 def __init__(self, dateandtime):

 tk.Tk.__init__(self)

 # configure grid columns

 self.columnconfigure(0, pad=3)

 self.columnconfigure(1, pad=3)

 # configure grid rows

 self.rowconfigure(0, pad=3)

 self.rowconfigure(1, pad=3)

 self.rowconfigure(2, pad=3)

 self.rowconfigure(3, pad=3)

 self.rowconfigure(4, pad=3)

 self.rowconfigure(5, pad=3)

 self.rowconfigure(6, pad=3)

 self.rowconfigure(7, pad=3)

 self.rowconfigure(8, pad=3)

 self.rowconfigure(9, pad=3)

 self.rowconfigure(10, pad=3)

 self.rowconfigure(11, pad=3)

 self.rowconfigure(12, pad=3)

 # Topic

 self.label7 = tk.Label(self, text="Topic", font="Verdana 14

bold")

 self.label7.grid(row=0, column=0, sticky=E + W)

 # Topic Attributes

 self.label8 = tk.Label(self, text="Topic Attributes",

font="Verdana 10 italic")

 self.label8.grid(row=1, column=0, sticky=E + W)

 # TopicStatus

 self.label10 = tk.Label(self, text="TopicStatus: ")

 self.label10.grid(row=2, column=0, sticky=W)

 self.entry5 = tk.Spinbox(self, value=("Closed"))

 self.entry5.grid(row=2, column=1)

 # Topic Elements

 self.label11 = tk.Label(self, text="Topic Elements",

font="Verdana 10 italic")

 self.label11.grid(row=3, column=0, sticky=E + W)

 # Creation Date

 self.label17 = tk.Label(self, text="Creation Date: ")

118

 self.label17.grid(row=4, column=0, sticky=W)

 self.filedate = tk.StringVar()

 self.filedate.set(dateandtime)

 self.entry11 = tk.Entry(self, textvariable=self.filedate)

 self.entry11.grid(row=4, column=1)

 # Creation Author

 self.label18 = tk.Label(self, text="Creation Author: ")

 self.label18.grid(row=5, column=0, sticky=W)

 self.entry12 = tk.Entry(self)

 self.entry12.grid(row=5, column=1)

 # Stage

 self.label23 = tk.Label(self, text="Stage: ")

 self.label23.grid(row=6, column=0, sticky=W)

 self.entry17 = tk.Entry(self)

 self.entry17.grid(row=6, column=1)

 # blank line

 self.label38 = tk.Label(self, text="")

 self.label38.grid(row=7, column=0, sticky=E + W)

 # Comment

 self.label31 = tk.Label(self, text="Comment", font="Verdana 14

bold")

 self.label31.grid(row=8, column=0, sticky=E + W)

 # Comment elements

 self.label32 = tk.Label(self, text="Comment Elements",

font="Verdana 10 italic")

 self.label32.grid(row=9, column=0, sticky=E + W)

 # Comment of comment

 self.label35 = tk.Label(self, text="Comment: ")

 self.label35.grid(row=10, column=0, sticky=W)

 self.entry25 = tk.Entry(self)

 self.entry25.grid(row=10, column=1)

 # blank line

 self.label39 = tk.Label(self, text="")

 self.label39.grid(row=11, column=0, sticky=E + W)

 # Close button

 close_button = tk.Button(self, text="Accept and close",

command=self.close)

 close_button.grid(row=12, column=1, sticky=E)

 def close(self):

 # First all entry values are added to a list

 global result

 result = []

 result.append(self.entry5.get())

 result.append(self.entry11.get())

 result.append(self.entry12.get())

 result.append(self.entry17.get())

119

 result.append(self.entry25.get())

 # show confirmation message

 tkMessageBox.showinfo("Message", "RDF file uploaded

successfully")

 # close UI

 self.destroy()

 def mainloop(self):

 tk.Tk.mainloop(self)

 return result

class MyApp4(tk.Tk):

 def __init__(self):

 tk.Tk.__init__(self)

 #configure grid columns

 self.columnconfigure(0, pad=3)

 self.columnconfigure(1, pad=3)

 #configure grid rows

 self.rowconfigure(0, pad=3)

 self.rowconfigure(1, pad=3)

 self.rowconfigure(2, pad=3)

 self.rowconfigure(3, pad=3)

 self.rowconfigure(4, pad=3)

 self.label1 = tk.Label(self, text="Assigned To", font="Verdana

14 bold")

 self.label1.grid(row=0, column=0)

 self.label2 = tk.Label(self, text="Assign a person",

font="Verdana 10 italic")

 self.label2.grid(row=1, column=0)

 self.label3 = tk.Label(self, text="Assigned to: ")

 self.label3.grid(row=2, column=0)

 self.entry = tk.Entry(self)

 self.entry.grid(row=2,column=1)

 self.label4 = tk.Label(self, text="")

 self.label4.grid(row=3, column=0)

 close_button = tk.Button(self, text="Accept and close",

command=self.close)

 close_button.grid(row=4,column=1)

 self.string = ""

 def close(self):

 global result

 self.string = self.entry.get()

 self.destroy()

 def mainloop(self):

 tk.Tk.mainloop(self)

 return self.string

Main class of the Graphical User Interface

120

class Main(QtGui.QMainWindow):

 def __init__(self, parent=None):

 self.parent = parent

 QtGui.QMainWindow.__init__(self)

 # Instantiating the tabs

 global filename

 global bcffilename

 self.filename = None

 self.bcffilename = None

 self.tabs = QtGui.QTabWidget()

 self.setCentralWidget(self.tabs)

 self.viewer_tab = QtGui.QWidget()

 self.tabs.addTab(self.viewer_tab, "3D Viewer")

 self.compatibility_tab = QtGui.QWidget()

 self.tabs.addTab(self.compatibility_tab, "Backwards and

external compatibility")

 # Implementing the OCC viewer

 self.canvas = ProductViewer(self)

 self.setGeometry(375, 25, 800, 550)

 self.setWindowTitle("Application BCF & RDF")

 # Calling both the tabs

 self.tab_3dview()

 self.tab_compatibility()

 def tab_3dview(self):

 # Initializing a split-view layout

 self.propertybox = QtGui.QTextBrowser()

 font = QtGui.QFont("Arial", 10, QtGui.QFont.Bold, True)

 sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed,

QtGui.QSizePolicy.MinimumExpanding)

 self.propertybox.setFont(font)

 self.propertybox.setSizePolicy(sizePolicy)

 # self.componentbox = QtGui.QListWidget()

 # self.componentbox.setFont(font)

 # self.componentbox.setSizePolicy(sizePolicy)

 self.propertybox2 = QtGui.QTextBrowser()

 self.propertybox2.setFont(font)

 self.propertybox2.setSizePolicy(sizePolicy)

 # item = QtGui.QListWidgetItem()

 # self.componentbox.addItem(item)

 # Define a widget for the 3D viewer

 center = QtGui.QWidget()

 # Define and set layout

 mainLayout = QtGui.QHBoxLayout(center)

 viewer_hbox = QtGui.QHBoxLayout()

 viewer_vbox = QtGui.QVBoxLayout()

 #Buttons

 createbcf_btn = QtGui.QPushButton("Create new BCF / RDF",

121

self)

 createbcf_btn.clicked.connect(self.create_BCF_RDF)

 viewer_open_ifc_btn = QtGui.QPushButton("Open IFC file", self)

 viewer_open_ifc_btn.clicked.connect(self.open_ifc_file)

 query_show_comments_btn = QtGui.QPushButton("Check object

status", self)

query_show_comments_btn.clicked.connect(self.query_getComments)

 view_selected_object_only_btn = QtGui.QPushButton("Show

selected object only", self)

view_selected_object_only_btn.clicked.connect(self.view_selected_objec

t_only)

 hide_selected_object_btn = QtGui.QPushButton("Hide selected

object", self)

hide_selected_object_btn.clicked.connect(self.hide_selected_object)

 view_model_objects_btn = QtGui.QPushButton("Show all model

objects", self)

 view_model_objects_btn.clicked.connect(self.view_model)

 show_closed_objects_btn = QtGui.QPushButton("Show closed

objects", self)

show_closed_objects_btn.clicked.connect(self.show_closed_objects)

 show_notclosed_objects_btn = QtGui.QPushButton("Show open

objects", self)

show_notclosed_objects_btn.clicked.connect(self.show_notclosed_objects

)

 show_assigned_objects_btn = QtGui.QPushButton("Show assigned

objects", self)

show_assigned_objects_btn.clicked.connect(self.show_assigned_objects)

 mark_as_closed_btn = QtGui.QPushButton("Mark as closed", self)

 mark_as_closed_btn.clicked.connect(self.mark_as_closed)

 query_get_attached_files_btn = QtGui.QPushButton("Show files

attached", self)

query_get_attached_files_btn.clicked.connect(self.query_getAttachedFil

es)

 splitter = QtGui.QSplitter(QtCore.Qt.Horizontal)

 splitterH = QtGui.QSplitter(QtCore.Qt.Vertical)

 splitter.addWidget(self.canvas)

 splitter.addWidget(splitterH)

 splitterH.addWidget(view_selected_object_only_btn)

 splitterH.addWidget(hide_selected_object_btn)

 splitterH.addWidget(view_model_objects_btn)

122

 splitterH.addWidget(self.propertybox)

 # splitterH.addWidget(self.componentbox)

 splitterH.addWidget(query_get_attached_files_btn)

 splitterH.addWidget(self.propertybox2)

 viewer_vbox.addWidget(splitter)

 viewer_vbox.addLayout(viewer_hbox)

 self.viewer_tab.setLayout(viewer_vbox)

 viewer_hbox.addWidget(viewer_open_ifc_btn)

 viewer_hbox.addWidget(createbcf_btn)

 viewer_hbox.addWidget(query_show_comments_btn)

 viewer_hbox.addWidget(show_closed_objects_btn)

 viewer_hbox.addWidget(show_notclosed_objects_btn)

 viewer_hbox.addWidget(show_assigned_objects_btn)

 viewer_hbox.addWidget(mark_as_closed_btn)

 def open_ifc_file(self, filename=None):

 self.filename = QtGui.QFileDialog.getOpenFileName(self, 'Open

file', ".", "Industry Foundation Classes(*.ifc)")

 if self.filename:

 self.parent.display.EraseAll()

 self.propertybox.clear()

 self.parse_ifc(self.filename)

 def parse_ifc(self, filename):

 self.created_shapes = {}

 self.ifc_file = ifcopenshell.open(filename)

 rooms = self.ifc_file.by_type("IfcBuildingElement")

 for room in rooms:

 if room.Representation:

 ifcgeom = ifcopenshell.geom.create_shape(settings,

room).geometry

 shp = self.canvas.Show(room.GlobalId, ifcgeom, None)

 print "IFC file successfully loaded!"

 return self.ifc_file

 def view_selected_object_only(self):

 rooms = self.ifc_file.by_type("IfcBuildingElement")

 for room in rooms:

 if room.Representation:

 self.canvas.Hide(room.GlobalId)

 self.canvas.Show2(guid_selection)

 def hide_selected_object(self):

 self.canvas.Hide(guid_selection)

 def view_model(self):

 rooms = self.ifc_file.by_type("IfcBuildingElement")

 for room in rooms:

 if room.Representation:

 self.canvas.Show2(room.GlobalId)

 def create_BCF_RDF(self):

 dateandtime = datetime.datetime.now().strftime("%Y-%m-%d

%H:%M:%S")

 if not self.filename:

 QtGui.QMessageBox.warning(self,

 "No IFC loaded!",

123

 "Please load a model first!")

 return

 if guid_selection == None:

 QtGui.QMessageBox.warning(self, "Select element first!",

"Please select the element that you want to create the BCF for")

 return

 product = self.ifc_file.by_type("IfcProject")

 pguid = product[0].GlobalId

 ifcfilename = os.path.basename(str(self.filename))

 ifcfilelocation = self.filename

 # Guids

 y = uuid.uuid4()

 z = uuid.uuid4()

 # Uploading referenced document to FTP

 def ftp_filelocation():

 localfile = result[20]

 if localfile == "":

 print "No file attached"

 else:

 host = 'sparql.verhoeven-leenders.nl'

 # host = '192.168.5.2'

 username = 'Francisco'

 password = 'Fran123'

 remotefile = '/Referenced Documents'

 ftp = FTP()

 ftp.set_debuglevel(2)

 ftp.connect(host, 2121)

 ftp.login(username, password)

 ftp.cwd(remotefile)

 fp = open(localfile, 'rb')

 ftp.storbinary('STOR %s' %

os.path.basename(localfile), fp, 2121)

 fp.close()

 print "after upload " + localfile + " to " +

remotefile

 reffile = os.path.basename(str(file_path))

 ftpfilelocation = 'ftp://Francisco@sparql.verhoeven-

leenders.nl:2121/Referenced%20Documents/' + str(reffile)

 # ftpfilelocation =

'ftp://Francisco@192.168.5.2:2121/Referenced%20Documents/' +

str(reffile)

 ftp.quit()

 return ftpfilelocation

 def next_context_name():

 repository2 = 'V17001Fran'

 graph2 = 'file://C:/fakepath/RDFtest%d.rdf'

 params2 = {'context': '<' + graph2 + '>'}

 # endpoint2 = "http://192.168.5.2/repositories/%s/rdf-

graphs?%s" % (repository2, urllib.urlencode(params2))

124

 endpoint2 = "http://sparql.verhoeven-

leenders.nl/repositories/%s/rdf-graphs?%s" % (repository2,

urllib.urlencode(params2))

 (response, content) = httplib2.Http().request(endpoint2)

 return graph2 % content.count('\n')

 def next_file_name():

 result2 = []

 markup = 'http://example.org/data#Markup%d'

 header = 'http://example.org/data#Header%d'

 file = 'http://example.org/data#File%d'

 topic = 'http://example.org/data#Topic%d'

 bimsnippet = 'http://example.org/data#BimSnippet%d'

 documentreference =

'http://example.org/data#DocumentReference%d'

 relatedtopic = 'http://example.org/data#RelatedTopic%d'

 comment = 'http://example.org/data#Comment%d'

 viewpoint = 'http://example.org/data#Viewpoint%d'

 viewpoints = 'http://example.org/data#Viewpoints%d'

 repository2 = 'V17001Fran'

 graph2 = 'file://C:/fakepath/RDFtest%d.rdf'

 params2 = {'context': '<' + graph2 + '>'}

 # endpoint2 = "http://192.168.5.2/repositories/%s/rdf-

graphs?%s" % (repository2, urllib.urlencode(params2))

 endpoint2 = "http://sparql.verhoeven-

leenders.nl/repositories/%s/rdf-graphs?%s" % (repository2,

urllib.urlencode(params2))

 (response, content) = httplib2.Http().request(endpoint2)

 r1 = markup % content.count('\n')

 r2 = header % content.count('\n')

 r3 = file % content.count('\n')

 r4 = topic % content.count('\n')

 r5 = bimsnippet % content.count('\n')

 r6 = documentreference % content.count('\n')

 r7 = relatedtopic % content.count('\n')

 r8 = comment % content.count('\n')

 r9 = viewpoint % content.count('\n')

 r10 = viewpoints % content.count('\n')

 result2.append(r1)

 result2.append(r2)

 result2.append(r3)

 result2.append(r4)

 result2.append(r5)

 result2.append(r6)

 result2.append(r7)

 result2.append(r8)

 result2.append(r9)

 result2.append(r10)

 return result2

 def create_RDF_graph():

 g = Graph()

 # Namespaces

 fbf = Namespace("http://example.org/bcfschema#")

 # fbfd = Namespace("http://example.org/data#")

125

 g.namespace_manager.bind('fbf', fbf)

 # Classes

 markup = URIRef(next_file_name()[0])

 header = URIRef(next_file_name()[1])

 file = URIRef(next_file_name()[2])

 topic = URIRef(next_file_name()[3])

 bimsnippet = URIRef(next_file_name()[4])

 documentreference = URIRef(next_file_name()[5])

 relatedtopic = URIRef(next_file_name()[6])

 comment = URIRef(next_file_name()[7])

 viewpoint = URIRef(next_file_name()[8])

 viewpoints = URIRef(next_file_name()[9])

 # Properties

 # Hierarchy properties

 containsheader = URIRef(fbf.containsHeader)

 containsfile = URIRef(fbf.containsFile)

 containstopic = URIRef(fbf.containsTopic)

 containscomment = URIRef(fbf.containsComment)

 containsviewpoints = URIRef(fbf.containsViewpoints)

 containsbimsnippet = URIRef(fbf.containsBimSnippet)

 containsdocumentreference =

URIRef(fbf.containsDocumentReference)

 containsrelatedtopic = URIRef(fbf.containsRelatedTopic)

 containsviewpoint = URIRef(fbf.containsViewpoint)

 # File properties

 hasfilename = URIRef(fbf.hasFileName)

 hasfiledate = URIRef(fbf.hasFileDate)

 hasfilereference = URIRef(fbf.hasFileReference)

 hasifcproject = URIRef(fbf.hasIfcProject)

 hasifcspatialstructureelement =

URIRef(fbf.hasIfcSpatialStructureElement)

 hasfileisexternal = URIRef(fbf.hasFileIsExternal)

 # TopicProperties

 hastopicguid = URIRef(fbf.hasTopicGuid)

 hastopictype = URIRef(fbf.hasTopicType)

 hastopicstatus = URIRef(fbf.hasTopicStatus)

 hasreferencelink = URIRef(fbf.hasReferenceLink)

 hastitle = URIRef(fbf.hasTitle)

 haspriority = URIRef(fbf.hasPriority)

 hastopicindex = URIRef(fbf.hasTopicIndex)

 haslabels = URIRef(fbf.hasLabels)

 hascreationdate = URIRef(fbf.hasCreationDate)

 hascreationauthor = URIRef(fbf.hasCreationAuthor)

 hasmodifieddate = URIRef(fbf.hasModifiedDate)

 hasmodifiedauthor = URIRef(fbf.hasModifiedAuthor)

 hasduedate = URIRef(fbf.hasDueDate)

 hasassignedto = URIRef(fbf.hasAssignedTo)

 hasstage = URIRef(fbf.hasStage)

 hastopicdescription = URIRef(fbf.hasTopicDescription)

 # BimSnippet properties

 hasbimsnippetreference =

URIRef(fbf.hasBimSnippetReference)

 hasreferenceschema = URIRef(fbf.hasReferenceSchema)

 hasbimsnippetisexternal =

URIRef(fbf.hasBimSnippetIsExternal)

126

 hassnippettype = URIRef(fbf.hasSnippetType)

 # DocumentReference properties

 hasreferenceddocument = URIRef(fbf.hasReferencedDocument)

 hasdocumentdescription =

URIRef(fbf.hasDocumentReferenceDescription)

 hasdocumentguid = URIRef(fbf.hasDocumentReferenceGuid)

 hasdocumentisexternal =

URIRef(fbf.hasDocumentReferenceIsExternal)

 # RelatedTopic properties

 hasrelatedtopicguid = URIRef(fbf.hasRelatedTopicGuid)

 # Comment properties

 hascommentguid = URIRef(fbf.hasCommentGuid)

 hascommentdate = URIRef(fbf.hasCommentDate)

 hasauthor = URIRef(fbf.hasAuthor)

 hascomment = URIRef(fbf.hasComment)

 hascommentmoddate = URIRef(fbf.hasCommentModifiedDate)

 hascommentmodauthor = URIRef(fbf.hasCommentModifiedAuthor)

 # Viewpoint properties

 hascommentviewpoinguid = URIRef(fbf.hasViewpointGuid)

 # Viewpoints properties

 hasviewpointsguid = URIRef(fbf.hasViewpointsGuid)

 hasviewpoint = URIRef(fbf.hasViewpoint)

 hassnapshot = URIRef(fbf.hasSnapshot)

 hasviewpointsindex = URIRef(fbf.hasViewpointsIndex)

 # Triples

 # Markuptriples

 g.add((markup, RDF.type, fbf.Markup))

 g.add((markup, containsheader, header))

 g.add((markup, containstopic, topic))

 g.add((markup, containscomment, comment))

 g.add((markup, containsviewpoints, viewpoints))

 # Headertriples

 g.add((header, RDF.type, fbf.Header))

 g.add((header, containsfile, file))

 # Filetriples

 g.add((file, RDF.type, fbf.File))

 g.add((file, hasfilename, Literal(result[0],

datatype=XSD.string)))

 g.add((file, hasfiledate, Literal(result[1],

datatype=XSD.dateTime)))

 g.add((file, hasfilereference, Literal(result[2],

datatype=XSD.string)))

 g.add((file, hasifcproject, Literal(pguid,

datatype=XSD.string)))

 g.add((file, hasifcspatialstructureelement,

Literal('IfcGuid2', datatype=XSD.string)))

 g.add((file, hasfileisexternal, Literal('True',

datatype=XSD.boolean)))

 # Topictriples

 g.add((topic, RDF.type, fbf.Topic))

 g.add((topic, containsbimsnippet, bimsnippet))

127

 g.add((topic, containsdocumentreference,

documentreference))

 g.add((topic, containsrelatedtopic, relatedtopic))

 g.add((topic, hastopicguid, Literal(guid_selection,

datatype=XSD.string)))

 g.add((topic, hastopictype, Literal(result[3],

datatype=XSD.string)))

 g.add((topic, hastopicstatus, Literal(result[4],

datatype=XSD.string)))

 g.add((topic, hasreferencelink, Literal(result[5],

datatype=XSD.string)))

 g.add((topic, hastitle, Literal(result[6],

datatype=XSD.string)))

 g.add((topic, haspriority, Literal(result[7],

datatype=XSD.string)))

 g.add((topic, hastopicindex, Literal(result[8])))

 g.add((topic, haslabels, Literal(result[9],

datatype=XSD.string)))

 g.add((topic, hascreationdate, Literal(result[10],

datatype=XSD.dateTime)))

 g.add((topic, hascreationauthor, Literal(result[11],

datatype=XSD.string)))

 g.add((topic, hasmodifieddate, Literal(result[12])))

 g.add((topic, hasmodifiedauthor, Literal(result[13],

datatype=XSD.string)))

 g.add((topic, hasduedate, Literal(result[14])))

 g.add((topic, hasassignedto, Literal(result[15],

datatype=XSD.string)))

 g.add((topic, hasstage, Literal(result[16],

datatype=XSD.string)))

 g.add((topic, hastopicdescription, Literal(result[17],

datatype=XSD.string)))

 # BimSnippet triples

 g.add((bimsnippet, RDF.type, fbf.BimSnippet))

 g.add((bimsnippet, hasbimsnippetreference,

Literal(result[18], datatype=XSD.string)))

 g.add((bimsnippet, hasreferenceschema, Literal(result[19],

datatype=XSD.string)))

 g.add((bimsnippet, hasbimsnippetisexternal,

Literal('True', datatype=XSD.boolean)))

 g.add((bimsnippet, hassnippettype, Literal('SnippetType',

datatype=XSD.string)))

 # DocumentReference triples

 g.add((documentreference, RDF.type,

fbf.DocumentReference))

 g.add((documentreference, hasreferenceddocument,

Literal(ftp_filelocation())))

 g.add((documentreference, hasdocumentdescription,

Literal(result[21], datatype=XSD.string)))

 g.add((documentreference, hasdocumentguid,

Literal('Document Guid', datatype=XSD.string)))

 g.add((documentreference, hasdocumentisexternal,

Literal('True', datatype=XSD.boolean)))

 # RelatedTopic triples

 g.add((relatedtopic, RDF.type, fbf.RelatedTopic))

 g.add((relatedtopic, hasrelatedtopicguid,

Literal('RelatedTopicGuid', datatype=XSD.string)))

128

 # Comment triples

 g.add((comment, RDF.type, fbf.Comment))

 g.add((comment, containsviewpoint, viewpoint))

 g.add((comment, hascommentguid, Literal(y,

datatype=XSD.string)))

 g.add((comment, hascommentdate, Literal(result[22],

datatype=XSD.dateTime)))

 g.add((comment, hasauthor, Literal(result[23],

datatype=XSD.string)))

 g.add((comment, hascomment, Literal(result[24],

datatype=XSD.string)))

 g.add((comment, hascommentmoddate, Literal(result[25])))

 g.add((comment, hascommentmodauthor, Literal(result[26],

datatype=XSD.string)))

 # Viewpoint triples

 g.add((viewpoint, RDF.type, fbf.Viewpoint))

 g.add((viewpoint, hascommentviewpoinguid, Literal(z,

datatype=XSD.string)))

 # Viewpoints triples

 g.add((viewpoints, RDF.type, fbf.Viewpoints))

 g.add((viewpoints, hasviewpointsguid, Literal(z,

datatype=XSD.string)))

 g.add((viewpoints, hasviewpoint, Literal(result[27],

datatype=XSD.string)))

 g.add((viewpoints, hassnapshot, Literal(result[28],

datatype=XSD.string)))

 g.add((viewpoints, hasviewpointsindex,

Literal(result[29])))

 # Creating the file

 rdfdata = g.serialize(format='pretty-xml')

 # Uploading data to the repository

 repository = 'V17001Fran'

 # graph = 'file://C:/fakepath/RDFtest1.rdf'

 graph = next_context_name()

 params = {'context': '<' + graph + '>'}

 print params

 # endpoint =

"http://192.168.5.2/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 endpoint = "http://sparql.verhoeven-

leenders.nl/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 data = rdfdata

 (response, content) = httplib2.Http().request(endpoint,

'PUT', body=data, headers={'content-type': 'application/rdf+xml'})

 print "Response %s" % response.status

 def context_number():

 q = """

PREFIX fbf:<http://example.org/bcfschema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX fbfd: <http://example.org/data#>

SELECT ?Markup ?c ?Date ?Comment

WHERE {

 ?Markup fbf:containsTopic ?b.

129

 ?b fbf:hasTopicGuid "%s".

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

}

ORDER BY ?Date""" % guid_selection

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 for i in range(4):

 mylist.remove(mylist[0])

 textandnumber = mylist[0]

 contextnumber =

textandnumber.replace("http://example.org/data#Markup","")

 return contextnumber

 def sub_comment():

 q = """

PREFIX fbf:<http://example.org/bcfschema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX fbfd: <http://example.org/data#>

SELECT ?c

WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

}

ORDER BY ?Date""" % guid_selection

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 numberofcomments = len(mylist)-2

 return numberofcomments

 def create_RDF_graph2():

 graph1 = ConjunctiveGraph()

 graph2 = ConjunctiveGraph()

 # Namespaces

 fbf = Namespace("http://example.org/bcfschema#")

130

 fbfd = Namespace("http://example.org/data#")

 graph2.namespace_manager.bind('fbf', fbf)

 graph2.namespace_manager.bind('fbfd', fbfd)

 # Classes

 markup = URIRef("http://example.org/data#Markup%s") %

context_number()

 topic = URIRef("http://example.org/data#Topic%s") %

context_number()

 comment = URIRef("http://example.org/data#Comment%s_%d") %

(context_number(), sub_comment())

 # Properties

 # Hierarchy

 containscomment = URIRef(fbf.containsComment)

 # TopicProperties

 hastopicstatus = URIRef(fbf.hasTopicStatus)

 # Comment properties

 hascommentguid = URIRef(fbf.hasCommentGuid)

 hascommentdate = URIRef(fbf.hasCommentDate)

 hasauthor = URIRef(fbf.hasAuthor)

 hascomment = URIRef(fbf.hasComment)

 # Triples

 # Markuptriples

 graph2.add((markup, containscomment, comment))

 # Topictriples

 graph2.add((topic, hastopicstatus, Literal(result[0],

datatype=XSD.string)))

 # Comment triples

 graph2.add((comment, RDF.type, fbf.Comment))

 graph2.add((comment, hascommentguid, Literal(y,

datatype=XSD.string)))

 graph2.add((comment, hascommentdate, Literal(result[1],

datatype=XSD.dateTime)))

 graph2.add((comment, hasauthor, Literal(result[2],

datatype=XSD.string)))

 graph2.add((comment, hascomment, Literal(result[3],

datatype=XSD.string)))

 repository = 'V17001Fran'

 graph = 'file://C:/fakepath/RDFtest%s.rdf' %

context_number()

 params = {'context': '<' + graph + '>'}

 endpoint = "http://sparql.verhoeven-

leenders.nl/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 # endpoint =

"http://192.168.5.2/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 graph1.parse(endpoint)

 graph1.remove((None, fbf.hasTopicStatus, None))

 graph3 = graph1 + graph2

 rdfdata = graph3.serialize(format='pretty-xml')

 data = rdfdata

131

 (response, content) = httplib2.Http().request(endpoint,

'PUT', body=data, headers={'content-type': 'application/rdf+xml'})

 print "Response %s" % response.status

 q = """

PREFIX fbf:<http://example.org/bcfschema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX fbfd: <http://example.org/data#>

SELECT ?Markup ?Date ?Comment

WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

}

ORDER BY ?Date""" % guid_selection

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 a = len(mylist)

 if a == 4:

 app = MyApp(ifcfilename, ifcfilelocation, dateandtime)

 result = app.mainloop()

 create_RDF_graph()

 else:

 app = MyApp2(dateandtime)

 result = app.mainloop()

 create_RDF_graph2()

 def query_getComments(self):

 if not self.filename:

 QtGui.QMessageBox.warning(self,

 "No IFC loaded!",

 "Please load a model first!")

 return

 q = """

PREFIX fbf:<http://example.org/bcfschema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX fbfd: <http://example.org/data#>

SELECT ?Date ?Comment ?Status

WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?b fbf:hasTopicStatus ?Status.

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

}

ORDER BY ?Date""" % guid_selection

132

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 numberofresults = results.count("\r\n")

 if numberofresults == 1:

 self.propertybox.clear()

 self.propertybox2.clear()

 self.propertybox.append("There is no BCF information")

 else:

 self.propertybox.clear()

 self.propertybox2.clear()

 self.propertybox.append(results)

 def query_getAttachedFiles(self):

 if not self.filename:

 QtGui.QMessageBox.warning(self,

 "No IFC loaded!",

 "Please load a model first!")

 return

 q = """

PREFIX fbf:<http://example.org/bcfschema#>

SELECT ?ReferencedDocument

WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?b fbf:containsDocumentReference ?d.

 ?d fbf:hasReferencedDocument ?ReferencedDocument.

}""" % guid_selection

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 print results

 numberofresults = results.count("\r\n")

 print numberofresults

 mylist = re.split(",|\r\n", results)

 print mylist

 if numberofresults == 1:

 self.propertybox2.clear()

 self.propertybox2.append("There is no file attached")

 else:

 if mylist[-2] == ("None" or ''):

 self.propertybox2.clear()

 self.propertybox2.append("There is no file attached")

 else:

133

 self.propertybox2.clear()

 self.propertybox2.append(results)

 def show_notclosed_objects(self):

 if not self.filename:

 QtGui.QMessageBox.warning(self,

 "No IFC loaded!",

 "Please load a model first!")

 return

 rooms = self.ifc_file.by_type("IfcBuildingElement")

 for room in rooms:

 q = """

 PREFIX fbf:<http://example.org/bcfschema#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 PREFIX fbfd: <http://example.org/data#>

 SELECT ?Status

 WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?b fbf:hasTopicStatus ?Status.

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasCommentDate ?Date.

 }

 ORDER BY ?Date""" % room.GlobalId

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = results.split("\r\n")

 a = len(mylist)-2

 b = len(mylist)

 if mylist[a] == "Active":

 if room.Representation:

 self.canvas.ColorasActive(room.GlobalId)

 else:

 if b == 2:

 if room.Representation:

 self.canvas.ColorasNoCheck(room.GlobalId)

 else:

 if mylist[a] == "Resolved":

 if room.Representation:

 self.canvas.ColorasResolved(room.GlobalId)

 else:

 if room.Representation:

 self.canvas.Hide(room.GlobalId)

 def show_closed_objects(self):

 if not self.filename:

 QtGui.QMessageBox.warning(self,

 "No IFC loaded!",

 "Please load a model first!")

 return

134

 rooms = self.ifc_file.by_type("IfcBuildingElement")

 for room in rooms:

 q = """

 PREFIX fbf:<http://example.org/bcfschema#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 PREFIX fbfd: <http://example.org/data#>

 SELECT ?Status

 WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?b fbf:hasTopicStatus ?Status.

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasCommentDate ?Date.

 }

 ORDER BY ?Date""" % room.GlobalId

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = results.split("\r\n")

 a = len(mylist)-2

 if mylist[a] == "Closed":

 if room.Representation:

 self.canvas.ColorasClosed(room.GlobalId)

 else:

 if room.Representation:

 self.canvas.Hide(room.GlobalId)

 def show_assigned_objects(self):

 name = self.show_assigned_objects2()

 if name == "":

 self.propertybox.append("No name has been introduced")

 else:

 rooms = self.ifc_file.by_type("IfcBuildingElement")

 for room in rooms:

 q = """

 PREFIX fbf:<http://example.org/bcfschema#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 PREFIX fbfd: <http://example.org/data#>

 SELECT ?Assigned ?Status

 WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?b fbf:hasAssignedTo ?Assigned.

 ?b fbf:hasTopicStatus ?Status.

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasCommentDate ?Date.

 }

 ORDER BY ?Date""" % room.GlobalId

 sparql = SPARQLWrapper("http://sparql.verhoeven-

135

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 c = len(mylist)-3

 if mylist[c] == name:

 print "It is assigned to %s" % name

 else:

 if room.Representation:

 self.canvas.Hide(room.GlobalId)

 def show_assigned_objects2(self):

 if not self.filename:

 QtGui.QMessageBox.warning(self,

 "No IFC loaded!",

 "Please load a model first!")

 return

 app = MyApp4()

 result = app.mainloop()

 return result

 def mark_as_closed(self):

 dateandtime = datetime.datetime.now().strftime("%Y-%m-%d

%H:%M:%S")

 if not self.filename:

 QtGui.QMessageBox.warning(self,

 "No IFC loaded!",

 "Please load a model first!")

 return

 if guid_selection == None:

 QtGui.QMessageBox.warning(self, "Select element first!",

 "Please select the element that

you want to create the BCF for")

 return

 product = self.ifc_file.by_type("IfcProject")

 pguid = product[0].GlobalId

 ifcfilename = os.path.basename(str(self.filename))

 ifcfilelocation = self.filename

 # Guids

 y = uuid.uuid4()

 def next_context_name():

 repository2 = 'V17001Fran'

 graph2 = 'file://C:/fakepath/RDFtest%d.rdf'

 params2 = {'context': '<' + graph2 + '>'}

 # endpoint2 = "http://192.168.5.2/repositories/%s/rdf-

graphs?%s" % (repository2, urllib.urlencode(params2))

 endpoint2 = "http://sparql.verhoeven-

136

leenders.nl/repositories/%s/rdf-graphs?%s" % (repository2,

urllib.urlencode(params2))

 (response, content) = httplib2.Http().request(endpoint2)

 return graph2 % content.count('\n')

 def next_file_name():

 result2 = []

 markup = 'http://example.org/data#Markup%d'

 header = 'http://example.org/data#Header%d'

 file = 'http://example.org/data#File%d'

 topic = 'http://example.org/data#Topic%d'

 bimsnippet = 'http://example.org/data#BimSnippet%d'

 documentreference =

'http://example.org/data#DocumentReference%d'

 relatedtopic = 'http://example.org/data#RelatedTopic%d'

 comment = 'http://example.org/data#Comment%d'

 viewpoint = 'http://example.org/data#Viewpoint%d'

 viewpoints = 'http://example.org/data#Viewpoints%d'

 repository2 = 'V17001Fran'

 graph2 = 'file://C:/fakepath/RDFtest%d.rdf'

 params2 = {'context': '<' + graph2 + '>'}

 # endpoint2 = "http://192.168.5.2/repositories/%s/rdf-

graphs?%s" % (repository2, urllib.urlencode(params2))

 endpoint2 = "http://sparql.verhoeven-

leenders.nl/repositories/%s/rdf-graphs?%s" % (repository2,

urllib.urlencode(params2))

 (response, content) = httplib2.Http().request(endpoint2)

 r1 = markup % content.count('\n')

 r2 = header % content.count('\n')

 r3 = file % content.count('\n')

 r4 = topic % content.count('\n')

 r5 = bimsnippet % content.count('\n')

 r6 = documentreference % content.count('\n')

 r7 = relatedtopic % content.count('\n')

 r8 = comment % content.count('\n')

 r9 = viewpoint % content.count('\n')

 r10 = viewpoints % content.count('\n')

 result2.append(r1)

 result2.append(r2)

 result2.append(r3)

 result2.append(r4)

 result2.append(r5)

 result2.append(r6)

 result2.append(r7)

 result2.append(r8)

 result2.append(r9)

 result2.append(r10)

 return result2

 def create_RDF_graph():

 g = Graph()

 # Namespaces

 fbf = Namespace("http://example.org/bcfschema#")

 # fbfd = Namespace("http://example.org/data#")

 g.namespace_manager.bind('fbf', fbf)

137

 # Classes

 markup = URIRef(next_file_name()[0])

 header = URIRef(next_file_name()[1])

 file = URIRef(next_file_name()[2])

 topic = URIRef(next_file_name()[3])

 bimsnippet = URIRef(next_file_name()[4])

 documentreference = URIRef(next_file_name()[5])

 relatedtopic = URIRef(next_file_name()[6])

 comment = URIRef(next_file_name()[7])

 viewpoint = URIRef(next_file_name()[8])

 viewpoints = URIRef(next_file_name()[9])

 # Properties

 # Hierarchy properties

 containsheader = URIRef(fbf.containsHeader)

 containsfile = URIRef(fbf.containsFile)

 containstopic = URIRef(fbf.containsTopic)

 containscomment = URIRef(fbf.containsComment)

 containsviewpoints = URIRef(fbf.containsViewpoints)

 containsbimsnippet = URIRef(fbf.containsBimSnippet)

 containsdocumentreference =

URIRef(fbf.containsDocumentReference)

 containsrelatedtopic = URIRef(fbf.containsRelatedTopic)

 containsviewpoint = URIRef(fbf.containsViewpoint)

 # File properties

 hasfilename = URIRef(fbf.hasFileName)

 hasfiledate = URIRef(fbf.hasFileDate)

 hasfilereference = URIRef(fbf.hasFileReference)

 hasifcproject = URIRef(fbf.hasIfcProject)

 hasifcspatialstructureelement =

URIRef(fbf.hasIfcSpatialStructureElement)

 hasfileisexternal = URIRef(fbf.hasFileIsExternal)

 # TopicProperties

 hastopicguid = URIRef(fbf.hasTopicGuid)

 hastopictype = URIRef(fbf.hasTopicType)

 hastopicstatus = URIRef(fbf.hasTopicStatus)

 hasreferencelink = URIRef(fbf.hasReferenceLink)

 hastitle = URIRef(fbf.hasTitle)

 haspriority = URIRef(fbf.hasPriority)

 hastopicindex = URIRef(fbf.hasTopicIndex)

 haslabels = URIRef(fbf.hasLabels)

 hascreationdate = URIRef(fbf.hasCreationDate)

 hascreationauthor = URIRef(fbf.hasCreationAuthor)

 hasmodifieddate = URIRef(fbf.hasModifiedDate)

 hasmodifiedauthor = URIRef(fbf.hasModifiedAuthor)

 hasduedate = URIRef(fbf.hasDueDate)

 hasassignedto = URIRef(fbf.hasAssignedTo)

 hasstage = URIRef(fbf.hasStage)

 hastopicdescription = URIRef(fbf.hasTopicDescription)

 # BimSnippet properties

 hasbimsnippetreference =

URIRef(fbf.hasBimSnippetReference)

 hasreferenceschema = URIRef(fbf.hasReferenceSchema)

 hasbimsnippetisexternal =

URIRef(fbf.hasBimSnippetIsExternal)

 hassnippettype = URIRef(fbf.hasSnippetType)

138

 # DocumentReference properties

 hasreferenceddocument = URIRef(fbf.hasReferencedDocument)

 hasdocumentdescription =

URIRef(fbf.hasDocumentReferenceDescription)

 hasdocumentguid = URIRef(fbf.hasDocumentReferenceGuid)

 hasdocumentisexternal =

URIRef(fbf.hasDocumentReferenceIsExternal)

 # RelatedTopic properties

 hasrelatedtopicguid = URIRef(fbf.hasRelatedTopicGuid)

 # Comment properties

 hascommentguid = URIRef(fbf.hasCommentGuid)

 hascommentdate = URIRef(fbf.hasCommentDate)

 hasauthor = URIRef(fbf.hasAuthor)

 hascomment = URIRef(fbf.hasComment)

 hascommentmoddate = URIRef(fbf.hasCommentModifiedDate)

 hascommentmodauthor = URIRef(fbf.hasCommentModifiedAuthor)

 # Viewpoint properties

 hascommentviewpoinguid = URIRef(fbf.hasViewpointGuid)

 # Viewpoints properties

 hasviewpointsguid = URIRef(fbf.hasViewpointsGuid)

 hasviewpoint = URIRef(fbf.hasViewpoint)

 hassnapshot = URIRef(fbf.hasSnapshot)

 hasviewpointsindex = URIRef(fbf.hasViewpointsIndex)

 # Triples

 # Markuptriples

 g.add((markup, RDF.type, fbf.Markup))

 g.add((markup, containsheader, header))

 g.add((markup, containstopic, topic))

 g.add((markup, containscomment, comment))

 g.add((markup, containsviewpoints, viewpoints))

 # Headertriples

 g.add((header, RDF.type, fbf.Header))

 g.add((header, containsfile, file))

 # Filetriples

 g.add((file, RDF.type, fbf.File))

 g.add((file, hasfilename, Literal(ifcfilename,

datatype=XSD.string)))

 g.add((file, hasfiledate, Literal(dateandtime,

datatype=XSD.dateTime)))

 g.add((file, hasfilereference, Literal(ifcfilelocation,

datatype=XSD.string)))

 g.add((file, hasifcproject, Literal(pguid,

datatype=XSD.string)))

 g.add((file, hasifcspatialstructureelement,

Literal('IfcGuid2', datatype=XSD.string)))

 g.add((file, hasfileisexternal, Literal('True',

datatype=XSD.boolean)))

 # Topictriples

 g.add((topic, RDF.type, fbf.Topic))

 g.add((topic, containsbimsnippet, bimsnippet))

 g.add((topic, containsdocumentreference,

139

documentreference))

 g.add((topic, containsrelatedtopic, relatedtopic))

 g.add((topic, hastopicguid, Literal(guid_selection,

datatype=XSD.string)))

 g.add((topic, hastopictype, Literal("Closure",

datatype=XSD.string)))

 g.add((topic, hastopicstatus, Literal(result[0],

datatype=XSD.string)))

 g.add((topic, hasreferencelink, Literal("",

datatype=XSD.string)))

 g.add((topic, hastitle, Literal("Closure",

datatype=XSD.string)))

 g.add((topic, haspriority, Literal("",

datatype=XSD.string)))

 g.add((topic, hastopicindex, Literal("")))

 g.add((topic, haslabels, Literal("",

datatype=XSD.string)))

 g.add((topic, hascreationdate, Literal(result[1],

datatype=XSD.dateTime)))

 g.add((topic, hascreationauthor, Literal(result[2],

datatype=XSD.string)))

 g.add((topic, hasmodifieddate, Literal("")))

 g.add((topic, hasmodifiedauthor, Literal("",

datatype=XSD.string)))

 g.add((topic, hasduedate, Literal("")))

 g.add((topic, hasassignedto, Literal("",

datatype=XSD.string)))

 g.add((topic, hasstage, Literal(result[3],

datatype=XSD.string)))

 g.add((topic, hastopicdescription, Literal("",

datatype=XSD.string)))

 # BimSnippet triples

 g.add((bimsnippet, RDF.type, fbf.BimSnippet))

 g.add((bimsnippet, hasbimsnippetreference, Literal("",

datatype=XSD.string)))

 g.add((bimsnippet, hasreferenceschema, Literal("",

datatype=XSD.string)))

 g.add((bimsnippet, hasbimsnippetisexternal, Literal("",

datatype=XSD.boolean)))

 g.add((bimsnippet, hassnippettype, Literal("",

datatype=XSD.string)))

 # DocumentReference triples

 g.add((documentreference, RDF.type,

fbf.DocumentReference))

 g.add((documentreference, hasreferenceddocument,

Literal("")))

 g.add((documentreference, hasdocumentdescription,

Literal("", datatype=XSD.string)))

 g.add((documentreference, hasdocumentguid, Literal("",

datatype=XSD.string)))

 g.add((documentreference, hasdocumentisexternal,

Literal("", datatype=XSD.boolean)))

 # RelatedTopic triples

 g.add((relatedtopic, RDF.type, fbf.RelatedTopic))

 g.add((relatedtopic, hasrelatedtopicguid, Literal("",

datatype=XSD.string)))

140

 # Comment triples

 g.add((comment, RDF.type, fbf.Comment))

 g.add((comment, containsviewpoint, viewpoint))

 g.add((comment, hascommentguid, Literal(y,

datatype=XSD.string)))

 g.add((comment, hascommentdate, Literal(result[1],

datatype=XSD.dateTime)))

 g.add((comment, hasauthor, Literal(result[2],

datatype=XSD.string)))

 g.add((comment, hascomment, Literal(result[4],

datatype=XSD.string)))

 g.add((comment, hascommentmoddate, Literal("")))

 g.add((comment, hascommentmodauthor, Literal("",

datatype=XSD.string)))

 # Viewpoint triples

 g.add((viewpoint, RDF.type, fbf.Viewpoint))

 g.add((viewpoint, hascommentviewpoinguid, Literal("",

datatype=XSD.string)))

 # Viewpoints triples

 g.add((viewpoints, RDF.type, fbf.Viewpoints))

 g.add((viewpoints, hasviewpointsguid, Literal("",

datatype=XSD.string)))

 g.add((viewpoints, hasviewpoint, Literal("",

datatype=XSD.string)))

 g.add((viewpoints, hassnapshot, Literal("",

datatype=XSD.string)))

 g.add((viewpoints, hasviewpointsindex, Literal("")))

 # Creating the file

 rdfdata = g.serialize(format='pretty-xml')

 # Uploading data to the repository

 repository = 'V17001Fran'

 # graph = 'file://C:/fakepath/RDFtest1.rdf'

 graph = next_context_name()

 params = {'context': '<' + graph + '>'}

 print params

 # endpoint =

"http://192.168.5.2/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 endpoint = "http://sparql.verhoeven-

leenders.nl/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 data = rdfdata

 (response, content) = httplib2.Http().request(endpoint,

'PUT', body=data, headers={'content-type': 'application/rdf+xml'})

 print "Response %s" % response.status

 def context_number():

 q = """

PREFIX fbf:<http://example.org/bcfschema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX fbfd: <http://example.org/data#>

SELECT ?Markup ?c ?Date ?Comment

WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?Markup fbf:containsComment ?c.

141

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

}

ORDER BY ?Date""" % guid_selection

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 for i in range(4):

 mylist.remove(mylist[0])

 textandnumber = mylist[0]

 contextnumber =

textandnumber.replace("http://example.org/data#Markup", "")

 return contextnumber

 def sub_comment():

 q = """

PREFIX fbf:<http://example.org/bcfschema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX fbfd: <http://example.org/data#>

SELECT ?Markup ?c ?Date ?Comment

WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

}

ORDER BY ?Date""" % guid_selection

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 number = mylist[-4]

 commentnumber =

number.replace("http://example.org/data#Comment", "")

 t = "%s_" % context_number()

 commentnumber2 = commentnumber.replace(t, "")

 commentnumber3 = int(commentnumber2)

 return commentnumber3 + 1

 def create_RDF_graph2():

 graph1 = ConjunctiveGraph()

142

 graph2 = ConjunctiveGraph()

 # Namespaces

 fbf = Namespace("http://example.org/bcfschema#")

 fbfd = Namespace("http://example.org/data#")

 graph2.namespace_manager.bind('fbf', fbf)

 graph2.namespace_manager.bind('fbfd', fbfd)

 # Classes

 markup = URIRef("http://example.org/data#Markup%s") %

context_number()

 topic = URIRef("http://example.org/data#Topic%s") %

context_number()

 comment = URIRef("http://example.org/data#Comment%s_%d") %

(context_number(), sub_comment())

 # Properties

 # Hierarchy

 containscomment = URIRef(fbf.containsComment)

 # TopicProperties

 hastopicstatus = URIRef(fbf.hasTopicStatus)

 # Comment properties

 hascommentguid = URIRef(fbf.hasCommentGuid)

 hascommentdate = URIRef(fbf.hasCommentDate)

 hasauthor = URIRef(fbf.hasAuthor)

 hascomment = URIRef(fbf.hasComment)

 # Triples

 # Markuptriples

 graph2.add((markup, containscomment, comment))

 # Topictriples

 graph2.add((topic, hastopicstatus, Literal(result[0],

datatype=XSD.string)))

 # Comment triples

 graph2.add((comment, RDF.type, fbf.Comment))

 graph2.add((comment, hascommentguid, Literal(y,

datatype=XSD.string)))

 graph2.add((comment, hascommentdate, Literal(result[1],

datatype=XSD.dateTime)))

 graph2.add((comment, hasauthor, Literal(result[2],

datatype=XSD.string)))

 graph2.add((comment, hascomment, Literal(result[3],

datatype=XSD.string)))

 repository = 'V17001Fran'

 graph = 'file://C:/fakepath/RDFtest%s.rdf' %

context_number()

 params = {'context': '<' + graph + '>'}

 endpoint = "http://sparql.verhoeven-

leenders.nl/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 # endpoint =

"http://192.168.5.2/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 graph1.parse(endpoint)

 graph1.remove((None, fbf.hasTopicStatus, None))

143

 graph3 = graph1 + graph2

 rdfdata = graph3.serialize(format='pretty-xml')

 data = rdfdata

 (response, content) = httplib2.Http().request(endpoint,

'PUT', body=data, headers={'content-type': 'application/rdf+xml'})

 print "Response %s" % response.status

 q = """

PREFIX fbf:<http://example.org/bcfschema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX fbfd: <http://example.org/data#>

SELECT ?Markup ?Date ?Comment

WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

}

ORDER BY ?Date""" % guid_selection

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 a = len(mylist)

 if a == 4:

 app = MyApp3(dateandtime)

 result = app.mainloop()

 create_RDF_graph()

 else:

 app = MyApp2(dateandtime)

 result = app.mainloop()

 create_RDF_graph2()

 def tab_compatibility(self):

 vbox = QtGui.QVBoxLayout()

 hbox = QtGui.QHBoxLayout()

 hbox2 = QtGui.QHBoxLayout()

 hbox3 = QtGui.QHBoxLayout()

 vbox2 = QtGui.QVBoxLayout()

 vbox3 = QtGui.QVBoxLayout()

 vbox.addLayout(hbox)

 vbox.addLayout(hbox2)

 hbox2.addLayout(vbox2)

 hbox2.addLayout(vbox3)

 vbox3.addLayout(hbox3)

 self.compatibility_tab.setLayout(vbox)

 vbox2.setSpacing(50)

144

 vbox3.setSpacing(50)

 hbox3.setSpacing(10)

 upload_download_BCF_introduction = QtGui.QLabel(

 """

 This tab provides backwards and external compatibility for

the RDF repository with the BCF Manager from KUBUS.

 The first button allows to convert all the RDF contexts

contained in the RDF repository to a single BCF zip file

 that could be opened and read with the BCF manager.

 The second button allows to convert a BCF zip file back as

the RDF contexts that the RDF repository contains and

 upload it in order to update the repository.

 """

)

 upload_download_BCF_introduction.setMaximumHeight(150)

 upload_download_BCF_introduction.setWordWrap(True)

 downloadBCF_btn_title = QtGui.QLabel("1. Download RDF contexts

contained in the RDF repository")

 downloadBCF_btn = QtGui.QPushButton("Download RDF contexts",

self)

 downloadBCF_btn.clicked.connect(self.download_bcf_file)

 uploadBCF_btn_title = QtGui.QLabel("2. Upload BCF information

to the RDF repository:")

 uploadBCF_btn = QtGui.QPushButton("Select BCF here", self)

 uploadBCF_btn.clicked.connect(self.open_bcf_file)

 hbox.addWidget(upload_download_BCF_introduction)

 vbox2.addWidget(downloadBCF_btn_title)

 vbox2.addWidget(uploadBCF_btn_title)

 hbox3.addWidget(downloadBCF_btn)

 vbox3.addWidget(uploadBCF_btn)

 def download_bcf_file(self):

 def create_BCF_xml():

 # Expand IFC Topic Guid

 expandedtopicguid =

ifcopenshell.guid.split(ifcopenshell.guid.expand(mylist[18]))[1:-1]

 os.chdir("C:/Users/Fran/Desktop")

 location = "C:/Users/Fran/Desktop/test/" +

expandedtopicguid

 os.makedirs(location)

 root = ET.Element("Markup")

 header = ET.SubElement(root, "Header")

 file = ET.SubElement(header, "File", IfcProject=mylist[3])

 ET.SubElement(file, "Filename").text = mylist[0]

 ET.SubElement(file, "Date").text = mylist[1]

 ET.SubElement(file, "Reference").text = mylist[2]

 topic = ET.SubElement(root, "Topic",

Guid=expandedtopicguid, TopicType=mylist[21], TopicStatus=mylist[20])

145

 # ET.SubElement(topic, "ReferenceLink").text = mylist[14]

 ET.SubElement(topic, "Title").text = mylist[16]

 ET.SubElement(topic, "Priority").text = mylist[13]

 ET.SubElement(topic, "Index").text = mylist[19]

 ET.SubElement(topic, "Labels").text = mylist[10]

 ET.SubElement(topic, "CreationDate").text = mylist[7]

 ET.SubElement(topic, "CreationAuthor").text = mylist[8]

 ET.SubElement(topic, "ModifiedDate").text = mylist[12]

 ET.SubElement(topic, "ModifiedAuthor").text = mylist[11]

 # Conversion datetime

 DD = mylist[9]

 if DD == "":

 print "Closure"

 else:

 DDmod = '%s-%s-%sT00:00:00+00:00' % (DD[-4:], DD[3:5],

DD[:2])

 ET.SubElement(topic, "DueDate").text = DDmod

 ET.SubElement(topic, "AssignedTo").text = mylist[6]

 ET.SubElement(topic, "Stage").text = mylist[15]

 ET.SubElement(topic, "Description").text = mylist[17]

 # bimsnippet = ET.SubElement(topic, "BimSnippet",

SnippetType=mylist[25], isExternal=mylist[22])

 #

 # ET.SubElement(bimsnippet, "Reference").text = mylist[23]

 # ET.SubElement(bimsnippet, "ReferenceSchema").text =

mylist[24]

 #

 # documentreference = ET.SubElement(topic,

"DocumentReference", Guid=mylist[27], isExternal=mylist[28])

 #

 # ET.SubElement(documentreference,

"ReferencedDocument").text = mylist[29]

 # ET.SubElement(documentreference, "Description").text =

mylist[26]

 #

 # relatedtopic = ET.SubElement(topic, "RelatedTopic",

Guid=mylist[30])

 for s in range(numberofchunks - 1):

 comment = ET.SubElement(root, "Comment",

Guid=chunks[s][2])

 # ET.SubElement(comment, "VerbalStatus").text =

mylist[20]

 # ET.SubElement(comment, "Status").text = mylist[21]

 ET.SubElement(comment, "Date").text = chunks[s][1]

 ET.SubElement(comment, "Author").text = chunks[s][0]

 ET.SubElement(comment, "Comment").text = chunks[s][5]

 ET.SubElement(comment, "Viewpoint", Guid=chunks[s][6])

 # ET.SubElement(comment, "ModifiedDate").text =

mylist[35]

 # ET.SubElement(comment, "ModifiedAuthor").text =

mylist[34]

 viewpoints = ET.SubElement(root, "Viewpoints",

Guid=mylist[40])

 ET.SubElement(viewpoints, "Viewpoint").text = mylist[39]

 ET.SubElement(viewpoints, "Snapshot").text = mylist[38]

146

 # ET.SubElement(viewpoints, "Index").text = mylist[41]

 tree = ET.ElementTree(root)

 tree.write(location + "/markup.bcf")

 repository2 = 'V17001Fran'

 graph2 = 'file://C:/fakepath/RDFtest%d.rdf'

 params2 = {'context': '<' + graph2 + '>'}

 # endpoint2 = "http://192.168.5.2/repositories/%s/rdf-

graphs?%s" % (repository2, urllib.urlencode(params2))

 endpoint2 = "http://sparql.verhoeven-

leenders.nl/repositories/%s/rdf-graphs?%s" % (repository2,

urllib.urlencode(params2))

 (response, content) = httplib2.Http().request(endpoint2)

 numberofcontexts = content.count("\n")

 for n in range(numberofcontexts - 1):

 q = """

 PREFIX fbf: <http://example.org/bcfschema#>

 SELECT ?Fname ?Fdate ?Fref ?IfcProject ?IfcSpaStrEle ?FisExt

?AssignedTo ?CreationDate ?CreationAuthor ?DueDate ?Labels ?ModAuthor

?ModDate ?priority ?RefLink ?Stage ?Title ?TopDescrip ?TopGuid

?TopIndex ?TopStatus ?TopType ?bsIsExt ?bsRef ?bsRefSche ?bsType ?drd

?drg ?drIsExt ?refdoc ?rtg ?author ?CommentDate ?CommentGuid

?CModAuthor ?CModDate ?Comment ?VGuid ?snapshot ?viewpoint

?viewpointsGuid ?viewpointsIndex

 WHERE {

 GRAPH <file://C:/fakepath/RDFtest%s.rdf> {

 ?m a fbf:Markup .

 OPTIONAL{

 ?m fbf:containsHeader ?h .

 ?h fbf:containsFile ?f .

 ?f fbf:hasFileName ?Fname .

 ?f fbf:hasFileDate ?Fdate .

 ?f fbf:hasFileReference ?Fref .

 ?f fbf:hasIfcProject ?IfcProject .

 ?f fbf:hasIfcSpatialStructureElement ?IfcSpaStrEle .

 ?f fbf:hasFileIsExternal ?FisExt .

 ?m fbf:containsTopic ?t .

 ?t fbf:hasAssignedTo ?AssignedTo .

 ?t fbf:hasCreationAuthor ?CreationAuthor .

 ?t fbf:hasCreationDate ?CreationDate .

 ?t fbf:hasDueDate ?DueDate .

 ?t fbf:hasLabels ?Labels .

 ?t fbf:hasModifiedAuthor ?ModAuthor .

 ?t fbf:hasModifiedDate ?ModDate .

 ?t fbf:hasPriority ?priority .

 ?t fbf:hasReferenceLink ?RefLink .

 ?t fbf:hasStage ?Stage .

 ?t fbf:hasTitle ?Title .

 ?t fbf:hasTopicDescription ?TopDescrip .

 ?t fbf:hasTopicGuid ?TopGuid .

 ?t fbf:hasTopicIndex ?TopIndex .

 ?t fbf:hasTopicStatus ?TopStatus .

 ?t fbf:hasTopicType ?TopType .

 ?t fbf:containsBimSnippet ?b .

 ?b fbf:hasBimSnippetIsExternal ?bsIsExt .

 ?b fbf:hasBimSnippetReference ?bsRef .

147

 ?b fbf:hasReferenceSchema ?bsRefSche .

 ?b fbf:hasSnippetType ?bsType .

 ?t fbf:containsDocumentReference ?dr .

 ?dr fbf:hasDocumentReferenceDescription ?drd .

 ?dr fbf:hasDocumentReferenceGuid ?drg .

 ?dr fbf:hasDocumentReferenceIsExternal ?drIsExt .

 ?dr fbf:hasReferencedDocument ?refdoc .

 ?t fbf:containsRelatedTopic ?rt .

 ?rt fbf:hasRelatedTopicGuid ?rtg .}

 ?m fbf:containsComment ?c .

 ?c fbf:hasAuthor ?author .

 ?c fbf:hasCommentDate ?CommentDate .

 ?c fbf:hasCommentGuid ?CommentGuid .

 ?c fbf:hasComment ?Comment .

 OPTIONAL{

 ?c fbf:hasCommentModifiedAuthor ?CModAuthor .

 ?c fbf:hasCommentModifiedDate ?CModDate .}

 OPTIONAL {

 ?c fbf:containsViewpoint ?v .

 ?v fbf:hasViewpointGuid ?VGuid .

 ?m fbf:containsViewpoints ?vs .

 ?vs fbf:hasSnapshot ?snapshot .

 ?vs fbf:hasViewpoint ?viewpoint .

 ?vs fbf:hasViewpointsGuid ?viewpointsGuid .

 ?vs fbf:hasViewpointsIndex ?viewpointsIndex . }

 }

 }

 ORDER BY ?CommentDate""" % int(n + 1)

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setMethod("POST")

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 for i in range(42):

 mylist.remove(mylist[0])

 chunks = [mylist[x:x + 42] for x in xrange(0, len(mylist),

42)]

 numberofchunks = results.count("\r\n")

 for s in range(numberofchunks - 1):

 for i in range(31):

 chunks[s].remove(chunks[s][0])

 create_BCF_xml()

 # Create Zip file and erase folder

 shutil.make_archive('RDFcontexts', 'zip', 'test')

 shutil.rmtree("C:/Users/Fran/Desktop/test")

 def open_bcf_file(self, bcffilename=None):

 self.bcffilename = QtGui.QFileDialog.getOpenFileName(self,

148

'Open file', ".", "Bim Collaboration Format (*.zip)")

 markuppath = self.bcffilename

 def next_context_name():

 repository2 = 'V17001Fran'

 graph2 = 'file://C:/fakepath/RDFtest%d.rdf'

 params2 = {'context': '<' + graph2 + '>'}

 # endpoint2 = "http://192.168.5.2/repositories/%s/rdf-

graphs?%s" % (repository2, urllib.urlencode(params2))

 endpoint2 = "http://sparql.verhoeven-

leenders.nl/repositories/%s/rdf-graphs?%s" % (repository2,

urllib.urlencode(params2))

 (response, content) = httplib2.Http().request(endpoint2)

 return graph2 % content.count('\n')

 def next_file_name():

 result2 = []

 markup = 'http://example.org/data#Markup%d'

 header = 'http://example.org/data#Header%d'

 file = 'http://example.org/data#File%d'

 topic = 'http://example.org/data#Topic%d'

 bimsnippet = 'http://example.org/data#BimSnippet%d'

 documentreference =

'http://example.org/data#DocumentReference%d'

 relatedtopic = 'http://example.org/data#RelatedTopic%d'

 comment = 'http://example.org/data#Comment%d'

 viewpoint = 'http://example.org/data#Viewpoint%d'

 viewpoints = 'http://example.org/data#Viewpoints%d'

 repository2 = 'V17001Fran'

 graph2 = 'file://C:/fakepath/RDFtest%d.rdf'

 params2 = {'context': '<' + graph2 + '>'}

 # endpoint2 = "http://192.168.5.2/repositories/%s/rdf-

graphs?%s" % (repository2, urllib.urlencode(params2))

 endpoint2 = "http://sparql.verhoeven-

leenders.nl/repositories/%s/rdf-graphs?%s" % (repository2,

urllib.urlencode(params2))

 (response, content) = httplib2.Http().request(endpoint2)

 r1 = markup % content.count('\n')

 r2 = header % content.count('\n')

 r3 = file % content.count('\n')

 r4 = topic % content.count('\n')

 r5 = bimsnippet % content.count('\n')

 r6 = documentreference % content.count('\n')

 r7 = relatedtopic % content.count('\n')

 r8 = comment % content.count('\n')

 r9 = viewpoint % content.count('\n')

 r10 = viewpoints % content.count('\n')

 result2.append(r1)

 result2.append(r2)

 result2.append(r3)

 result2.append(r4)

 result2.append(r5)

 result2.append(r6)

 result2.append(r7)

 result2.append(r8)

 result2.append(r9)

149

 result2.append(r10)

 return result2

 def create_RDF_graph():

 g = ConjunctiveGraph()

 # Namespaces

 fbf = Namespace("http://example.org/bcfschema#")

 # fbfd = Namespace("http://example.org/data#")

 g.namespace_manager.bind('fbf', fbf)

 # Classes

 markup = URIRef(next_file_name()[0])

 header = URIRef(next_file_name()[1])

 file = URIRef(next_file_name()[2])

 topic = URIRef(next_file_name()[3])

 bimsnippet = URIRef(next_file_name()[4])

 documentreference = URIRef(next_file_name()[5])

 relatedtopic = URIRef(next_file_name()[6])

 comment = URIRef(next_file_name()[7])

 viewpoint = URIRef(next_file_name()[8])

 viewpoints = URIRef(next_file_name()[9])

 # Properties

 # Hierarchy properties

 containsheader = URIRef(fbf.containsHeader)

 containsfile = URIRef(fbf.containsFile)

 containstopic = URIRef(fbf.containsTopic)

 containscomment = URIRef(fbf.containsComment)

 containsviewpoints = URIRef(fbf.containsViewpoints)

 containsbimsnippet = URIRef(fbf.containsBimSnippet)

 containsdocumentreference =

URIRef(fbf.containsDocumentReference)

 containsrelatedtopic = URIRef(fbf.containsRelatedTopic)

 containsviewpoint = URIRef(fbf.containsViewpoint)

 # File properties

 hasfilename = URIRef(fbf.hasFileName)

 hasfiledate = URIRef(fbf.hasFileDate)

 hasfilereference = URIRef(fbf.hasFileReference)

 hasifcproject = URIRef(fbf.hasIfcProject)

 hasifcspatialstructureelement =

URIRef(fbf.hasIfcSpatialStructureElement)

 hasfileisexternal = URIRef(fbf.hasFileIsExternal)

 # TopicProperties

 hastopicguid = URIRef(fbf.hasTopicGuid)

 hastopictype = URIRef(fbf.hasTopicType)

 hastopicstatus = URIRef(fbf.hasTopicStatus)

 hasreferencelink = URIRef(fbf.hasReferenceLink)

 hastitle = URIRef(fbf.hasTitle)

 haspriority = URIRef(fbf.hasPriority)

 hastopicindex = URIRef(fbf.hasTopicIndex)

 haslabels = URIRef(fbf.hasLabels)

 hascreationdate = URIRef(fbf.hasCreationDate)

 hascreationauthor = URIRef(fbf.hasCreationAuthor)

 hasmodifieddate = URIRef(fbf.hasModifiedDate)

 hasmodifiedauthor = URIRef(fbf.hasModifiedAuthor)

 hasduedate = URIRef(fbf.hasDueDate)

150

 hasassignedto = URIRef(fbf.hasAssignedTo)

 hasstage = URIRef(fbf.hasStage)

 hastopicdescription = URIRef(fbf.hasTopicDescription)

 # BimSnippet properties

 hasbimsnippetreference =

URIRef(fbf.hasBimSnippetReference)

 hasreferenceschema = URIRef(fbf.hasReferenceSchema)

 hasbimsnippetisexternal =

URIRef(fbf.hasBimSnippetIsExternal)

 hassnippettype = URIRef(fbf.hasSnippetType)

 # DocumentReference properties

 hasreferenceddocument = URIRef(fbf.hasReferencedDocument)

 hasdocumentdescription =

URIRef(fbf.hasDocumentReferenceDescription)

 hasdocumentguid = URIRef(fbf.hasDocumentReferenceGuid)

 hasdocumentisexternal =

URIRef(fbf.hasDocumentReferenceIsExternal)

 # RelatedTopic properties

 hasrelatedtopicguid = URIRef(fbf.hasRelatedTopicGuid)

 # Comment properties

 hascommentguid = URIRef(fbf.hasCommentGuid)

 hascommentdate = URIRef(fbf.hasCommentDate)

 hasauthor = URIRef(fbf.hasAuthor)

 hascomment = URIRef(fbf.hasComment)

 hascommentmoddate = URIRef(fbf.hasCommentModifiedDate)

 hascommentmodauthor = URIRef(fbf.hasCommentModifiedAuthor)

 # Viewpoint properties

 hascommentviewpoinguid = URIRef(fbf.hasViewpointGuid)

 # Viewpoints properties

 hasviewpointsguid = URIRef(fbf.hasViewpointsGuid)

 hasviewpoint = URIRef(fbf.hasViewpoint)

 hassnapshot = URIRef(fbf.hasSnapshot)

 hasviewpointsindex = URIRef(fbf.hasViewpointsIndex)

 # Triples

 # Markuptriples

 g.add((markup, RDF.type, fbf.Markup))

 g.add((markup, containsheader, header))

 g.add((markup, containstopic, topic))

 g.add((markup, containscomment, comment))

 g.add((markup, containsviewpoints, viewpoints))

 # Headertriples

 g.add((header, RDF.type, fbf.Header))

 g.add((header, containsfile, file))

 # Filetriples

 g.add((file, RDF.type, fbf.File))

 g.add((file, hasfilename, Literal("Filename",

datatype=XSD.string)))

 g.add((file, hasfiledate, Literal("Filedate",

datatype=XSD.dateTime)))

 g.add((file, hasfilereference, Literal("Filereference",

datatype=XSD.string)))

151

 g.add((file, hasifcproject, Literal("IfcProject",

datatype=XSD.string)))

 g.add((file, hasifcspatialstructureelement,

Literal('IfcGuid2', datatype=XSD.string)))

 g.add((file, hasfileisexternal, Literal('True',

datatype=XSD.boolean)))

 # Topictriples

 g.add((topic, RDF.type, fbf.Topic))

 g.add((topic, containsbimsnippet, bimsnippet))

 g.add((topic, containsdocumentreference,

documentreference))

 g.add((topic, containsrelatedtopic, relatedtopic))

 g.add((topic, hastopicguid, Literal(compressedTopicGuid,

datatype=XSD.string)))

 g.add((topic, hastopictype, Literal(topicattributevalue3,

datatype=XSD.string)))

 g.add((topic, hastopicstatus,

Literal(topicattributevalue2, datatype=XSD.string)))

 g.add((topic, hasreferencelink, Literal("",

datatype=XSD.string)))

 g.add((topic, hastitle, Literal(titlevalue,

datatype=XSD.string)))

 g.add((topic, haspriority, Literal(priorityvalue,

datatype=XSD.string)))

 g.add((topic, hastopicindex, Literal(indexvalue)))

 g.add((topic, haslabels, Literal(labelsvalue,

datatype=XSD.string)))

 g.add((topic, hascreationdate, Literal(creationdatevalue,

datatype=XSD.dateTime)))

 g.add((topic, hascreationauthor,

Literal(creationauthorvalue, datatype=XSD.string)))

 g.add((topic, hasmodifieddate,

Literal(modifieddatevalue)))

 g.add((topic, hasmodifiedauthor,

Literal(modifiedauthorvalue, datatype=XSD.string)))

 g.add((topic, hasduedate, Literal("")))

 g.add((topic, hasassignedto, Literal(assignedtovalue,

datatype=XSD.string)))

 g.add((topic, hasstage, Literal(stagevalue,

datatype=XSD.string)))

 g.add((topic, hastopicdescription,

Literal(descriptionvalue, datatype=XSD.string)))

 # BimSnippet triples

 g.add((bimsnippet, RDF.type, fbf.BimSnippet))

 g.add((bimsnippet, hasbimsnippetreference, Literal("",

datatype=XSD.string)))

 g.add((bimsnippet, hasreferenceschema, Literal("",

datatype=XSD.string)))

 g.add((bimsnippet, hasbimsnippetisexternal, Literal("",

datatype=XSD.boolean)))

 g.add((bimsnippet, hassnippettype, Literal("",

datatype=XSD.string)))

 # DocumentReference triples

 g.add((documentreference, RDF.type,

fbf.DocumentReference))

 g.add((documentreference, hasreferenceddocument,

Literal("")))

152

 g.add((documentreference, hasdocumentdescription,

Literal("", datatype=XSD.string)))

 g.add((documentreference, hasdocumentguid, Literal("",

datatype=XSD.string)))

 g.add((documentreference, hasdocumentisexternal,

Literal("", datatype=XSD.boolean)))

 # RelatedTopic triples

 g.add((relatedtopic, RDF.type, fbf.RelatedTopic))

 g.add((relatedtopic, hasrelatedtopicguid, Literal("",

datatype=XSD.string)))

 # Comment triples

 for i in range(len(listofcommentguids)):

 if i == 0:

 g.add((comment, RDF.type, fbf.Comment))

 g.add((comment, containsviewpoint, viewpoint))

 g.add((comment, hascommentguid,

Literal(listofcommentguids[i], datatype=XSD.string)))

 g.add((comment, hascommentdate,

Literal(listofcommentdates[i], datatype=XSD.dateTime)))

 g.add((comment, hasauthor,

Literal(listofcommentauthors[i], datatype=XSD.string)))

 g.add((comment, hascomment,

Literal(listofcomments[i], datatype=XSD.string)))

 g.add((comment, hascommentmoddate, Literal("")))

 g.add((comment, hascommentmodauthor, Literal("",

datatype=XSD.string)))

 else:

 g.add((markup, containscomment, comment + "_%s" %

i))

 g.add((comment + "_%s" % i, RDF.type,

fbf.Comment))

 g.add((comment + "_%s" % i, hascommentguid,

Literal(listofcommentguids[i], datatype=XSD.string)))

 g.add((comment + "_%s" % i, hascommentdate,

Literal(listofcommentdates[i], datatype=XSD.dateTime)))

 g.add((comment + "_%s" % i, hasauthor,

Literal(listofcommentauthors[i], datatype=XSD.string)))

 g.add((comment + "_%s" % i, hascomment,

Literal(listofcomments[i], datatype=XSD.string)))

 # Viewpoint triples

 g.add((viewpoint, RDF.type, fbf.Viewpoint))

 g.add((viewpoint, hascommentviewpoinguid, Literal("",

datatype=XSD.string)))

 # Viewpoints triples

 g.add((viewpoints, RDF.type, fbf.Viewpoints))

 g.add((viewpoints, hasviewpointsguid, Literal("",

datatype=XSD.string)))

 g.add((viewpoints, hasviewpoint, Literal("",

datatype=XSD.string)))

 g.add((viewpoints, hassnapshot, Literal("",

datatype=XSD.string)))

 g.add((viewpoints, hasviewpointsindex, Literal("")))

 # Creating the file

153

 rdfdata = g.serialize(format='pretty-xml')

 # Uploading data to the repository

 repository = 'V17001Fran'

 # graph = 'file://C:/fakepath/RDFtest1.rdf'

 graph = next_context_name()

 params = {'context': '<' + graph + '>'}

 print params

 # endpoint =

"http://192.168.5.2/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 endpoint = "http://sparql.verhoeven-

leenders.nl/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 data = rdfdata

 (response, content) = httplib2.Http().request(endpoint,

'PUT', body=data, headers={'content-type': 'application/rdf+xml'})

 print "Response %s" % response.status

 def context_number():

 q = """

 PREFIX fbf:<http://example.org/bcfschema#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 PREFIX fbfd: <http://example.org/data#>

 SELECT ?Markup ?c ?Date ?Comment

 WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

 }

 ORDER BY ?Date""" % compressedTopicGuid

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 for i in range(4):

 mylist.remove(mylist[0])

 textandnumber = mylist[0]

 contextnumber =

textandnumber.replace("http://example.org/data#Markup", "")

 return contextnumber

 def sub_comment():

 q = """

 PREFIX fbf:<http://example.org/bcfschema#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 PREFIX fbfd: <http://example.org/data#>

 SELECT ?Markup ?c ?Date ?Comment

 WHERE {

 ?Markup fbf:containsTopic ?b.

154

 ?b fbf:hasTopicGuid "%s".

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

 }

 ORDER BY ?Date""" % compressedTopicGuid

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 number = mylist[-4]

 commentnumber =

number.replace("http://example.org/data#Comment", "")

 t = "%s_" % context_number()

 commentnumber2 = commentnumber.replace(t, "")

 commentnumber3 = int(commentnumber2)

 return commentnumber3 + 1

 def create_RDF_graph2():

 graph1 = ConjunctiveGraph()

 graph2 = ConjunctiveGraph()

 # Namespaces

 fbf = Namespace("http://example.org/bcfschema#")

 fbfd = Namespace("http://example.org/data#")

 graph2.namespace_manager.bind('fbf', fbf)

 graph2.namespace_manager.bind('fbfd', fbfd)

 # Classes

 markup = URIRef("http://example.org/data#Markup%s") %

context_number()

 topic = URIRef("http://example.org/data#Topic%s") %

context_number()

 comment = URIRef("http://example.org/data#Comment%s") %

context_number()

 # Properties

 # Hierarchy

 containscomment = URIRef(fbf.containsComment)

 # TopicProperties

 hastopicstatus = URIRef(fbf.hasTopicStatus)

 # Comment properties

 hascommentguid = URIRef(fbf.hasCommentGuid)

 hascommentdate = URIRef(fbf.hasCommentDate)

 hasauthor = URIRef(fbf.hasAuthor)

 hascomment = URIRef(fbf.hasComment)

 # Triples

 # Topictriples

155

 graph2.add((topic, hastopicstatus,

Literal(topicattributevalue2, datatype=XSD.string)))

 # Comment triples

 for i in range((int(results.count("\r\n"))-1),

len(listofcommentguids)):

 graph2.add((markup, containscomment, comment + "_%s" %

i))

 graph2.add((comment + "_%s" % i, RDF.type,

fbf.Comment))

 graph2.add((comment + "_%s" % i, hascommentguid,

Literal(listofcommentguids[i], datatype=XSD.string)))

 graph2.add((comment + "_%s" % i, hascommentdate,

Literal(listofcommentdates[i], datatype=XSD.dateTime)))

 graph2.add((comment + "_%s" % i, hasauthor,

Literal(listofcommentauthors[i], datatype=XSD.string)))

 graph2.add((comment + "_%s" % i, hascomment,

Literal(listofcomments[i], datatype=XSD.string)))

 repository = 'V17001Fran'

 graph = 'file://C:/fakepath/RDFtest%s.rdf' %

context_number()

 params = {'context': '<' + graph + '>'}

 endpoint = "http://sparql.verhoeven-

leenders.nl/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 # endpoint =

"http://192.168.5.2/repositories/%s/statements?%s" % (repository,

urllib.urlencode(params))

 graph1.parse(endpoint)

 graph1.remove((None, fbf.hasTopicStatus, None))

 graph3 = graph1 + graph2

 rdfdata = graph3.serialize(format='pretty-xml')

 data = rdfdata

 (response, content) = httplib2.Http().request(endpoint,

'PUT', body=data, headers={'content-type': 'application/rdf+xml'})

 print "Response %s" % response.status

 zip_file = str(markuppath)

 zip_file2 = zip_file.replace(".zip", "")

 os.chdir(os.path.dirname(zip_file))

 zip_ref = zipfile.ZipFile(zip_file, 'r')

 zip_ref.extractall(os.path.basename(str(zip_file2)))

 zip_ref.close()

 dir = zip_file2

 for file in glob.iglob(os.path.join(dir, '*/*.bcf')):

 with open(file) as f:

 tree = ET.ElementTree(file=f)

 root = tree.getroot()

 # fileattribute = tree.find('Header/File')

 # file = tree.find('Header/File/Filename')

 # filedate = tree.find('Header/File/Date')

 # filereference = tree.find('Header/File/Reference')

 #

 # fileattributevalue = fileattribute.get('IfcProject')

 # filevalue = file.text

156

 # filedatevalue = filedate.text

 # filereferencevalue = filereference.text

 topicattribute = tree.find('Topic')

 title = tree.find('Topic/Title')

 priority = tree.find('Topic/Priority')

 index = tree.find('Topic/Index')

 labels = tree.find('Topic/Labels')

 creationdate = tree.find('Topic/CreationDate')

 creationauthor = tree.find('Topic/CreationAuthor')

 modifieddate = tree.find('Topic/ModifiedDate')

 modifiedauthor = tree.find('Topic/ModifiedAuthor')

 assignedto = tree.find('Topic/AssignedTo')

 stage = tree.find('Topic/Stage')

 description = tree.find('Topic/Description')

 topicattributevalue1 = topicattribute.get('Guid')

 # Compress Topic Guid

 compressedTopicGuid =

ifcopenshell.guid.compress(topicattributevalue1.replace('-', ''))

 topicattributevalue2 =

topicattribute.get('TopicStatus')

 topicattributevalue3 = topicattribute.get('TopicType')

 titlevalue = title.text

 if titlevalue == "Closure":

 print "Closure context is not uploaded"

 else:

 priorityvalue = priority.text

 indexvalue = index.text

 labelsvalue = labels.text

 creationdatevalue = creationdate.text

 creationauthorvalue = creationauthor.text

 modifieddatevalue = modifieddate.text

 modifiedauthorvalue = modifiedauthor.text

 assignedtovalue = assignedto.text

 stagevalue = stage.text

 descriptionvalue = description.text

 listofcommentguids = []

 listofcommentdates = []

 listofcommentauthors = []

 listofcomments = []

 for comments in root.findall(".//Comment[@Guid]"):

 a = comments.attrib.get('Guid')

 listofcommentguids.append(a)

 for dates in root.findall(".//Comment/Date"):

 b = dates.text

 listofcommentdates.append(b)

 for authors in root.findall(".//Comment/Author"):

 c = authors.text

 listofcommentauthors.append(c)

 for comment in root.findall(".//Comment/Comment"):

 d = comment.text

 listofcomments.append(d)

157

 # viewpointsattribute = tree.find('Viewpoints')

 # viewpoint = tree.find('Viewpoints/Viewpoint')

 # snapshot = tree.find('Viewpoints/Snapshot')

 #

 # viewpointsattributevalue =

viewpointsattribute.get('Guid')

 # viewpointvalue = viewpoint.text

 # snapshotvalue = snapshot.text

 q = """

 PREFIX fbf:<http://example.org/bcfschema#>

 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 PREFIX fbfd: <http://example.org/data#>

 SELECT ?Markup ?Date ?Comment

 WHERE {

 ?Markup fbf:containsTopic ?b.

 ?b fbf:hasTopicGuid "%s".

 ?Markup fbf:containsComment ?c.

 ?c fbf:hasComment ?Comment.

 ?c fbf:hasCommentDate ?Date.

 }

 ORDER BY ?Date""" % compressedTopicGuid

 sparql = SPARQLWrapper("http://sparql.verhoeven-

leenders.nl/repositories/V17001Fran")

 # sparql =

SPARQLWrapper("http://192.168.5.2/repositories/V17001Fran")

 sparql.setQuery(q)

 sparql.setReturnFormat(RDFXML)

 results = sparql.query().convert()

 mylist = re.split(",|\r\n", results)

 a = len(mylist)

 if a == 4:

 print "There is NO information"

 create_RDF_graph()

 else:

 print "There is information"

 create_RDF_graph2()

 shutil.rmtree(zip_file2)

 def closeEvent(self, event):

 result = QtGui.QMessageBox.question(self,

 "Confirm Exit",

 "Are you sure you want to

exit ?",

 QtGui.QMessageBox.Yes |

QtGui.QMessageBox.No)

 event.ignore()

 if result == QtGui.QMessageBox.Yes:

 event.accept()

init = initUI()

158

7.6 Appendix VI: Ontology BCF schema (TTL)

baseURI: http://example.org/bcfschema

@prefix : <http://example.org/bcfschema#> .

@prefix fbf: <http://example.org/bcfschema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/bcfschema>

 rdf:type owl:Ontology ;

 owl:versionInfo "Created with TopBraid Composer" ;

.

fbf:BimSnippet

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:Comment

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:DocumentReference

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:File

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:Header

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:Markup

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:RelatedTopic

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:Topic

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:Viewpoint

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:Viewpoints

 rdf:type owl:Class ;

 rdfs:subClassOf owl:Thing ;

.

fbf:containsBimSnippet

 rdf:type owl:ObjectProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range fbf:BimSnippet ;

.

159

fbf:containsComment

 rdf:type owl:ObjectProperty ;

 rdfs:domain fbf:Markup ;

 rdfs:range fbf:Comment ;

.

fbf:containsDocumentReference

 rdf:type owl:ObjectProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range fbf:DocumentReference ;

.

fbf:containsFile

 rdf:type owl:ObjectProperty ;

 rdfs:domain fbf:Header ;

 rdfs:range fbf:File ;

.

fbf:containsHeader

 rdf:type owl:ObjectProperty ;

 rdfs:domain fbf:Markup ;

 rdfs:range fbf:Header ;

.

fbf:containsRelatedTopic

 rdf:type owl:ObjectProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range fbf:RelatedTopic ;

.

fbf:containsTopic

 rdf:type owl:ObjectProperty ;

 rdfs:domain fbf:Markup ;

 rdfs:range fbf:Topic ;

.

fbf:containsViewpoint

 rdf:type owl:ObjectProperty ;

 rdfs:domain fbf:Comment ;

 rdfs:range fbf:Viewpoint ;

.

fbf:containsViewpoints

 rdf:type owl:ObjectProperty ;

 rdfs:domain fbf:Markup ;

 rdfs:range fbf:Viewpoints ;

.

fbf:hasAssignedTo

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasAuthor

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Comment ;

 rdfs:range xsd:string ;

.

fbf:hasBimSnippetIsExternal

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:BimSnippet ;

 rdfs:range xsd:boolean ;

.

fbf:hasBimSnippetReference

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:BimSnippet ;

 rdfs:range xsd:string ;

.

160

fbf:hasComment

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Comment ;

 rdfs:range xsd:string ;

.

fbf:hasCommentDate

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Comment ;

 rdfs:range xsd:dateTime ;

.

fbf:hasCommentGuid

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Comment ;

 rdfs:range xsd:string ;

.

fbf:hasCommentModifiedAuthor

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Comment ;

 rdfs:range xsd:string ;

.

fbf:hasCommentModifiedDate

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Comment ;

 rdfs:range xsd:dateTime ;

.

fbf:hasCreationAuthor

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasCreationDate

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:dateTime ;

.

fbf:hasDocumentReferenceDescription

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:DocumentReference ;

 rdfs:range xsd:string ;

.

fbf:hasDocumentReferenceGuid

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:DocumentReference ;

 rdfs:range xsd:string ;

.

fbf:hasDocumentReferenceIsExternal

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:DocumentReference ;

 rdfs:range xsd:boolean ;

.

fbf:hasDueDate

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:dateTime ;

.

fbf:hasFileDate

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:File ;

 rdfs:range xsd:dateTime ;

.

161

fbf:hasFileIsExternal

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:File ;

 rdfs:range xsd:boolean ;

.

fbf:hasFileName

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:File ;

 rdfs:range xsd:string ;

.

fbf:hasFileReference

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:File ;

 rdfs:range xsd:string ;

.

fbf:hasIfcProject

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:File ;

 rdfs:range xsd:string ;

.

fbf:hasIfcSpatialStructureElement

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:File ;

 rdfs:range xsd:string ;

.

fbf:hasLabels

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasModifiedAuthor

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasModifiedDate

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:dateTime ;

.

fbf:hasPriority

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasReferenceLink

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasReferenceSchema

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:BimSnippet ;

 rdfs:range xsd:string ;

.

fbf:hasReferencedDocument

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:DocumentReference ;

 rdfs:range xsd:string ;

.

162

fbf:hasRelatedTopicGuid

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:RelatedTopic ;

 rdfs:range xsd:string ;

.

fbf:hasSnapshot

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Viewpoints ;

 rdfs:range xsd:string ;

.

fbf:hasSnippetType

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:BimSnippet ;

 rdfs:range xsd:string ;

.

fbf:hasStage

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasTitle

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasTopicDescription

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasTopicGuid

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasTopicIndex

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:integer ;

.

fbf:hasTopicStatus

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasTopicType

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Topic ;

 rdfs:range xsd:string ;

.

fbf:hasViewpoint

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Viewpoints ;

 rdfs:range xsd:string ;

.

fbf:hasViewpointGuid

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Viewpoint ;

 rdfs:range xsd:string ;

.

163

fbf:hasViewpointsGuid

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Viewpoints ;

 rdfs:range xsd:string ;

.

fbf:hasViewpointsIndex

 rdf:type owl:DatatypeProperty ;

 rdfs:domain fbf:Viewpoints ;

 rdfs:range xsd:integer ;

.

164

7.7 Appendix VII: BCF Schema (XSD)

<?xml version="1.0" encoding="UTF-8"?>

<!-- Mit XMLSpy v2011 rel. 2 sp1 (http://www.altova.com) von Klaus

Linhard (IABI e.V.) bearbeitet -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Markup">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Header" type="Header"

minOccurs="0"/>

 <xs:element name="Topic" type="Topic"/>

 <xs:element name="Comment" type="Comment"

minOccurs="0" maxOccurs="unbounded"/>

 <!-- ISG Jira issue BCF-9. Add support for

several viewpoints and snapshots per issue -->

 <xs:element name="Viewpoints" type="ViewPoint"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="Header">

 <xs:sequence>

 <xs:element name="File" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Filename"

type="xs:string" minOccurs="0"/>

 <xs:element name="Date"

type="xs:dateTime" minOccurs="0"/>

 <!-- Reference (URL) of the file -

->

 <xs:element name="Reference"

type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:attributeGroup

ref="FileAttributes"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <!-- ISG Jira issue BCF-9. Add support for several viewpoints

and snapshots per issue -->

 <xs:complexType name="ViewPoint">

 <xs:sequence>

 <!-- viewpoint file (xml) -->

 <xs:element name="Viewpoint" type="xs:string"

minOccurs="0"/>

 <!-- the snapshot png -->

 <xs:element name="Snapshot" type="xs:string"

minOccurs="0"/>

 <!-- the viewpoint index (sort order) -->

 <xs:element name="Index" type="xs:int"

minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="Guid" type="Guid" use="required"/>

 <!-- Guid of the viewpoint -->

 </xs:complexType>

 <!-- BimSnippet -->

 <xs:complexType name="BimSnippet">

165

 <xs:sequence>

 <!--

 Name of the file in the topic folder containing the snippet or

a URL.

 E.G.- Expresscode containing p.e Issue, Request

 // Maybe some header infos ?? // IfcEntites // Geometry

 -->

 <!-- Reference (name) to the snippet file -->

 <xs:element name="Reference" type="xs:string"/>

 <xs:element name="ReferenceSchema"

type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="SnippetType" type="xs:string"

use="required"/>

 <xs:attribute name="isExternal" type="xs:boolean"

default="false"/>

 <!-- This flag is true when the reference is a URL

pointing outside of the BCF file-->

 </xs:complexType>

 <xs:complexType name="Topic">

 <xs:sequence>

 <xs:element name="ReferenceLink" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Priority" type="Priority"

minOccurs="0"/>

 <!-- ISG Jira issue BCF-8 Add a way save order the

topics -->

 <xs:element name="Index" type="xs:int"

minOccurs="0"/>

 <xs:element name="Labels" type="TopicLabel"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="CreationDate" type="xs:dateTime"

minOccurs="1"/>

 <xs:element name="CreationAuthor" type="UserIdType"

minOccurs="1"/>

 <xs:element name="ModifiedDate" type="xs:dateTime"

minOccurs="0"/>

 <xs:element name="ModifiedAuthor" type="UserIdType"

minOccurs="0"/>

 <xs:element name="DueDate" type="xs:dateTime"

minOccurs="0"/>

 <xs:element name="AssignedTo" type="UserIdType"

minOccurs="0"/>

 <xs:element name="Stage" type="Stage"

minOccurs="0"/>

 <xs:element name="Description" type="xs:string"

minOccurs="0"/>

 <xs:element name="BimSnippet" type="BimSnippet"

minOccurs="0"/>

 <!-- Name of the file in the topic folder or url -->

 <xs:element name="DocumentReference" minOccurs="0"

maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <!-- Name of the file in the topic

folder or url -->

 <xs:element

name="ReferencedDocument" type="xs:string" minOccurs="0"/>

 <!-- Human readable name of the

166

document -->

 <xs:element name="Description"

type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:attributeGroup

ref="DocumentReference"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="RelatedTopic" minOccurs="0"

maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="Guid" type="Guid"

use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Guid" type="Guid" use="required"/>

 <xs:attribute name="TopicType" type="TopicType"/>

 <xs:attribute name="TopicStatus" type="TopicStatus"/>

 </xs:complexType>

 <!-- Reference to a document inside of the topic folder or a url

pointing to the web -->

 <xs:attributeGroup name="DocumentReference">

 <!-- Guid of the DocumentReference -->

 <xs:attribute name="Guid" type="Guid"/>

 <!-- A flag that is true when the ReferencedDocument

points outside of the BCF file (a URL) -->

 <xs:attribute name="isExternal" type="xs:boolean"

default="false"/>

 </xs:attributeGroup>

 <xs:complexType name="Comment">

 <xs:sequence>

 <xs:element name="Date" type="xs:dateTime"/>

 <xs:element name="Author" type="UserIdType"/>

 <xs:element name="Comment" type="xs:string"/>

 <xs:element name="Viewpoint" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="Guid" type="Guid"

use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="ModifiedDate" type="xs:dateTime"

minOccurs="0"/>

 <xs:element name="ModifiedAuthor" type="UserIdType"

minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="Guid" type="Guid" use="required"/>

 </xs:complexType>

 <xs:simpleType name="TopicStatus">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:simpleType name="TopicType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:simpleType name="TopicLabel">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:simpleType name="Priority">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

167

 <xs:simpleType name="UserIdType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:simpleType name="Stage">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:simpleType name="Guid">

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-

fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="IfcGuid">

 <xs:restriction base="xs:string">

 <xs:length value="22"/>

 <xs:pattern value="[0-9,A-Z,a-z,_$]*"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:attributeGroup name="FileAttributes">

 <xs:attribute name="IfcProject" type="IfcGuid"/>

 <xs:attribute name="IfcSpatialStructureElement"

type="IfcGuid"/>

 <xs:attribute name="isExternal" type="xs:boolean"

default="true"/>

 </xs:attributeGroup>

</xs:schema>

168

7.8 Appendix VIII: Flowcharts of the developed tool

P
ro

to
ty

p
e’

s
w

o
rk

fl
o

w
 e

xa
m

p
le St

ru
ct

u
ra

l e
n

gi
n

ee
r

B
IM

 m
o

d
el

le
r

Tr
ip

le
 s

to
re

Workflow example 1

Workflow example 2

Workflow example 3

Start of the
validation

Load IFC model
Revise building

objects’
requirements

Building object
complies with
requirements?

Mark building
object as closed

Create BCF
issue

Load IFC model

YES

NO

RDF context (BCF) RDF context (BCF)

Visualize BCF
issues assigned

to the user

Visualize
building objects’
BCF status and

comments

Update IFC
model (not

IfcOpenShell)

Add BCF
comment for

resolved issues

Comment added
to existing RDF context

Visualize open
building objects

Load IFC model
Revise building

objects’
requirements

Visualize
building objects’
BCF comments

Building object
complies with
requirements?

Add BCF
comment

Mark building
object as closed

NO

YES End of the
validation

Comment added
to existing RDF context

RDF context (BCF)

RDF RDF RDF RDF RDF

Figure 70. Workflow examples

169

7.9 Appendix IX: Thesis’ scope

V
al

id
at

io
n

 f
ra

m
ew

o
rk

B
IM

 m
o

d
el

le
r

St
ru

ct
u

ra
l e

n
gi

n
ee

r
Tr

ip
le

st
o

re
Fi

le
 S

er
ve

r
Ex

te
rn

al
 p

ar
ti

es

IfcOpenshell Desktop Viewer

IfcOpenshell Desktop Viewer

IfcOpenshell Desktop Viewer

Create a model

Export IFC
Geometry

Geometry

Calculate
structure

Convert IFC
geometry into

RDF

Document Proof (Calculations, advisory reports etc.)

Geometry Requirements
ontology

Visualize IFC
geometry and
requirements

Visualize “not
closed” objects

Create new BCF
(or add

comment to an
existing one)

Model defined
according to
calculations

NO

YES

Update model

RDF context (BCF)

Visualize IFC
geometry and

properties

Mark object as
closed

Referenced document

Visualize
“closed” objects

Link documents to
requirements and
model instances as

proofs

YES

RDF context (BCF)

Check object
status

Visualize
assigned objects

All model
instances

proven on all
requirements

?

RDF context (DocumentReference)

NO

Query model
instances per
requirement

Verify content
accuracy of
document

proofs

Document
contents
accurate?

NO

YES

End of
engineering design

Update
documents

(Calculations,
reports)

Link document
update to old

document reference

Update of Document Proof

RDF context (DocumentUpdate)

Change Request

Information
handover

Design Phase

Change request

RDF data

Activities related to this thesis Activities related to the complementary thesis Additional process-related activities

PDFIFC

TTLifcOWL RDF

PDF

RDF RDF

PDF

RDF

PDF

RDF

Figure 71. Thesis’ scope

