
 

 

 

 

 

 

 

 

 

 

 

 

 

     Author:         

     Manlin Yu (s146559) 

 

     Graduation committee:  

     Prof.dr.ir. Bauke de Vries (TU/e) 

     Dr. dipl. ing. Jakob Beetz (TU/e) 

     Chi Zhang (TU/e) 

     Thomas Krijnen (TU/e) 

 

    Date of final presentation:  

     7th of July 2016 

Construction Management and Engineering 

A Linked Data approach for 

information integration 

between BIM and sensor 

data 
 

2014-2016 



2 

 

 

 

 

 

 



Table of Content 

3 

 

Table of Contents 
Summary ..................................................................................................................................................5 

Abstract ....................................................................................................................................................7 

1. Introduction ...................................................................................................................................... 10 

1.1 Problem definition ....................................................................................................................... 11 

1.2 Research questions ...................................................................................................................... 11 

1.3 Research design ........................................................................................................................... 12 

1.4 Expected results .......................................................................................................................... 12 

2. Glossary ............................................................................................................................................. 13 

3. Literature Review ............................................................................................................................. 15 

3.1 Limitations in Building Information Modelling (BIM) and IFC ..................................................... 15 

3.2 The Semantic Web ....................................................................................................................... 16 

3.3 BIM and the Semantic Web ......................................................................................................... 17 

3.4 Sensor Semantic Web .................................................................................................................. 18 

3.5 BIM and sensor data .................................................................................................................... 19 

3.6 Using Linked Data to integrate BIM and Semantic Sensor Web ................................................. 20 

4. Methodology..................................................................................................................................... 23 

4.1 Data collection ............................................................................................................................. 23 

4.1.1 Data sources selection ......................................................................................................... 23 

4.1.2 Obtaining data access .......................................................................................................... 23 

4.2 Data analysis ................................................................................................................................ 24 

4.2.1 Data characteristics observation .......................................................................................... 24 

4.2.2 Obtaining data schema ........................................................................................................ 24 

4.3 Data conversion ........................................................................................................................... 24 

4.3.1 Resources naming strategy definition .................................................................................. 24 

4.3.2 Ontology development ........................................................................................................ 25 

4.3.3 Data sources transformation and merging .......................................................................... 25 

4.4 Data linking .................................................................................................................................. 25 

4.4.1 Identifying linking objects .................................................................................................... 25 

4.4.2 Relationships clarification .................................................................................................... 26 

4.4.3 Choosing performing tools  .................................................................................................. 26 

4.5 Query blocks development ......................................................................................................... 26 

4.5.1 User demands analysis ......................................................................................................... 26 

4.5.2 Query topics selection .......................................................................................................... 26 

4.5.3 SPARQL blocks development................................................................................................ 27 



Table of Content 

4 

 

4.6 Data visualization ........................................................................................................................ 27 

4.6.1 Inviting users querying ......................................................................................................... 27 

4.6.2 Performing SPARQL blocks ................................................................................................... 27 

4.6.3 SPARQL results visualization ................................................................................................ 27 

5. Case Study ......................................................................................................................................... 29 

5.1 Data collection ............................................................................................................................. 30 

5.1.1 Data sources selection ......................................................................................................... 30 

5.1.2 Obtaining data access .......................................................................................................... 31 

5.2 Data analysis and conversion ...................................................................................................... 35 

5.2.1 Resources naming strategy definition .................................................................................. 35 

5.2.2 Ontology development ........................................................................................................ 35 

5.2.3 Data sources transformation and merging .......................................................................... 36 

5.3 Data linking .................................................................................................................................. 39 

5.4 Query blocks development ......................................................................................................... 40 

5.4.1 User demands analysis and query topics selection .............................................................. 41 

5.4.2 SPARQL blocks development................................................................................................ 42 

5.5 Data visualization ........................................................................................................................ 44 

6. Conclusion ......................................................................................................................................... 49 

References ............................................................................................................................................ 53 

Appendix A ............................................................................................................................................ 57 

Appendix B ............................................................................................................................................ 59 

Appendix C ............................................................................................................................................ 67 

Appendix D ............................................................................................................................................ 79 

Appendix E ............................................................................................................................................ 87 

 

 

 

 

 

 

 

 

 



Summary 

 

5 

 

Summary  

Recent years, the trend to connect data from various sources becomes more and more 

obvious. The Semantic Web is developed to facilitate information linking, sharing and reusing 

across application, enterprise, and community boundaries. Linked Data, which lies at the heart 

of the Semantic Web, is able to make the Semantic Web a reality through creating interrelated 

data. In the building domain, Building Information Modelling (BIM) is popularly used to 

integrate building data among different life phases  and different sub-disciplines. BIM is 

recognized as having a good effect in containing various building related information. 

However, the current integration between BIM and sensor data has some problems, like data 

interoperability troubles between data input and output. Since there already exist experiences 

in processing sensor data with the Semantic Web technologies, and the integrated result 

“Semantic Sensor Web” is argued for bring the usefulness of the sensor data to its full 

potential, this integration approach could also be implied in BIM and sensor data integration. 

In this thesis, a Linked Data approach is developed to achieve information integration between 

BIM and sensor data for the facility managers’ building performance analysing needs. The 

thesis is constructed of six chapters to clarify and verify this integration method. Chapter 1 

discusses the research design background, the research questions and the research process. 

Chapter 2 is the glossary of this article. Chapter 3 holds the literature review of the current 

researches on BIM, sensor data, the Semantic Web and their integrations. Chapter 4 describes 

the methodology to integrate the BIM and sensor data by using Linked Data. Chapter 5 

testifies this methodology through a case study from TU/e’s Vertigo building. Last, chapter 6 

gives the reflections of this integration method and provides some future research 

recommendations. 

The methodology of this BIM and sensor data integration process is divided into six parts. The 

main flow path of the integration is collecting data, analysing data, transforming data, linking 

data, querying data and visualizing data. These technical processes are examined through the 

case study, and several query result visualizations are presented to help the facility managers 

analysing the building environment performances. 

In the case study, there are four different data sources. Through the Linked Data approach, 

these four data sources with different data processing systems are integrated into one RDF 

model, and are convenient to be synthetically processed and queried without format or 

domain boundaries.  It is testified that the Linked Data approach developed in this thesis, is 

effective to achieve the information integration between sensor data and BIM model, and 

could help the facility managers analysing the building operation performances through 

comprehensive information backup from different disciplines and data formats. 

 

 

 

 



Summary 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

 

7 

 

Abstract  

The information integration between BIM and sensor data could provide strong building 

information back up for the facility managers when they perform the building operation 

monitoring. However, there are some limitations on the current integration researches, like 

focusing on specific software, or relying too much on IFC schema. This thesis raises a Linked 

Data approach to integrate BIM and sensor data. This approach is able to integrate the BIM 

model with sensor data from various sources regardless of their format or domain boundaries, 

and provide the facility managers an unified way to comprehensively analyse and visualize the 

building operation performances.  A case study is performed at the end of the thesis to testify 

this BIM and sensor data integration approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

 

9 

 

1. Introduction 

The central goal for the development of a building model in 2000s, was to include all the 

related building information and made it available throughout the whole building life cycle 

(Korpela et al. 2015). A forerunner of the building information modelling project in Finland 

named RATAS, defined its goal in 1988 as produced a model for structuring all the data on a 

specific building, for the use of  design, construction and maintenance (Enkovaara et al. 1988). 

However, until now, it is recognized that this goal is not achieved, especially in the facility 

management domain. Annually, approximately $20 billion is lost in the US because of 

inadequate information access and interoperability problems in operation and maintenance 

phase (Newton 2004). 

Within the operation and maintenance phase, aspects like asset management, space 

management, financial accounting and human resources management are all integrated 

together. In order to reduce inefficient building performance and operational cost, 

comprehensively identifying and managing all the data related to facility management process 

is necessary. This results in an increasing volume of data that is needed to be classified and 

stored. Moreover, the information required by different stakeholders in the facility 

management domain is different in categories and detailed levels. So, different subsets of data 

should be provided on the demands to the users with various organizational separation. 

Building information modelling (BIM) is one of the most promising developments in the 

architecture, engineering and construction (AEC) industry, with the functions of decreasing 

project cost and delivery time, and increasing project productivity and quality (Azhar 2011). 

3D visualization as well as the interrelated building element and attribute data are two 

important advantages of BIM (John et al. 2013). BIM provides an effective framework to 

capture the needed information and facilitate the interoperability between AEC domains. 

However, with the broader context of the AEC industry, nowadays, not all building related 

information is described in the BIM process. Other relevant information should also be 

integrated to optimize the building performance. Moreover, the Industry Foundation Classes 

(IFC), which is an open data exchange format for BIM, is not sufficient for the system 

interoperability outside AEC domains (Curry et al. 2013). 

Sensor monitoring is an important dataset for building management during operation phase. 

With the sensor data, operation personnel is able to have an effective and efficient control 

over the building system. However, as a result of sensor data’s time-related attribute, as well 

as various sensor data formats, there aren’t many outcomes in integrating sensor data into 

BIM presentations. The current utilization of BIM focuses on its use as a static information 

repository and hardly concerns about building operationnal data and its monitoring. It could 

achieve greater value in making use of the building information from BIM and the time-related 

sensor monitoring information to provide a strong backup for further dynamic data analyses 

through building operation. 

To represent the cross-domain information, the Semantic Web technology could be used on 

BIM and sensor information integration. And its core part--Linked Data, aims at building links 

between data from various data sets, so that data sets are not isolated data islands and 



1. Introduction 

10 

 

achieve data integration (Radulovic et al. 2015). The further developed concept “Semantic 

Sensor Web” (Sheth et al., 2008) from the Semantic Web, makes great contributions to  the 

reusing and interoperability of sensor data. The combination of BIM and the Semantic 

technologies, along with the Semantic Sensor Web, make all the building data in BIM reusable 

outside its scope and easier to incorporate with dynamic building monitoring data to provide 

a holistic view of building operation.  

In this research project, an intention of using Linked Data to combine BIM and sensor data, 

which enables monitoring and control of the building operation, is raised. And the research 

method is examined through a case study that generates from facility manager’s perspective 

to analyse the building operation results. 

 

1.1 Problem definition 

Facility managers make building controlling decisions with comprehensive building operation 

data. Among these operation information, data from BIM and sensors is a big part to support 

building performance analysis. Since sensor data files normally have large size and multiple 

data formats, nowadays they are separated operated with BIM. Moreover, storing dynamic 

and temporary sensor data in a static building model is easy to cause troubles on data 

operating.   

However, integrating BIM model and sensor data is necessary, as sensor data is generated for 

building elements’ monitoring and needs to be pointed to its monitoring object, and also BIM 

model needs to present the operational performances through sensor data. The 

comprehensive building information attributes from BIM provide facility managers a holistic 

building information context to analyse monitoring data from sensors. The building 

information repository in BIM can also be used to store sensor-related information, like sensor 

manufacturers, sensor maintenance records and other supplementary sensor information, 

which can help facility managers grasping sensor using and strengthening building information 

repository. In addition, the 3D visualization of BIM gives facility managers an intuitive way to 

monitor building operation and judge the correlations between different building spaces’ 

performances. From the integration of the sensor monitoring data as well as related sensor 

supplementary information and the BIM model, a overall building information model is 

created for monitoring and maintenance purposes of facility managers.   

To achieve the integration, sensor monitoring software or BIM applications are not sufficient. 

Sensor monitoring software does not have the building information repository function, while 

BIM and IFC format have inherent weaknesses in storing cross sources information. So, a third-

party platform is needed to incorperate these two information technologies.  

The Semantic Web, known as “an extension of  the current web in which information is given 

well-defined meaning, better enabling computers and people to work in 

cooperation“ (Berners-Lee, 2001), is such an integrating platform. The Semantic Web provides 

a common framework to present multiple domains and formats information together with 

their inherent semantics, and makes connections between data to enable information sharing, 



1. Introduction 

11 

 

reusing and reasoning. The Linked Data approach, which is the core technology of the 

Semantic Web, is able to present sensor information in various original formats  together with 

BIM model in one unified format. Moreover, with this approach, links can be built between 

building information and different sensor data to make the cross-domain information as a 

whole and to provide further query for facility managers. This provides comprehensive 

information backup for building operation and analysis.  

In fact, the Sematic Web and Linked Data approaches can remedy many inherent structural 

disadvantages of BIM and the IFC format, and they can be well cooperated with sensor data. 

A more detailed discussion is presented in chapter 3 the literature review part.  

To make a good combination, an integration can be developed to make full use of the three 

technologies: the Semantic Web, BIM and sensor data. In this research, a Linked Data 

approach is used to integrate BIM properties with sensor data, and help facility managers 

querying building performances and visualize them. A detailed description of the process will 

be presented in the following chapters. 

  

1.2 Research questions  

The information integration of the building properties and the sensor data monitoring is able 

to give facility managers a more concrete and holistic view of the building operation. Linking 

building operation statuses with the properties of the building elements, enables managers to 

make quick and balanced decision in different operation scenarios. In this research, BIM and 

IFC files are used to represent building objects. Linked data and the Resource Description 

Framework are employed to enable the data exchange between the sensor information and 

the building properties.  

To achieve this data integration, during the integrating process, several research questions 

are addressed. 

Main question: 

� How to integrate a BIM model with sensor data to support facility managers in 

analysing building performances by using Linked Data ? 

Sub questions: 

� How to collect and convert different data sets into RDF format for building 

performance analyses? 

� What kinds of links between BIM and sensor data can be created? How to achieve the 

linking? 

� How can the integrated data help facility managers analysing building performances? 

 

 

 



1. Introduction 

12 

 

1.3  Research design 

The research designis divided into six parts, as shown in figure 1. 

The research begins from collecting data, both BIM model and sensor data, as well as other 

additional data that needs to be integrated. Part 2 analyses the data characteristics to have a 

basic outlook of the overall data structure and help performing the next parts. The following 

part 3, part 4 and part 5 form an iterative loop and may be repeated several times in the whole 

developing process, in order to test and modify each step’s results. Part 3 focuses on turning 

all the original data sets into RDF format. Part 4 aims at creating links between data and 

integrating all the data and links into one graph. The query blocks developed in part 5 can be 

used to exam the results’ accuracy of the previous two parts. Moreover, the developed query 

blocks can directly reflect facility managers’ information demands. Part 5 will provide several 

options for the users to query the building’s operational performance through the integrated 

information. The last part is to visualize the query results from the facility managers’ query 

inputs. The query results will be visualized in a 3D representation of the building model with 

intuitive values indication. 

 

1.Collect 

Data

2.Analyse 

Data

3.Convert 

Data
4.Link Data

5.Develop 

Query 

Blocks

6.Visualize 

Data

User Input

 

Figure 1 Research process 

 

 

1.4 Expected results 

This research develops a process to integrate BIM models and sensor data using a Linked Data 

approach. It also provides ways for facility managers to analyse the building operation 

performances through performance visualization. Through a case study, the whole process 

and methodology will be verified. 

 

 

 



2. Glossary 

 

13 

 

The abbreviation for Architecture, Engineering and 

Construction. 

A process to create and manage digital 

representations of buildings. 

A standard data modelling language for product 

data. 

An open source software library that helps users 

working with the IFC file format. 

An ontology for building data from IFC. 

An exchange file format for BIM data. 

A method to publish semantic data. 

A formal naming and definition of the types, 

properties, and interrelationships of the entities in 

a particular domain. 

The abbreviation of the Predicted Mean Vote on 

thermal comfort calculation. 

The abbreviation of Predicted Percentage of 

Dissatisfied on thermal comfort calculation. 

A general-purpose language for representing 

information in the Web. 

A data-modelling vocabulary for RDF data. 

 

An ontology to present semantic data for smart 

appliances in buildings and households. 

A marriage of sensor and the Semantic Web 

technologies. 

An RDF query language for databases. 

 

A framework allowing data to be shared and 

reused across application, enterprise, and 

community boundaries. 

2. Glossary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AEC 

 

Building Information Modelling 

(BIM) 

EXPRESS 

 

IfcOpenShell 

 

IfcOWL 

Industry Foundation Classes (IFC) 

Linked Data 

Ontology 

 

 

PMV  

 

PPD 

 

Resource Description Framework 

(RDF) 

Resource Description Framework 

Schema (RDFs) 

Smart Appliances REFerence 

(SAREF) ontology  

Semantic Sensor Web 

 

SPARQL Protocol and RDF Query 

Language (SPARQL) 

The Semantic Web 

 



2. Glossary 

14 

 

 

 

The World Wide Web Consortium 

(W3C) 

Turtle 

 

Uniform Resource Identifier (URI) 

Uniform Resource Locator (URL) 

 

Web Ontology Language (OWL) 

 

WGS84 Geo Positioning Ontology 

The main international standards organization for 

the World Wide Web. 

A format for expressing data in the RDF data 

model. 

A string of characters used to identify a resource. 

A reference to a web resource that specifies its 

location on a computer network and a mechanism 

for retrieving it. 

A Semantic Web language designed to represent 

knowledge about things and their relations. 

A vocabulary for representing latitude, longitude 

and altitude information in the WGS84 geodetic 

reference datum. 



3. Literature Review 

 

15 

 

3. Literature Review 

In recent years, sensor monitoring is increasingly adopted in various industries. Great benefits 

have been brought in disciplines like Geographical Information Systems (GIS), weather 

forecasting, traffic planning and management, and smart homes. Countless sensors with 

different types and capabilities are distributed across the globe. The weak integration and 

communication between these sensors lead to a dilemma of “too much data, but not enough 

knowledge” (Sheth et al., 2008). Gartner predicted that “by 2015, wirelessly networked 

sensors in everything we own will form a new web. But it will only be of value if the ‘terabyte 

torrent’ of data it generates can be collected, analysed and interpreted” (Raskino et al., 2005). 

Regardless of how much of Gartner’s prediction comes true, plenty of researches appeared in 

increasing the interoperability and linkage of sensor data. 

In this section, current studies in the fields of sensors, the Semantic Web and BIM, as well as 

their pairwise integrations are briefly discussed. A theoretical certification of combination 

between Semantic Sensor Web and BIM for helping building management are conducted in 

the end. 

 

3.1 Limitations in Building Information Modelling (BIM) and IFC 

Building Information Modelling is one of the most powerful developments in the AEC 

industries. With BIM technology, various virtual models from 2D drawings to 3D presentations 

can be accurately constructed. It can also be counted as a central repository of the building 

data served for all the project stakeholders through the whole project lifecycle (Eastman et 

al., 2011). The Industry Foundation Classes (IFC) is a commonly used collaboration format for 

BIM. It is an EXPRESS schema within the STEP family of standards (ISO 10303) (Liebich et al., 

2006) that is developed by BuildingSMART, formerly known as the International Alliance for 

Interoperability (IAI). It is developed for defining extensible sets of consistent data to 

represent building information for exchanges between AEC software applications (Eastman et 

al., 2011). 

However, within the wider context of the building industry, BIM is only one silo of information 

and other relevant information must also be integrated with it (Curry et al., 2013). Moreover, 

during implementing IFC models into practical applications, several serious problems 

appeared. 

Pauwels et al. argued that IFC could only describe information within its own schema to enable 

the interoperability among other IFC files. When it comes to remote domains such as 

geographic information, or niche domains as well as research faces within building industry, 

its limitation in expression ranges appears. Also, according to various BIM based designs and 

implementations, multiple descriptions of the same information may exist in different IFC files. 

This requires extra design efforts from software engineers to reuse the information (Pauwels 

et al., 2011). 



3. Literature Review 

16 

 

Fischer & Kam mentioned that the information partitioning during the IFC model 

transformation was not available, so that stakeholders always had to receive the whole size 

model instead of only picking up the related information. Also, versioning and controlling user 

rights through the file exchange is practically impossible (Fischer & Kam, 2002).  

Beetz et al. addressed that the IFC format was not based on a mathematically rigid theory like 

OWL and lack of formal rigidness. The EXPRESS modelling language used by IFC has limitations 

in resources reuse and interoperability. In addition, within the STEP world, some structural 

shortages like file-based indexing and attribute scoping local to entity definitions cause 

obstacles for IFC built-in distribution (Beetz et al., 2009). 

To extend the development possibilities of IFC, the Semantic Web technologies appears as a 

strong support to facilitate building information interoperability, interaction and rigidness. 

 

3.2 The Semantic Web  

Besides the creation of knowledge through observation, networking of knowledge is the 

foundation to generate new knowledge. Integrating new knowledge into the existing 

information space of the web, and exploiting semantics to create an overall knowledge 

network to bridge the islands between people, organizations and systems, is a new way to 

promote innovation and increase productivity (Decker & Hauswirth, 2008). 

The Semantic Web, as defined by the W3C Semantic Web Activity, is a common framework 

based on Resource Description Framework (RDF), to enable data sharing and reusing across 

applications, enterprises, and community boundaries1. The Semantic Web is about linking, 

and the feature is that the links themselves in the Semantic Web all have specific meanings. 

As the RDF language defines, all the information described in the Semantic Web is presented 

in the basic unit “triple”: subject, predicate, object. These three parts in triples have their own 

meanings. This equips every information part in the Semantic Web with semantic meaning 

and is convenient for machine reasoning. 

There are two ways to build the Semantic Web, 1) linking the information that exists within 

documents, 2) and allowing data itself to be on the Web2.  There are two main steps to use 

the Semantic Web, 1) providing formal and machine-readable specifications for the 

conceptualized information communities, i.e., by creating  ontologies, and 2) using inference 

engines to explore implicit relations, facts and potential contradictions (Janowicz et al., 2010).  

Linked Data, which lies at the heart of the Semantic Web, refers to the collection of 

interrelated data sets with standard and manageable formats on the Web3. In summary, 

Linked Data is about using the Web to create semantic links between data from 

differentsources. These sources may be as diverse as databases maintained by two 

                                                           
1 https://www.w3.org/2001/sw/ 
2 https://journals.ala.org/ltr/article/view/4669/5539 
3 http://www.w3.org/standards/semanticweb/data 

 



3. Literature Review 

17 

 

organisations in various geographic locations, or just heterogeneous systems within one 

project (Bizer et al., 2009). The Linked Data concept was first introduced by Tim Berners-Lee 

in 2006 (Berners-Lee, 2006). And he suggested four main principles to publish Linked Data: 

• Using URIs as names for things 

• Using HTTP URIs for better information processing  

• Using standards like RDF and SPARQL to provide useful information 

• Including links to other URIs for discovering  

Basic Semantic Web technologies include data modelling language RDF (Web, 2011), the 

ontology representation model RDF Schema (Brickley & Guha, 2000), the added logical 

formalism Web Ontology Language (Patel et al., 2004), as well as RDF query language SPARQL 

(Prud & Seabome, 2008). The cooperation of these technologies helps integrating of and 

reasoning on data on the web. 

 

Through relating data attributes and metadata features to other resources on the web of data, 

the Semantic Web users will be able to integrate physical world data and logical world data to 

do things like drawing conclusions, creating business intelligence, enabling smart 

environments, supporting automated decision making systems, etc. As an important 

component of “Web 3.0” (Shannon, 2006), the Semantic Web has a potential and bright future.  

 

3.3 BIM and the Semantic Web 

BIM is helpful for 3D visualisation, clash detection but less considered in information 

communication between applications for usages like building analyses (Becerik & Rice, 2010). 

The IFC format is just developed for the communication of building information among 

different BIM applications. Nevertheless, as a result of the broad correlations and various 

domains of building industry, applications for building design and management are not only 

limited to the IFC exchange format. Information distortion and/or loss exists not only in IFC 

conversion from or to other file formats, but also within the IFC-based building information 

re-use(Pazlar & Turk, 2008). It is impossible to reuse the IFC data in an application that 

employs even a slightly different schema, as well as describe information exceed pre-defined 

schema (Pauwels et al., 2010).  

The root of these IFC shortages lies in the nature of EXPRESS modelling language in converting 

semantically rich information. And the Semantic Web technology can bridge this through 

presenting multiple domains and formats information together with their inherent semantics 

(Bemers et al., 2001). With the Semantic Web technology, it is applicable to connect multiple 

building information schema together with the IFC schema, instead of focusing on one central 

IFC standard. The web of information becomes the central information source to freely 

provide information and services according to every stakeholder’s need. 

Many researches have shown efforts in incorporating IFC with the Semantic Web technology. 

For example, Beetz et al. developed an approach to achieve the translation from IFC schema 

to Semantic Web graph (Beetz et al., 2009). Yurchyshyna showed how semantic queries could 



3. Literature Review 

18 

 

conduct building conformance checking against building codes on BIM models (Yurchyshyna 

& Zarli). Pauwels developed a semantic rule checking method for BIM model on acoustic 

performance (Pauwels et al., 2011).  

Underwood and Isikdag raised three attributes that affected the semantic query’s success rate 

when integrated the Semantic Web and BIM: 

• The integration level of distributed building information, 

• The success level in deriving information mass from multiple loosely coupled Web 

resources, 

• How well the query can be interpreted, as well as reasoning and retrieval can be 

accomplished, upon the interpreted query (Underwood & Isikdag, 2011). 

 

3.4 Sensor Semantic Web 

Recent years, considerabl3 research efforts have been put into large scale sensor networked 

projects, like SensorWeb4 and the SENSEI project5. Meanwhile, several industry specifications 

related to sensors, sensor data models, and sensor web services have been developed by the 

Open Geospatial Consortium (OGC) (Sheth et al., 2008). The Sensor Web Enablement (SWE) 

initiated by OGC is responsible for standards development that makes sensors and their 

gathered data available on the Web (Janowicz et al., 2010). Some of the language 

specifications are listed below: 

• Observations and Measurements (O&M). Standard models and XML schema that encode 

observations and measurements from a sensor. Sensor data can be archived or real-time. 

• Sensor Model Language (SensorML). Standard models and schema that describe sensor 

systems and processes. For example, provide information for locating sensor observations 

and processing low-level sensor observations. 

• Transducer Model Language (TML). Standard models and schema that describe 

transducers and support real-time sensor data transformation (Sheth et al., 2008). 

However, most of the sensor data descriptions that have been developed are based on the 

XML language. This leads to a significant weakness in developing sematic interoperability and 

making links between described resources and existed knowledge (Wei & Bamaghi, 2009). 

To overcome these limitations of XML-based sensor description, semantic web technologies 

have been applied. Semantic annotation using sensor-domain ontologies that based on Linked 

Data principles has been applied to represent sensor web information. And the knowledge 

discovering from the annotated sensor data has two levels: the low-level is for sensor 

observation, discovery and retrieval, and the high-level is for service planning and 

recommendation. The two-level annotated sensor data exploring can be performed through 

Semantic Web technologies like RDF, RDF Schema, Web Ontology Language and  SPARQL 

Protocol and RDF Query Language to support interoperability. Semantic annotation can easily 

                                                           
4 http://research.microsoft.com/en-us/projects/senseweb/ 
5 http://www.ict-sensei.org/ 



3. Literature Review 

19 

 

integrate abundant sensor information, and logical reasoning using OWL and SPARQL can 

conduct advanced sensor data retrieval and query tasks (Wei & Bamaghi, 2009). 

As a result, the concept of “Semantic Sensor Web” has been brought forward by Sheth et al. 

In his theory, sensor data is annotated with semantic metadata to increase interoperability 

and to provide contextual information for situation representation. A semantically rich sensor 

network will provide three types of semantic metadata for analysing: spatial, temporal and 

thematic. Spatial metadata is the information about sensor locations and geographical 

reference system, local system or named locations. Temporal metadata is the information 

about time instant or interval of sensor data capturing. Thematic metadata is about sensor 

observation’s real-world states, like objects and events (Sheth et al., 2008). 

Besides the ontology developed by Sheth et al as mentioned above, many other sensor data 

ontologies has been developed. OntoSensor developed a deep sensor ontology that extended 

the IEEE Suggested Upper Merged Ontology (SUMO)6 and enables sensor parts compatibility 

determination, dynamic sensor selection and tasking (Russomanno et al., 2005). Eid et al. 

proposed a two-layer prototype ontology that also excerpted SUMO. This ontology uses 

SUMO as a root definition and adds two sub-ontologies: the sensor data sub-ontology and the 

sensor hierarchy sub-ontology (Eid et al., 2007). Kim et al. raised a service-oriented sensor 

ontology that is developed based on ontologies like SUMO and OntoSensor. It enables service-

oriented services for future ubiquitous computing (Kim et al., 2008). Bamaghi et al. proposed 

a sensor data ontology that is built on Sensor Web Enablement (SWE) and SensorML data 

model, to uniformly described the semantic relationships and operational constraints 

(Bamaghi et al., 2009). Every ontology has its own focused situation and also has some 

limitations such as that they can not present sensor data specification details or complexed 

relationships between sensor data. Based on different sensor data use cases, different 

ontologies should be chosen. More comprehensive and micromesh ontologies will be further 

proposed. 

As Wei and Barnaghi concluded: “Semantic Web technologies is an ideal choice to represent, 

manage, store, analyse, and reason over the observed sensor data, enhancing interoperability 

among heterogeneous networks to build Semantic Sensor Web, and to bring usefulness of the 

sensor data to its full potential” (Wei et al., 2009). The Semantic Sensor Network will be the 

future trends for sensor monitoring. 

 

3.5 BIM  and sensor data 

BIM models are favourable for their interactive 3D views of building plans, sections and 

elevations (Azhar et al., 2008). Visualizing the sensor implementation in BIM applications 

enables system users to see the exact geographic information of sensors, which provides a 

more intuitive sense for building operation. What’s more, BIM is identified as “future IT 

solution” (HM Government, 2012). The “object-oriented” basement (Yan & Damian, 2008) and 

                                                           
6 http://www.ontologyportal.org/ 



3. Literature Review 

20 

 

whole life-cycle information management of BIM enable a more holistic building information 

context for facility managers to understand sensors’ feedback and conduct decision making.  

The solution for BIM and sensor data integration for facility management has been researched 

and practiced for several years (Riaz et al., 2014). According to Riaz’s literature review, from 

2005, there have been continuous attempts in combining BIM and sensor technologies for 

sensor-monitored environments to help building management. For example, Yin proposed an 

improvement to building services controlling through the Building Management System (BMS) 

and BIM (Yin, 2010). O’Flynn et al. designed a miniaturized Wireless Sensor Network mote for 

building monitoring, and used it as an input tool for BIM models (O’Flynn et al., 2010). Woo et 

al. developed a prototype of BIM-based Baseline Building Model (B3M) along with Sensor 

Network to monitor building environments (Woo et al., 2011). Cahill et al. monitored the 

sensor data and identified it in IFC file (Cahill et al., 2012). Riaz et al. developed a prototype 

system using BIM to present wireless sensor data in order to help building monitoring (Riaz et 

al., 2014). 

However, some of these BIM and sensor integrated researches like Yin’s and O’Flynn’s are 

theoretical developments and only establish a basic framework, but lack of practice and 

detailed research. Some researches like Woo’s and Riaz’s are focused on one BIM software 

platform and may had problems when convert the integrated data into other BIM applications. 

Researches like Cahill’s are focused on relying IFC schema so that the result value is partly 

blocked by the IFC schema’s inherent weakness, like having limited interoperability between 

different applications as well as with other data resources. So, purely combining sensor data 

with BIM is not sufficient, additional  information integration and representation technologies 

have to be added.  

 

3.6 Using Linked Data to integrate BIM and Semantic Sensor Web 

As analysed above, the IFC format is able to contain whole life-cycle building information, but 

has limitations in resources expansion, reuse and interoperability. The Semantic Web is good 

at integrating various information resources as well as generating and sharing new knowledge. 

If BIM is combined with the Semantic Sensor Web, web resources like real time sensor data, 

geographical reference information and weather information can be linked with building 

models. When the information provided by the Semantic Sensor Web integrates with the 

Building Information Modelling, the full building information context can be generated and 

make the decision making results more accurate and up-to-date. Moreover, as all the building 

and sensor related information is put on the web in terms of triples, data sharing, reusing and 

interoperability between different applications and different users will have lower barriers. 

Last but not least, the integrated real-time sensor network information with BIM can help to 

provide synthetical  queries based on overall building and environment context. Semantic 

queries such as “Would you provide me  indoor quality for the in-use meeting rooms on the 

fifth floor? ”, or “Would you provide me the thermal comfort index distribution for the whole 

building? ”, or “Would you provide me the number of working elevators in the building 



3. Literature Review 

21 

 

between 12:00 till 14:00? ”, can provide strong back up for quickly decision makings on 

building management for facility managers. 

The published researches on the integration of BIM and Semantic Sensor Web are not rich. 

Underwood and Isikdag mentioned Semantic Sensor Web with BIM as emerging technology 

for BIM 2.0 (Underwood & Isikdag, 2011). Corry et al. utilised Linked Data between sensor 

network, BIM and other data resources to perform thermal comfort assessment of a building 

space under Performance Framework Platform (PFP)(Corry et al., 2013). But Corry’s research 

is focused on the PFP OWL ontology development and the reconfiguration of an existing PFP 

tool using this ontology. Corry later further developed the PFP based on BIM, sensor network 

and other resources information, and raised a Performance Management Framework for a 

holistic building performance management(Corry, 2014). 

Future research directions can be achieving more practical use case studies in integrating 

Semantic Sensor Web with BIM and applying the integrated results to more applications, for 

example, visualization platforms or building management systems, in order to examine the 

benefits that Linked Data can bring to sensor network and BIM, as well as explore further 

improvements for this integration method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Literature Review 

22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Methodology 

 

23 

 

4. Methodology 

In chapter 1 the introduction part, the research questions and research design of this thesis 

are introduced. This methodology chapter is focused on describing the technical developing 

process for the BIM and sensor data integration by using Linked Data. 

The methodology model is presented in figure 2. The whole technical process includes six 

major parts, as section 1.3 shows. Every part in the process also includes several steps to 

complete. Each of these steps will be introduced in the following sections. 

Data Collection

- data sources selection

- obtaining data access 

Data Analysis

- data characteristics observation

- obtaining data schema 

Data Conversion

- resources naming strategy definition

- ontology development

- data sources transformation and merging

Data Linking

- identifying linking objects 

- relationships clarification

- choosing performing tools 

Data Visualization

- inviting users querying

- performing SPARQL blocks

- SPARQL results visualization

Query Blocks Development

- user demands analysis

- query topics selection

- SPARQL blocks development  

Figure 2 Methodology 

 

4.1 Data collection 

Data collecting is the first step of Linked Data generation and can easily affect the whole 

process results. The aims of data collection is selecting suitable data sources to perform the 

integration task. 

4.1.1 Data sources selection 

The key criterion for data selection is that the data can meet the facility managers’ specific 

information needs, like interior environment monitoring, facility operation status reflection. 

Apart from the facility managers’ needs,  the accuracy, continuity and stability of the data 

should be an important criterion. The synthesis of these two criteria can help selecting useful 

and suitable data sources for the information integration. To well serve the facility managers’ 

information needs, not only direct data that meets the needs, but also auxiliary and exegetic 

data should be collected.  

4.1.2 Obtaining data access 

Obtaining data access has two layers of meaning. The first layer of meaning is to find correct 

channels to receive the data. Most of the public domain data resources can be accessed 

without obstacles, but some private or organizational owned data may have identity 

requirements. Also, the platforms that the information is provided from may be different: file, 

web site, database, etc. Finding the suitable methods according to different platforms to save 

the data is the key point. 



4. Methodology 

24 

 

Obtaining data access also means collecting data with legal allowance. Authoritative data 

publishers may provide different applicable licenses for different end users, different using 

purposes and different processing methods. To avoid legal conflicts, it is necessary to identify 

the authoritative data publishers and related data using license. 

 

4.2 Data analysis 

When all the data resources have available legal licenses for further processing, the next step 

is to look into the data sets themselves. 

4.2.1 Data characteristics observation 

Data analyses begins from analysing how these datasets are structured and organized. The 

obtained formats of datasets may be heterogenous, and they have to be analysed in order to 

have a basic understand of what information is provided and it is provided in what kind of 

form. To help the following data processing, some of the data formats may need to be 

transformed. The preferred data formats can be determined according to the data organizing 

structure and the formats of other data sources. 

4.2.2 Obtaining data schema  

Obtaining data schema aims at having a basic understand of the various data-sets’ major 

concepts, as well as information overlap and expression differences. Analyse the relations 

among different major concepts to have a combined relational graph. This can help 

performing the following conversion and linking tasks, and also justify again that the joint data 

is enough to meet the facility manager’s information needs. 

 

4.3 Data conversion 

The converting data part is mainly about data transformation to RDF format. With the purpose 

of unifying data format and preparing for data linking, the data conversion is structured into 

three steps.  

4.3.1 Resource naming strategy definition 

In the four main principles of publishing Linked Data (Berners-Lee, 2006), Uniform Resource 

Identifier (URI) is required for naming things. For the URI naming, there are several forms and 

guidelines. For example, there are two basic forms of URI— hash URI and slash URI (Radulovic 

et al., 2015). There are also different guidelines that are helpful for URI design, like 10 rules 

for persistent URIs (SEMIC, 2012), and Providing and Discovering URI Documentation (Ree et 

al., 2012). However, for choosing a basic form of URI, the advantages and disadvantages of 

each basic form and also the preferred URI form for the data transform tools that will be used 

afterwards should all be considered. Besides the URI forms, clearly and succinctly showing the 

relationships and hierarchy between various resources is essential for URI design as well. 



4. Methodology 

25 

 

4.3.2 Ontology development 

An ontology is a formal specification of a shared conceptualization (Gruber, 1993). In 

computer science and information science, it is used to name and define types, properties, 

and interrelationships of entities from a particular domain. Radulovic raised seven steps to 

develop a well-designed ontology (Radulovic et al., 2015). The main idea of his ontology 

development method is referenced in this ontology developing step.  

Developing an ontology to describe resources and relationships from a merged domain, starts 

from considering the overall data content and structure, as section 4.3.1 describes, in order 

to grasp the main concepts forming the ontology and their connections. After that, a search 

for existing ontologies and the selection of some of these for reuse should be conducted. 

Reusing existing ontologies can help building a new ontology structure and makes the new 

ontology more accessible. For the information not defined in existing ontologies, new classes 

or properties should be created to represent it. 

4.3.3 Data sources transformation and merging 

The resources naming and ontology developing are all preparing for the data transformation 

step. As Radulovic et al. suggested, select a RDF serialization( RDF/XML, Turtle, N-Triples etc.) 

as data transformation format. Then select the transformation software to achieve the RDF 

conversion based on the input and output data formats that the software supports. Since data 

sources may be collected with different formats, like spreadsheet, XML, and IFC, several 

transformation tools may be needed. Afterwards, perform the data transform to RDF format, 

and merge the transformed RDF files into one model. This can be produced through Java RDF 

API or other software like Google Refine. The evaluation of the data transforming and merging 

result can be executed by SPARQL queries in the following part. If the SPARQL queries go 

smoothly and get correct results, the data transforming and merging part works well. 

 

4.4 Data linking 

Data linking aims at creating links between the RDF data that comes from different data 

sources. The data resources’ content analysis and schema extraction have been performed in 

the data conversion part. Full preparation has been made for the data linking. 

4.4.1 Identifying linking objects 

The RDF data from different data sources are isolated in the merged model. Selecting which 

objects from various sources to perform linking is dependent on the goal of the performance 

task that developed for facility managers. The new created links should help users to navigate 

between different information islands and to collect needed information. Taking into account 

the data ontology, choose the linking objects that can help building most direct and 

convenient relationships between RDF data from different sources. 

 



4. Methodology 

26 

 

4.4.2 Relationships clarification 

After identifying linking objects, clarifying resources relationships through suitable properties 

is the next step. The property selection can take a reference of existing former ontology 

vocabularies. If no satisfied properties were defined, then create some clear and easy-

understanding properties by yourself.  

4.4.3 Choosing performing tools 

Use a tool to perform the linking creation among RDF data. There are many tools providing 

RDF linking function, like LN2R, Google Refine, Jena Apache API, etc. Different tools have 

different data requirements and function configurations, like RDF serialization limitation, data 

structure requirements and data size requirements. Selecting a suitable tool based on the data 

attibutes can make the linking process easier. 

 

4.5 Query blocks development 

The query design reflects facility managers’ information demands that are going to be met in 

this research on building operation controlling. It is designed based on available data and user 

demands that help managers to grasp building performances. Every query performs a specific 

topic. All the composed coding components for this query topic are collected as a whole and 

is called a “query block”, as a packaged block is more convenient than distributed codes for 

facility managers to call. The query blocks not only conduct SPARQL queries, but can also use 

query results to do some graphic comparison and calculations. 

SPARQL queries can be seen as a good evaluation of the results from data converting and data 

linking parts. They are able to test whether the ontology design is feasible, whether the RDF 

data transformation result is able to show original data structure, whether the data merging 

and resources linking work well, etc. Once the query results reflect some problems existing in 

the previous parts, the process begins again from the data conversion part needed to be 

examined again. 

4.5.1 User demands analysis 

The data sources in this research are sensor data and a BIM model. The users is focused on 

facility managers and aims at helping them mastering building operation performances. So, 

analysing facility managers’ possible information demand based on available sensor data and 

building information is the basement to design query blocks. The analyses can base on data 

content, user’s interview or literature study. 

4.5.2 Query topics selection 

After user demand analysis, pick up several topics that are daily necessary for facility managers’ 

building operation monitoring or synthetically conclusive analyses helping facility managers 

on building performance assess. 

 



4. Methodology 

27 

 

4.5.3 SPARQL blocks development 

When the query topics are fixed, the next step is developing SPARQL blocks. The blocks include 

the SPARQL query part and the query results processing part. The SPARQL query part extracts 

information among direct or indirect resources relationships. And the query results processing 

part performs further data deductions to help facility managers understanding building 

operation statuses. The different blocks are based on different query topics and all packaged 

for users’ callings from next visualization step. 

 

4.6 Data visualization 

Directly reporting to a facility manager with numeric query feedback lacks intuitive and 

necessary building information context. Visualizing query results within the building model or 

diagram presentation helps users easier to make quick and reasonable management decisions. 

4.6.1 Inviting users querying 

To make the query process user-friendly and to free facility managers from having to retrieve 

the data they wanted, the visualizing step first invites users to input a query topic. 

Corresponding input restrictions will come along with the invitation to help users 

standardizing query inputs. 

4.6.2 Performing SPARQL blocks 

As mentioned in the query blocks developing part, the various query blocks are capsulized in 

order to quickly response facility managers’ different query requests. Once the facility 

manager inputs a query request, the query operating platform will execute the corresponding 

SPARQL block and generate the analysed results.  

4.6.3 SPARQL results visualization 

The visualization of daily building performance monitoring is developed based on 

IfcOpenShell7, an open source software library that helps developers working with IFC file 

format. IfcOpenshell is used to make numeric query results reflected in various coloured 

building spaces based on IFC file. The different colours for the building spaces represent 

different numeric result ranges.  

The visualization of conclusively building performance assess is present in histogram, which 

helps facility managers comparing the building performance behaviours.  

The detailed visualization design will be elaborated in the case study. 

 

 

                                                           
7 http://ifcopenshell.org/ 



4. Methodology 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Case Study 

 

29 

 

5. Case Study 

In this chapter, a real case is used to apply the methodology described in chapter 4 and aims 

at achieving sensor data and a BIM model integration through Linked Data approach. 

The research building is named “Vertigo”. It is the department building of the Built 

Environment faculty in Eindhoven University of Technology (TU/e). Vertigo has many 

experiment sites among the building. For example, there are several sensor sites in Vertigo 

that install sensors for different education and research uses. In this case study, Vertigo floor6 

is selected as the research object, since there are several rooms erected with various sensors. 

 

 
Figure 3 Vertigo floor6 model 

 

The overall developing process for this case study is shown in figure 4. More detailed 

descriptions on the process will be displayed one by one, following the structure of the 

methodology chapter.  



5. Case Study 

30 

 

Spreadsheet:

Sensor Description

Interior Sensor Value

Outside Temperature Value

IFC:

Vertigo floor6 model

Data Sources

Sensor Description

Interior Sensor Value

Outside Temperature Value

Vertigo floor6 model

RDF Files

Integrated 

ontology

RDF Conversion Tools

Apache 

Jena

One Merged RDF FileRDF Links

Apache 

Jena

Merged Model Requested query

IfcOpenShell 

and 

matplotlib

Visualize Query Results

User Input

Apache 

Jena and 

rdflibSPARQL Query

Moment CO2 

Moment Inside and Outside Temperature

Moment Thermal Comfort 

Daytime Period Thermal Comfort

Seasonal Thermal Comfort 

Query Blocks

Vertigo Floor6 IFC Model

 

Figure 4 Case study process 

 

5.1 Data collection 

For this Vertigo Floor6 case, it is designed to help facility managers to manage different room 

environments. So different room environment performances are assumed to be the user 

information demand for facility managers. That means sensor data reflexes different room 

environment attributes and a BIM model are needed. 

5.1.1 Data sources selection 

There are five rooms in Vertigo floor6 that have installed sensors. The initial total number of 

sensors in the five rooms was 67, but some of them were moved to some other places, some 

needed repair, some sensors’ measuring items do not meet the facility managers’ information 

needs, and some measure the same value with different locations in a room. Since the sensor 

data selection criterion is reflecting different room environments, the sensor monitoring the 

same environment attributes in one room will not be repeated chosen. Apart from 

problematic sensors (no more work or has continuity issue) and sensors measuring the data 

that is not needed in this case study, there are only three rooms with 11 interior sensors left. 

The rooms and related sensor measuring items are shown in figure 5, under the category of 

“interior sensor values”. 



5. Case Study 

31 

 

Since there is available interior temperature sensor data in the three selected rooms, for the 

facility managers’ management convenience, the outside ambient temperature data is also 

collected in this case. The ambient temperature sensor is erected on the roof of Vertigo. As a 

result, facility managers can monitor inside and outside temperature differences. 

What’s more, to help facility managers understanding more about each sensor and to make 

the aspects of information available to query more abundant, a sensor description file is 

selected as supplementary data for those sensor values. 

Then find a BIM model to perform the building space attributes for sensor data. Since there is 

no existing BIM model for Vertigo, a Revit model for Vertigo floor6 is created based on a 2D 

floor plan for Vertigo floor6 that is published on TU/e’s official website. 

To conclude, all the data sources for the data integration process are listed in figure 5.  

  

Figure 5 Data sources 

 

5.1.2 Obtaining data access 

The interior sensor values are loaded by Vertigo’s facility managers into a Postgres database, 

and it can be viewed in the pgAdmin tool to help analysing data structure, as figure 6 shows. 

Jupyter Notebook is used to download SQL selected sensor data from the Postgress database, 

as figure 7 shows. A python coding example aiming at downloading an interior sensor’s data 

in three time instants: 09:30, 13:00 and 17:30 for the whole 2015 year through Jupyter 

Notebook is shown in appendix A. The sensor data is saved as a local CSV file. The reason to 

select these three time instants is that they are representative for the time periods that people 

come to Vertigo and start work, people leave floor6 for lunch and people start leaving Vertigo 

after a whole day’s work. These three moments can represent floor6’s building environment 

in different statuses.  



5. Case Study 

32 

 

The interior sensors are first installed for education uses, but they are also opened to the 

students from the Built Environment Department. Students are provided with the database 

server’s IP address, database name, student login name and password. Since in this case study, 

the sensor data is not planned to be published on the Internet, no further license needs to be 

applied for use.  

 

 

Figure 6 pgAdmin 

 

Figure 7 Jupyter Notebook 

The outside temperature values are collected from the sensor installed on the roof of Vertigo. 

These data values are stored in the Solar (and weather) Measurement Station of SolarBEAT, 

and can be downloaded as a CSV file through the Data Retrieval Tool of the SEAC SolarBEAT 

Server. TU/e provides login code of the server to its students and employees. Without 



5. Case Study 

33 

 

publishing the data values on the Internet, there is no other license-related issue for using the 

data as well. Figure 8 shows a sample of the data monitoring window of the server, and figure 

9 shows a sample of the window that exports data to a CSV file. 

There are totally 48 sensors in the roof project, and a sensor named “T_amb_avg” is picked 

up from these sensors as a data source for data integration. This sensor measures the average 

ambient temperature outside Vertigo every 1 minute. The exported CSV file for the sensor 

values is processed in Excel, to select only the sensor values at the three time instants: 09:30, 

13:00, 17:30 in every day of 2015, in order to keep pace with the interior sensor values and 

make the data size smaller. 

 

 
Figure 8 SAEC SolarBEAT monitoring 

 
Figure 9 Export data 

The sensor description file is generated from the sensor manager’s set-up records, as figure 

10 shows. The set-up Excel file has plenty of records on sensors’ descriptive data. The sensor 

description table for the data integration extracts some columns from the set-up records so 

as to provide necessary information for facility managers to have a quick sensor background 



5. Case Study 

34 

 

check, as figure 11 shows. Also, the outside temperature sensor is added to the description 

table to make it a complete sensor background guide for facility managers. 

 
Figure 10 Sensor set-up file 

 
Figure 11 Sensor description file 

 

The BIM model for Vertigo floor6 is created through Revit for the data integration use. It is 

designed based on the official 2D floor plan for floor6. In fact there are some partial areas in 

floor6 with double-floor. Since there is no selected interior sensor installed on the upper-floor 

of floor6, to make the rooms installed with sensors clear to see, no upper-floor is drawn in the 

Revit model. Meanwhile, a small room near the floor6 structure is created as the outside space. 

This is for the convenience of inside and outside temperature visualization section. The three 

rooms and the outside space are tagged with room names through Revit, so that they will be 

allocated with more IFC space attributes that will give favours in the query process. The BIM 

model is shown in figure12.  



5. Case Study 

35 

 

 

Figure 12 Rooms in floor6 

5.2 Data analysis and conversion 

The analysing data and converting data sections are combined together in this case study. 

These two processes are coordinated for the aim of creating a well merged RDF model.  

5.2.1 Resources naming strategy definition 

The basic form of URIs that was chosen for this case study is “hash URI”. This kind of URIs 

contains a fragment that separates the rest of the URI with a hash character “#”. The reason 

for choosing this URI form is that one of the following used RDF conversion tools, Google 

Refine, only supports hash URI. 

The naming path for the interior sensor data begins with “http://Vertigo/floor6/”, pluses 

unique sensor abbreviations and a “#” character, and then continues with the items to be 

described. The naming path for the outside temperature sensor data begins with 

“http://Vertigo/outsideTemperature#”, and continues with the items to be described. The 

general sensor description data begins with “http://www.tue.nl/sensor#”, and also 

concatenates with described items. The resources and properties related to BIM model will 

be named automatically by the RDF transformation tool. These resource and property names 

are only used as unique identifiers. As this use case does not contain Linked Data publishing 

process, the resources and properties do not need to be named under persistent uniform 

resource locator. 

5.2.2 Ontology development 

Since the theme of the collected data is about building and sensors, the developed ontology 

should also focus on describing the entities and relationships between the building elements 

and sensor data. Smart Appliances REFerence(SAREF) ontology (Smart Appliances, 2013) is a 

shared model of consensus that facilitates the match of existing assets in the smart appliances 

domain, and provides building-related classes to further expand model relationships. The 

SAREF ontology also imports an ontologies to explain geo space related entities: WGS84 Geo 

Positioning ontology (W3C Consortium, 2011). Meanwhile, IfcOWL ontology is used to 



5. Case Study 

36 

 

describe IFC-based vocabularies. To conclude, including the basic OWL, there are four existing 

ontologies applied in the case study’s  ontology for BIM and sensor data integration, as figure 

13 shows. 

 

Ontology for 

BIM and 

Sensor Data

Integration

SAREF

IfcOWL OWL

Geo

 

Figure 13 Model ontology composition 

In addition, some of the paths that SAREF ontology was designed to describe sensor values 

and sensor descriptive data are distributed and winding, which does not suit our case well. To 

overcome the obstacle, this case study completes the ontology for BIM and sensor integration 

through creating new classes and properties related to sensor values and sensor description 

data. For example, class sensorDescription:sensorName is added to the ontology to introduce 

different sensor names in the sensor description file. Class sensor:sensorRepresentation is 

added to the ontology to represent different sensors used in this case. Property 

sensor:isSensingValueOf represents the belonging relationship between the sensor and the 

sensor value.  

Figure 14 is created to shown the main part of the united ontology. The straight arrow 

represents the relationship between classes, and the dash arrow shows the relationships 

between the class and the individual. The blue, green and purple colours represent different 

description contents in the ontology: the sensor description part, the sensor value part and 

building model part. 

Moreover, a file describing RDF ontology schema for self-created classes, individuals and 

properties is put in the appendix B. 

5.2.3 Data sources transformation and merging 

The RDF serialization used in this case is Turtle, because of its readable attribute. Since the 

data sources’ original formats in this case are heterogenous, three transformation tools are 

selected to perform the Turtle transformation process. The detailed BPMN graph is shown in 

figure 15. 

The sensor description file and the outside sensor values are first transferred from XLSX format 

into CSV format through Excel. The reason for this transform is that the next transformation 

tool Google Refine will convert the time cells in XLSX format and CSV format into different 

expression means. So first unify the spreadsheet format to avoid expression differences.  

 



5. Case Study 

37 

 

 

◊ sensorDescription:sensorDescription

saref: hasSingularUnit:: xsd:String

saref: hasSensorType:: xsd:String

sensorDescription:locationHeight:: xsd:String

sensorDescription:hasSensingRange:: xsd:String

◊ sensorDescription:sensorName

rdfs:comment "the description URIs for 

sensors"^^xsd:string

●sensorDescription:DT03

●sensorDescription:DT06

●sensorDescription:T_amb_avg

◊ sensorDescription:room

rdfs:comment "the room URI where the 

sensor is located"^^xsd:string

●sensorDescription:Room+6.08

●sensorDescription:Vertigo+roof

●sensorDescription:Room+6.18

●sensorDescription:Room+6.20

◊ sensorDescription:category

rdfs:comment "the category for different 

sensors"^^xsd:string

●sensorDescription:ComfortStatief

●sensorDescription:Modbus

●sensorDescription:DL_SMS_Mete

Saref:hasName

geo:location

Saref:hasCategory

◊ sensor:sensorRepresentation

rdfs:comment "sensor representation 

for each sensor"^^xsd:string

●sensorDT03:DT03

●sensorDT06:DT06

●outsideTemperature:outsideTemperature

◊ sensor:sensorValue

rdfs:comment "record sensing value of sensor 

DT03 at a specific time"^^xsd:string

owl:hasValue:: xsd:double

Saref:hasSensingTime ::xsd:dateTime

●sensorDT03:0

●sensorDT03:1

●sensorDT06:0

●sensorDT06:1

●outsideTemperature:0

●outsideTemperature:1

◊ inst:IfcLabel

express:hasString:: xsd:String

◊ inst:IfcSpaceifcowl:longName_IfcSpatialStructureElement
◊ inst:IfcGloballyUniqueId

express:hasString:: xsd:String

ifcowl:globalId_IfcRoot

sensor:isSensingValueOf

● sensorDescription:0

● sensorDescription:2

● sensorDescription:1

● sensorDescription:3

 

Figure 14 ontology before linking process 

 

 



5. Case Study 

38 

 

B
IM

 a
n

d 
Se

ns
o

r 
D

at
a 

co
nv

er
si

on

V
er

ti
go

 6
th

 f
lo

o
r 

m
o

de
l

O
u

ts
id

e 

te
m

pe
ra

tu
re

TT
L

C
SV

IF
C

XL
SX

Se
n

so
r 

d
es

cr
ip

ti
o

n
In

te
rr

io
r 

se
ns

or

Get 2D graph 

from university 

website

Draw Revit 

model and 

export as IFC 

file

Transfer IFC file 

into TTL file

Vertigo floor6 building model

Vertigo floor6 building model

Run SEAC 

SolarBEAT 

Server

Download 

outside 

temperature

Transfer XLSX 

file to CSV 

format

Transfer CSV file 

into TTL file

Outside temperature

Outside temperature

Outside temperature

Login Postgress 

database server

Download 

interior sensor 

data

Transfer CSV file 

into TTL file

Get sensor 

description 

from Vertigo’s 

facility manager

Transfer XLSX 

file to CSV 

format

Transfer CSV file 

into TTL file

Sensor description

Sensor description

Sensor description

Interior sensor data

Interior sensor data

End data 

convert

Autodesk 

Revit

IFC to RDF 

converter

Google Refine

Google Refine

Google refine

 

Figure 15 RDF transformation BPMN



5. Case Study 

39 

 

Afterwards, Google Refine is used to transfer the sensor description file, the interior and 

outside sensor values from the CSV format into Turtle format. During employing Google Refine, 

the naming strategy and the developed ontology are used to guide the conversion, as figure 

16 shows. The transformed Turtle file submits to the developed resource naming strategy and 

the integrated ontology. 

The Revit model is exported as an IFC file and turns into a Turtle file through the IFC to RDF 

Converter. 

 

 

Figure 16 Google Refine transformation 

After all the data sources are converted into Turtle files, next is to merge these files. The tool 

used for the data merging is a Java API named Jena RDF. Jena RDF API provides RDF writing, 

reading, simple query and other Java-based methods. In the merging data section, Jena RDF 

API is used to create a model which combines all the RDF data in it. The Java coding part can 

be viewed in the appendix C. 

 

5.3 Data linking 

Even though the merged model is created, the data from different sources are still isolated. 

No path is available to navigate through different information islands. The Linked Data 

approach aims at connecting related data that has not been linked previously, to help people 

exploring connected information world. The tool for this data linking process is Apache Jena 

API. 

As the ontology development section shows, there are three parts of data in the merged 

model: the sensor description part, the sensor value part and the building model part. In the 

linking process, the sensor description part is settled as the middle part to generate links to 

the other two parts, as the sensor description part contains resources that has relationships 

with the sensor value part and the building information part.  



5. Case Study 

40 

 

The sensor description part has a “sensorDescription:room” class expressing the space 

location in string format, which can make link with “IfcLabel” class in the building model part. 

Since the “IfcLabel” class also aims at expressing room’s name string. The “sensor description” 

class in the sensor description part introduces each sensor’s basic descriptive information, 

which is correspondent with “sensor representation” class in the sensor value part that 

displays every sensor value’s sensor belongingness. These two connections link the three 

separated information part as one resources-interrelated model. This makes full preparation 

for the data query process. 

The ontology graph with linked relationships is shown in figure 17. And the corresponding 

linking properties’ schema is added to appendix D. The Java coding to achieve the links based 

on Apache Jena API is also put in appendix C. 

 

5.4 Query blocks development 

5.4.1 User demands analysis and query topics selection 

The sensor data collected for integration is about interior relative humidity, interior CO2 level, 

interior air speed, interior and outside air temperature and black globe temperature. All these 

measuring items have their own meanings to help facility managers monitoring building 

environment. 

High CO2 level in a room can influent people’s health and working efficiency. Monitoring 

building CO2 level and adjusting indoor ventilation according the monitoring data contribute 

to create a healthy and comfortable working environment. So, it is helpful for facility managers 

to analyse CO2 level in each room and make suitable reactions to the rooms that CO2 level 

frequently goes high.  

Even though Vertigo’s indoor temperature is nearly stable, it is still useful for facility managers 

and people in the building to be aware of inside and outside temperature differences. This can 

give instructions for people on clothing wearing inside and outside office.   

In Room 6.08, there are four kinds of sensors measuring values that are core variables for 

calculating human thermal comfort: relative humidity, air speed, air temperature, and black 

globe temperature. According to ANSI/ASHRAE Standard 55-2010, thermal comfort is defined 

as “condition of mind which expresses satisfaction with the thermal environment and is 

assessed by subjective evaluation” (ANSI/ASHRAE Standard 55, 2010). This index can be used 

to reflect people’s thermal comfort feeling about the working space. The Predicted Mean Vote 

(PMV) is recommended as an explicit definition of the thermal comfort zone by ISO Standard 

7730 (ISO, 1984). And the Predicted Percentage of dissatisfied (PPD) is a function of PMV to 

indicate the human dissatisfied rate of a specific thermal environment. Facility managers 

could use the thermal comfort index to assess the indoor thermal environment. Although 

there is only one room with enough sensor values to calculate the thermal comfort, facility 

managers can treat the thermal comfort of this room in different time period as 

representations to analyse floor6’s space comfort performances. 



5. Case Study 

41 

 

 

 

◊ sensorDescription:sensorDescription

saref: hasSingularUnit:: xsd:String

saref: hasSensorType:: xsd:String

sensorDescription:locationHeight:: xsd:String

sensorDescription:hasSensingRange:: xsd:String

◊ sensorDescription:sensorName

rdfs:comment "the description URIs for 

sensors"^^xsd:string

●sensorDescription:DT03

●sensorDescription:DT06

●sensorDescription:T_amb_avg

◊ sensorDescription:room

rdfs:comment "the room URI where the 

sensor is located"^^xsd:string

●sensorDescription:Room+6.08

●sensorDescription:Vertigo+roof

●sensorDescription:Room+6.18

●sensorDescription:Room+6.20

◊ sensorDescription:category

rdfs:comment "the category for different 

sensors"^^xsd:string

●sensorDescription:ComfortStatief

●sensorDescription:Modbus

●sensorDescription:DL_SMS_Mete

Saref:hasName

geo:location

Saref:hasCategory

◊ sensor:sensorRepresentation

rdfs:comment "sensor representation 

for each sensor"^^xsd:string

●sensorDT03:DT03

●sensorDT06:DT06

●outsideTemperature:outsideTemperature

◊ sensor:sensorValue

rdfs:comment "record sensing value of sensor 

DT03 at a specific time"^^xsd:string

owl:hasValue:: xsd:double

Saref:hasSensingTime ::xsd:dateTime

●sensorDT03:0

●sensorDT03:1

●sensorDT06:0

●sensorDT06:1

●outsideTemperature:0

●outsideTemperature:1

◊ inst:IfcLabel

express:hasString:: xsd:String

◊ inst:IfcSpaceifcowl:longName_IfcSpatialStructureElement
◊ inst:IfcGloballyUniqueId

express:hasString:: xsd:String

ifcowl:globalId_IfcRoot

sensor:isSensingValueOf

sensorDescription:hasIfcLabel

sensorDescription:introduces

● sensorDescription:0

● sensorDescription:2

● sensorDescription:1

● sensorDescription:3

 

Figure 17 Ontology after linking process



5. Case Study 

42 

 

After discussing the meanings of different sensor types for facility managers on building 

environment monitoring, concrete query topics could be chosen. In this case study, two 

categories with five types of querying topics are performed:  

(1) Daily query for floor6’s environment. This querying category focuses on providing the 

facility managers with Vertigo floor6’s daily environment monitoring data. Facilty managers 

could choose any date in 2015 to retrieve the corresponding environment monitoring data. 

Among each date in 2015, there are three time instants provided as choices for the daily query 

time: 09:30, 13:00, and 17:30. The representations of the three time instants have been 

discussed in the previous section. This daily environment query helps facility managers freely 

choosing the date that they want to view monitoring data on, and could be helpful when the 

facility managers have special analysing demand on specific date in 2015. There are three 

detailed query topics under the daily query category: 

• The momentary CO2 level query. This topic focuses on querying the CO2 levels at the 

selected moment for the three rooms in floor6: room 6.08, room 6.18, room 6.20. 

• The momentary inside and outside temperature query. This topic focuses on querying 

the temperature values at the selected moment for the outside space and three 

interior rooms: room 6.08, room 6.18, room 6.20. 

• The momentary thermal comfort query. This topic focuses on querying the thermal 

comfort  value at the selected moment for room 6.08. 

(2) Conclusive query for floor6’s environment. This category aims at providing conclusive 

thermal environment analysis for facility managers. Some data processing is performed to 

achieve synthetical representations of floor6’s thermal comfort performances during different 

time periods. There are two detailed query topics under the conclusive query category: 

• The seasonal thermal comfort query. This topic is designed to calculate the average 

PMV values in month April, July, October and February, and to generate the 

corresponding PPD values of the four months. The PPD values of these four months 

are used to stand for people’s dissatisfied rates about floor6’s thermal environment in 

the four seansons: spring, summer, autumn and winter. 

• The daytime period thermal comfort query. This topic is designed to calculate the 

average PMV values in April for the three time instants: 09:30, 13:00 and 17:30, and 

to generate the corresponding PPD values of the three moments. These three PPD 

values could represent floor6’s thermal comfort distribution among different time 

periods in the day. 

 

5.4.2 SPARQL blocks development 

After decided the query topics for facility managers, the SPARQL query blocks should be 

developed. The SPARQL queries and further data process are tested both on Java Apache Jena 

API and Python rdflib. In the end, the moment CO2 level query block, the moment inside and 

outside temperature query block and the moment thermal comfort query block are developed 

under Python rdflib. The Python codes can be found in appendix E. The seasonal and daytime 



5. Case Study 

43 

 

period thermal comfort query blocks are developed on Apache Jena API. The Java code can be 

found in appendix C. More detailed descriptions for the blocks design are conducted below.  

(1) The momentary CO2 level query block 

This query block starts from inviting the facility managers to input the day that they want to 

query on (in 2015), and to select one of the three time instants: 09:30, 13:00, 17:30 to query 

at. Then the python program will execute a SPARQL query to find the CO2 levels at the selected 

time in the three rooms on floor6. The CO2 levels and their corresponding 

IfcGloballyUniqueIds will be printed out and stored for visualization use. 

(2) The momentary inside and outside temperature query block 

Like the moment CO2 level query block, this query begins at the facility managers inputing the 

day and the time that they want to query. Then the python program executes a SPARQL query 

to find the temperature values of the outside space and the three inside rooms at the selected 

moment. The temperature values and their corresponding IfcGloballyUniqueIds will be printed 

out and stored for visualization use. 

(3) The momentary thermal comfort query block 

Likewise, after facility managers inputing the day and time that they want to query at, the 

python program executes a SPARQL query to find the air temperature value, air speed value, 

relative humidity value and black globe temperature value of room6.08 at the selected 

moment. Then the thermal comfort values standed by PMV and PPD indexies are calculated. 

The equations of the calculation are shown in figure 18. Some of the parameters in the 

functions are presumed as constants according to  the ASHRAE Standard. The equations are 

referenced from Fanger’s thermal comfort model (Tech, 2002). The calculated PPD value and 

room6.08’s IfcGloballyUniqueId will be printed out and stored for visualization use. 

 
Figure 18 PMV and PPD equations 

 



5. Case Study 

44 

 

(4) The seasonal thermal comfort query block 

This query block begins from using the SPARQL to query the everyday air speed value, air 

temperature value, relative humidity value and black globe temperature value during the four 

months at 13:00. Then calculate the average PMV value of each month based on these sensor 

values, and also calculate the corresponding PPD values of the four months to represent the 

seansonal thermal comfort statuses. The PPD values generated by Java programming are 

copied to the python program, in order to perform the data visualization together with the 

other query blocks through pycharm.  

(5) The daytime period thermal comfort query block 

This query block first performs the SAPRQL query to collect the four kinds of sensor values 

from room 6.08 at the three time instants during April for PMV value calculation. Through the 

average PMV values for April on the three time instants, corresponding PPD values 

representing the three time periods in the day are generated. The PPD values generated from 

Java programming are also copied to the python program for the following visualization use.  

 

5.5 Data visualization 

In this part, the interior moment CO2 levels, inside and outside moment temperature values 

and the interior moment thermal comfort values are visualized through IfcOpenshell. The 

seasonal thermal comfort values and the daytime period thermal comfort values are 

visualized by histograms through matplotlib 8 . In the IfcOpenShell visualization part, the 

abstract numeric values are divided into several value ranges and are presented by different 

colours. In the visualized building model generated by IfcOpenShell, the sensor values in 

different rooms are presented in colours that are used to on behalf of specific data ranges. 

Facility managers can get an intuitive impression about the floor’s environment performances 

through different colours. The source codes for the visualization part can be viewed in 

appendix E. 

(1) The momentary CO2 levels 

Randomly picking up a time to view the interior CO2 levels, the CO2 levels in the three rooms 

are shown as figure 19. The CO2 level’s ranges are assigned to different colours, and they are 

also shown in figure 19. From this figure, it is obvious that room6.18’s CO2 concentration is at 

a high level and needs facility manager’s attention. 

                                                           
8 http://matplotlib.org/ 



5. Case Study 

45 

 

 
                                   Figure 19 CO2 levels 

 

(2) The momentary temperature 

Randomly picking up a time to view the inside and outside temperature values, the 

temperature data in the three rooms and outside space is shown as figure 20. The 

temperature data ranges are assigned to different colours, and they are also shown aside. 

From the graph, it shows that room6.18’s temperature is a bit high. The difference between 

inside and outside temperature is not big, which is a good news for facility managers on energy 

consumption. 

 

 
                                                  Figure 20 Inside and outside temperature 



5. Case Study 

46 

 

(3) The momentary thermal comfort  

Also pick up a time for thermal comfort query. As figure 21 shows, the thermal comfort for 

room 6.08 at the query time is quite awful, above 75% of people are unsatisfied with the 

thermal environment. It can be deduced that the whole floor6’s thermal environment 

performance is not satisfying. Facility managers could open more windows and increase 

ventilation rate to avoid this situation. 

 

 
                                                                                                   Figure 21 Moment thermal comfort 

 

(4) The seasonal thermal comfort  

Figure 22 shows the thermal comfort distribution of floor6 among the four months . From the 

figure, it can be deduced that summer is the season with the worst thermal comfort 

experience of Vertigo floor6, while autumn and spring are quite comfortable seasons for 

floor6. As a facility manager, building thermal environment management in summer should 

be paid additional attention.  

(5) The daytime period thermal comfort 

Figure 23 shows the thermal comfort distribution of floor6 at the three time instants. 

According to the results, the thermal environment in the morning period is not so satisfied. 

But the effect of ventilation system of floor6 is proved to be good on a certain sense, since the 

thermal comfort is getting better and better at lunch time and in the afternoon compared 

with the morning status. Facility managers could start the ventilation earlier in the morning to 

improve the thermal comfort experience. 

 



5. Case Study 

47 

 

 

 
Figure 22 Seasonal thermal comfort 

 

 

 
Figure 23 Daytime period thermal comfort 

 

 

 

 

 

 



5. Case Study 

48 

 

 

 

 

 

 

 

 



6. Conclusion 

49 

 

6. Conclusion 

This thesis describes a methodology to achieve BIM model and sensor data integration by 

using Linked Data, and implements the method into a case study. The conclusion of this thesis 

starts from answering the research questions raised in the beginning of the thesis basing on 

the case study: 

Sub question 1: “How to collect and convert different data sets into RDF format for building 

performance analyses?” 

In the case study, there are plenty of sensor data sources that can be chosen for the data 

integration. The sensor data selection criteria are the availability, continuity and accuracy of 

the sensor data itself and the facility managers’ information demand. For Vertigo, based on 

these two criteria, three categories of sensor values are chosen: the interior CO2 level for 

users’ health and environment comfort monitoring, the interior and outside temperature 

monitoring for people’s comfort feeling, and the thermal comfort index for thermal 

environment comfort monitoring. Moreover, in this case, a sensor description file collected 

from a facility manager is also selected, for the use of sensor background supplement. After 

collecting all the sensor data and a BIM model, the data format processing and converting to 

RDF expression are conducted. The conversion tools to turn the original data into RDF format 

are chosen according to different original data formats. All the conversion processes are 

conducted under the ontology’s instruction which is developed for the integrated data. When 

all the files are converted into RDF format, the file merging is performed by RDF merging  

software. 

 

Sub question 2: “What kinds of links between BIM and sensor data can be created? How to 

achieve the linking?” 

In this case study, the sensor description part is selected as the middle part to generate 

connections to the data from other data sources. The resource links can be created when 

there are information overlap or logic relationship exists between the data resources.In 

Vertigo’s case, there are two kinds of links created: the link focuses on the same room’s name 

strings that are defined both in the sensor description part and the IFC model part, and the 

link focuses on describing the introduction relationship between the sensor description part 

and the sensor representation class from the sensor value part. These two types of links are 

generated through Apache Jena API by creating corresponding RDF triples that represent the 

links and adding them to the merged RDF model. 

 

Sub question 3: “How can the integrated data help facility managers analysing building 

performances?” 

In this case, the building performance analyses are conducted through the SPARQL query and 

the query results processing. Based on the three categories of sensor data, corresponding 

query topics are created that may be helpful for the facility managers to analyse the building 



6. Conclusion 

50 

 

environment comfort. A python program is created to perform all the topic queries and data 

processing. The facility managers can freely ask the related building environment information 

through the topic and time inputs, and receive visualizable results from the query processing. 

 

The main question: “How to integrate a BIM model with sensor data to support facility 

managers in analysing building performances, by using Linked Data?” 

In summary, this can be achieved through several steps: 1) based on facility managers’ 

analysing demand and selected sensor data, 2) transform all the selected sensor data and the 

BIM model into RDF files under a developed ontology, 3) merge these files and connect them 

through create links between different data sources, 4) develop SPARQL query or use other 

RDF processing methods to conduct the integrated information analyses for the building 

operation performance assessment.  

 

In the case study, there are four different information sources from the sensor data and the 

BIM model that are needed to be processed together. It is proved that through using Linked 

Data, it is convenient to unify and query information coming from different data formats 

without information lost or distortion and interoperability problems. This information 

integration method can help facility managers synthesizing different domains and different 

formats information in order to comprehensively and quickly analysing the building operation 

performances.  

 

Recommendations for further research: 

Create links with automate software 

In this case study, all the links are created through Java coding. This is fine when the number 

of links are limited. However, for the large-size projects, hundreds of links may be needed, 

and coding the links one by one is not efficient. Using a software that can automatically 

generate links based on the selected data sources is a more convenient way. 

Visualization performance with annotation 

In this case study, the query data visualization under the moment query category is only 

focused on the building model itself, and no literal annotation is created for the visualization. 

This may cause trouble for the facility managers in finding the corresponding rooms in the 

building model. For future research, some extensions on the IfcOpenShell could be developed 

to give the building performance visualization more annotative information. 

Data processing within SPARQL 

In this case study, the thermal comfort calculation is separated from the SPARQL query. But it 

may be more convenient to conduct the thermal comfort calculation and other possible data 

processes within the SPARQL query. Through this, the building performance analysing process 



6. Conclusion 

51 

 

can be conducted on all the software that can support SPARQL and will not be limited only on 

software that has both SPARQL and further data processing abilities.  

Ontology development 

In this case study, four existing ontologies are used for generating the integrated ontology. 

However, for the SAREF and Geo ontologies, only several properties from them are implied 

into the integrated ontology. For the IfcOWL ontology, it only works for the BIM model part. 

And the OWL ontology is used for the general RDF description. To conclude, there is still no 

public admitted ontology for the BIM and sensor data integration use. The development of 

public recognized ontology for the BIM and sensor data integration is quite urgent for the 

integration method promotion and future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. Conclusion 

52 

 

 



References 

53 

 

References 

ASHRAE. (2010). ANSI/ASHRAE Standard 55-2010. Atlanta: American Society of Heating, 

Refrigerating and Air-Conditioning Engineers, Inc. 

Azhar, S. (2011). Building information modeling (BIM): Trends, benefits, risks, and challenges 

for the AEC industry. Leadership and Management in Engineering. 

Azhar, S., Nadeem, A., Mok, J. Y., & Leung, B. H. (2008, August). Building Information Modeling 

(BIM): A new paradigm for visual interactive modeling and simulation for construction projects. 

In Proc., First International Conference on Construction in Developing Countries (pp. 435-446). 

Barnaghi, P., Meissner, S., Presser, M., & Moessner, K. (2009). Sense and sens’ ability: 

Semantic data modelling for sensor networks. In Conference Proceedings of ICT Mobile 

Summit 2009. 

Becerik-Gerber, B., & Rice, S. (2010). The perceived value of building information modeling in 

the US building industry. Journal of information technology in Construction, 15(2), 185-201. 

Beetz, J., Van Leeuwen, J., & De Vries, B. (2009). IfcOWL: A case of transforming EXPRESS 

schemas into ontologies. Artificial Intelligence for Engineering Design, Analysis and 

Manufacturing, 23(01), 89-101. 

Berners-Lee, T. (2006). Linked Data. https://www.w3.org/DesignIssues/LinkedData.html 

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web.Scientific american, 284(5), 

28-37. 

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web.Scientific american, 284(5), 

28-37. 

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far.Semantic Services, 

Interoperability and Web Applications: Emerging Concepts, 205-227. 

Brickley, D., & Guha, R. V. (2000). Resource Description Framework (RDF) Schema 

Specification 1.0: W3C Candidate Recommendation 27 March 2000. 

Cahill, B., Menzel, K., & Flynn, D. (2012). BIM as a centre piece for optimized building operation. 

Corry, E. (2014). A semantic web approach to enable the holistic environmental and energy 

management of buildings (Doctoral dissertation). 

Corry, E., Coakley, D., O'Donnell, J., Pauwels, P., & Keane, M. (2013). The role of linked data 

and the semantic web in building operation. In 13th annual International Conference for 

Enhanced Building Operations (ICEBO). 

Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., & O’Riain, S. (2013). Linking building 

data in the cloud: Integrating cross-domain building data using linked data. Advanced 

Engineering Informatics, 27(2), 206-219.  



References 

54 

 

Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., & O’Riain, S. (2013). Linking building 

data in the cloud: Integrating cross-domain building data using linked data. Advanced 

Engineering Informatics, 27(2), 206-219. 

Decker, S., & Hauswirth, M. (2008, September). Enabling Networked Knowledge. In CIA (Vol. 

8, pp. 1-15). 

Eastman, C., Eastman, C. M., Teicholz, P., & Sacks, R. (2011). BIM handbook: A guide to building 

information modeling for owners, managers, designers, engineers and contractors. John Wiley 

& Sons. 

Eid, M., Liscano, R., & El Saddik, A. (2007, June). A universal ontology for sensor networks data. 

In Computational Intelligence for Measurement Systems and Applications, 2007. CIMSA 2007. 

IEEE International Conference on (pp. 59-62). IEEE. 

Enkovaara, E., Salmi, M., & Sarja, A. (1988). RATAS project: computer aided design for 

construction. Building Book Limited. 

Fischer, M., & Kam, C. (2002). PM4D Final Report€, CIFE Technical Report (TR143). CIFE, 

Stanford University. 

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge 

acquisition, 5(2), 199-220. 

HM Goverment. (2012). Industrial strategy: government and industry in partnership. 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/34710/12-

1327-building-information-modelling.pdf/. 

ISO, I. (1984). Standard 7730. Moderate thermal environments-determination of the PMV and 

PPD indices and specification of the conditions for thermal comfort. Geneva: International 

Standards Organization. 

Janowicz, K., Bröring, A., Stasch, C., & Everding, T. (2010, September). Towards meaningful 

uris for linked sensor data. In Towards digital earth: Search, discover and share geospatial data. 

Workshop at Future Internet Symposium. 

Janowicz, K., Bröring, A., Stasch, C., & Everding, T. (2010, September). Towards meaningful 

uris for linked sensor data. In Towards digital earth: Search, discover and share geospatial data. 

Workshop at Future Internet Symposium. 

Kim, J. H., Kwon, H., Kim, D. H., Kwak, H. Y., & Lee, S. J. (2008, May). Building a service-oriented 

ontology for wireless sensor networks. InComputer and Information Science, 2008. ICIS 08. 

Seventh IEEE/ACIS International Conference on (pp. 649-654). IEEE. 

Korpela, J., Miettinen, R., Salmikivi, T., & Ihalainen, J. (2015). The challenges and potentials of 

utilizing building information modelling in facility management: the case of the Center for 

Properties and Facilities of the University of Helsinki. Construction Management and 

Economics, 33(1), 3-17. 



References 

55 

 

Liebich, T., Adachi, Y., Forester, J., Hyvarinen, J., Karstila, K., & Wix, J. (2006). Industry 

Foundation Classes IFC2× 3. International Alliance for Interoperability, 467-476. 

Newton, R. S. (2004). Inadequate interoperability in construction wastes 415.8 billion 

annually. AECNews. com, 13. 

O’Flynn, B., Jafer, E., Spinar, R., Keane, M., Costa, A., Pesch, D., & O’Mathuna, C. (2010, 

September). Development of miniaturized wireless sensor nodes suitable for building energy 

management and modelling. IneWork and eBusiness in Architecture, Engineering and 

Construction: Proceedings of the European Conference on Product and Process Modelling 2010, 

Cork, Republic of Ireland, 14-16 September 2010 (p. 253). CRC Press. 

Patel-Schneider, P. F., Hayes, P., & Horrocks, I. (2004). OWL web ontology language semantics 

and abstract syntax. W3C recommendation, 10. 

Pauwels, P., De Meyer, R., & Van Campenhout, J. (2010). Interoperability for the design and 

construction industry through semantic web technology. InSemantic Multimedia (pp. 143-

158). Springer Berlin Heidelberg. 

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van de Walle, R., & 

Van Campenhout, J. (2011). A semantic rule checking environment for building performance 

checking. Automation in Construction,20(5), 506-518. 

Pazlar, T., & Turk, Z. (2008). Interoperability in practice: geometric data exchance using the 

IFC standard. 

Prud’Hommeaux, E., & Seaborne, A. (2008). SPARQL query language for RDF. W3C 

recommendation, 15. 

Radulovic, F., Poveda-Villalón, M., Vila-Suero, D., Rodríguez-Doncel, V., García-Castro, R., & 

Gómez-Pérez, A. (2015). Guidelines for Linked Data generation and publication: An example 

in building energy consumption.Automation in Construction. 

Radulovic, F., Poveda-Villalón, M., Vila-Suero, D., Rodríguez-Doncel, V., García-Castro, R., & 

Gómez-Pérez, A. (2015). Guidelines for Linked Data generation and publication: An example 

in building energy consumption. Automation in Construction, 57, 178-187. 

Raskino, M., Fenn, J., & Linden, A. (2005). Extracting value from the massively connected world 

of 2015. Gartner Res., Stamford, CT, USA, Tech. Rep. G, 125949. 

Rees, J. A. (2012). Providing and Discovering URI Documentation. Editor’s Draft 2 February 

2012. W3C. http://www. w3. org/2001/tag/awwsw/issue57/latest. 

Riaz, Z., Arslan, M., Kiani, A. K., & Azhar, S. (2014). CoSMoS: A BIM and wireless sensor based 

integrated solution for worker safety in confined spaces. Automation in construction, 45, 96-

106.  

Russomanno, D. J., Kothari, C., & Thomas, O. (2005, March). Sensor ontologies: from shallow 

to deep models. In System Theory, 2005. SSST'05. Proceedings of the Thirty-Seventh 

Southeastern Symposium on (pp. 107-112). IEEE. 



References 

56 

 

SEMIC (2012).10 rules for persistent URIs. Tech. Rep. Semantic Interoperability Community, 

European Commission. 

Shannon, V. (2006). A'more revolutionary'Web. International Herald Tribune,24. 

Sheth, A., Henson, C., & Sahoo, S. S. (2008). Semantic sensor web.Internet Computing, 

IEEE, 12(4), 78-83. 

Smart Appliances. (2013). Smart Appliances REFerence(SAREF) ontology. Retrieved from 

https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology. (Last 

retrieved on 21.06.2016). 

Tech, I. A. HVAC Handbook–Thermal Comfort, 2002. INNOVA Air Tech. 

Teicholz, P. (Ed.). (2013). BIM for facility managers. John Wiley & Sons. 

Underwood, J., & Isikdag, U. (2011). Emerging technologies for BIM 2.0.Construction 

Innovation, 11(3), 252-258. 

Web, S. Resource Description Framework (RDF). 2004-02-10)[2011-04-07]. http://www. w3. 

org/RDF. 

Wei, W., & Barnaghi, P. (2009). Semantic annotation and reasoning for sensor data. In Smart 

Sensing and Context (pp. 66-76). Springer Berlin Heidelberg. 

Woo, J. H., Diggelman, C., & Abushakra, B. (2011). BIM-based energy monitoring with XML 

parsing engine. Proceeding of the 28th ISARC, Seoul, Korea, 544-545. 

World Wide Web Consortium. (2011). WGS84 Geo Positioning: an RDF vocabulary. Retrieved 

on, 21. 

Yan, H., & Damian, P. (2008, October). Benefits and barriers of building information modelling. 

In 12th International conference on computing in civil and building engineering (Vol. 161). 

Yin, H. (2010). Building management system to support building renovation. 

Yurchyshyna, A., & Zarli, A. (2009). An ontology-based approach for formalisation and 

semantic organisation of conformance requirements in construction. Automation in 

Construction, 18(8), 1084-1098. 

 

 

 

 

 

 



Appendix A 

57 

 

Appendix A   Jupyter Notebook data download coding example 

 

import numpy as np 

import pandas.io.sql as sql 

import psycopg2 as pg 

import pandas as pd 

import csv 

 

# Lets use some data from the vertigo floor 6 project 

# connect with database 

con = pg.connect(host='archbpslindev2.bwk.tue.nl', 

                 database='vertigo', 

                 user='bpsstudent', 

                 password='xxxxx') 

 

sql_2015 = \ 

                            ''' 

                            SELECT dt, dt06 FROM floor6.comfort 

                            WHERE date_part('year',dt) = 2015 

                            AND ((date_part('hour', dt) = 9) AND 

(date_part('minute', dt) = 30) 

                                 OR (date_part('hour', dt) = 13) AND 

(date_part('minute', dt) = 0) 

                                 OR (date_part('hour', dt) = 17) AND 

(date_part('minute', dt) = 30))  

                            ORDER BY dt 

                            ''' 

# read data from database in pandas dataframe 

data= sql.read_sql(sql_2015, con, index_col=None) 

 

print(data) 

 

data.to_csv('/media/sf_ubuntu/DT06.csv') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A 

58 

 

 



Appendix B 

59 

 

Appendix B  Self-defined RDF ontology schema (before data linking process) 

@prefix sensor: <http://www.tue.nl/sensor#> . 

@prefix owl:   <http://www.w3.org/2002/07/owl#> . 

@prefix sensorM03: <http://Vertigo/floor6/sensorM03#> . 

@prefix saref: <C:\Users\s146559\Desktop\Sensor Data\New\Sensor-

Description-csv.ttl> . 

@prefix xsd:   <http://www.w3.org/2001/XMLSchema#> . 

@prefix rdfs:  <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix geo:   <http://www.w3.org/2003/01/geo/wgs84_pos#> . 

@prefix outsideTemperature: <http://Vertigo/OutsideTemperature#> . 

@prefix Saref: <https://w3id.org/saref#> . 

@prefix sensorM40: <http://Vertigo/floor6/sensorM40#> . 

@prefix sensorM52: <http://Vertigo/floor6/sensorM52#> . 

@prefix sensorM53: <http://Vertigo/floor6/sensorM53#> . 

@prefix sensorM38: <http://Vertigo/floor6/sensorM38#> . 

@prefix sensorM39: <http://Vertigo/floor6/sensorM39#> . 

@prefix sensorDT06: <http://Vertigo/floor6/sensorDT06#> . 

@prefix sensorDescription: <http://Vertigo/floor6/SensorDescription#> . 

@prefix sensorDT07: <http://Vertigo/floor6/sensorDT07#> . 

@prefix sensorDT08: <http://Vertigo/floor6/sensorDT08#> . 

@prefix sensorDT03: <http://Vertigo/floor6/sensorDT03#> . 

@prefix rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix inst:  

<http://linkedbuildingdata.net/ifc/resources20160614_154955/> . 

@prefix sensorM51: <http://Vertigo/floor6/sensorM51#> . 

 

sensor:sensorRepresentation 

    rdf:type owl:class 

    rdfs:comment "sensor representation for each sensor"^^xsd:string . 

 

sensor:sensorValue 

    rdf:type owl:class; 

    rdfs:comment "record sensing value of sensor DT03 at a specific 

time"^^xsd:string ; 

    sensor:isSensingValueOf sensor:sensorRepresentation; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

 

<http://Vertigo/floor6/sensorDT03#0> 

    rdf:type sensor:sensorValue ;    

    rdfs:comment "a sensing value of sensor DT03 at a specific 

time"^^xsd:string ;  

    sensor:isSensingValueOf sensorDT03:DT03 ; 

    Saref:hasSensingTime xsd:dateTime ; 

    owl:hasValue xsd:double . 

     

sensorDT03:DT03 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of DT03"^^xsd:string.   

 

     

<http://Vertigo/floor6/sensorDT06#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor DT06 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorDT06:DT06; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorDT06:DT06 



Appendix B 

60 

 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of DT06"^^xsd:string.   

 

     

<http://Vertigo/floor6/sensorDT07#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor DT07 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorDT07:DT07; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorDT07:DT07 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of DT07"^^xsd:string.   

 

     

<http://Vertigo/floor6/sensorDT08#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor DT08 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorDT08:DT08; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

 

sensorDT08:DT08 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of DT08"^^xsd:string.       

     

 

     

<http://Vertigo/floor6/sensorM03#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M03 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM03:M03; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

 

sensorM03:M03 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M03"^^xsd:string.        

     

     

<http://Vertigo/floor6/sensorM38#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M38 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM38:M38; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM38:M38 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M38"^^xsd:string. 

 

         

<http://Vertigo/floor6/sensorM39#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M39 at a specific 

time"^^xsd:string; 



Appendix B 

61 

 

    sensor:isSensingValueOf sensorM39:M39; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM39:M39 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M39"^^xsd:string. 

 

     

<http://Vertigo/floor6/sensorM40#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M40 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM40:M40; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM40:M40 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M40"^^xsd:string. 

 

     

<http://Vertigo/floor6/sensorM51#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M51 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM51:M51; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM51:M51 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M51"^^xsd:string. 

 

     

<http://Vertigo/floor6/sensorM52#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M52 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM52:M52; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM52:M52 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M52"^^xsd:string. 

 

     

<http://Vertigo/floor6/sensorM53#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M53 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM53:M53; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM53:M53 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M53"^^xsd:string. 

 

     



Appendix B 

62 

 

<http://Vertigo/OutsideTemperature#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of outside temperature sensor at a 

specific time"^^xsd:string; 

    sensor:isSensingValueOf outsideTemperature:outsideTemperature; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

outsideTemperature:outsideTemperature 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of outside temperature 

sensor"^^xsd:string. 

 

sensorDescription:sensorDescription 

    rdf:type owl:Class ; 

    rdfs:comment "sensor description for sensors "^^xsd:string ; 

    sensorDescription:introduces  sensor:sensorRepresentation ; 

    Saref:hasName sensorDescription:sensorName ; 

    Saref:hasSingularUnit xsd:string ; 

    Saref:hasSensorType xsd:string ; 

    geo:location sensorDescription:room; 

    sensorDescription:locationHeight xsd:string ; 

    Saref:hasCategory sensorDescription:category. 

     

<http://Vertigo/floor6/SensorDescription#0> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor DT03"^^xsd:string ; 

    sensorDescription:introduces  sensorDT03:DT03 ; 

    Saref:hasName sensorDescription:DT03 ; 

    Saref:hasSingularUnit "m/s"^^xsd:string ; 

    Saref:hasSensorType "Air speed at 1.1 m"^^xsd:string ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    sensorDescription:locationHeight "1.1m"^^xsd:string ; 

    Saref:hasCategory sensorDescription:ComfortStatief . 

     

<http://Vertigo/floor6/SensorDescription#1> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor DT06"^^xsd:string ; 

    sensorDescription:introduces  sensorDT06:DT06 ; 

    Saref:hasName sensorDescription:DT06 ; 

    Saref:hasSingularUnit ""?C"^^xsd:string ; 

    sensorDescription:hasSensingRange "-30.0 - 65.0" ; 

    Saref:hasSensorType "Air temperature at 1.1 m"^^xsd:string ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    sensorDescription:locationHeight "1.1m"^^xsd:string ; 

    Saref:hasCategory sensorDescription:ComfortStatief . 

 

<http://Vertigo/floor6/SensorDescription#2> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor DT07"^^xsd:string ; 

    sensorDescription:introduces  sensorDT07:DT07 ; 

    Saref:hasName sensorDescription:DT07 ; 

    Saref:hasSingularUnit "?C" ; 

    Saref:hasSensorType "Temperature black globe at 0.6 m" ; 

    sensorDescription:hasSensingRange "-30.0 - 65.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    sensorDescription:locationHeight "0.6m" ; 

    Saref:hasCategory sensorDescription:ComfortStatief . 

 

<http://Vertigo/floor6/SensorDescription#3> 

    rdf:type sensorDescription:sensorDescription ; 



Appendix B 

63 

 

    rdfs:comment "a sensor description for sensor DT08"^^xsd:string ; 

    sensorDescription:introduces  sensorDT08:DT08 ; 

    Saref:hasName sensorDescription:DT08 ; 

    Saref:hasSingularUnit "%" ; 

    Saref:hasSensorType "Relative Humidity at 0.6 m" ; 

    sensorDescription:hasSensingRange "0.0 - 100.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    sensorDescription:locationHeight "0.6m" ; 

    Saref:hasCategory sensorDescription:ComfortStatief . 

 

<http://Vertigo/floor6/SensorDescription#4> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M03"^^xsd:string ; 

    sensorDescription:introduces  sensorM03:M03 ; 

    Saref:hasName sensorDescription:M03 ; 

    Saref:hasSingularUnit "ppm" ; 

    Saref:hasSensorType "CO2" ; 

    sensorDescription:hasSensingRange "0 - 5000" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    Saref:hasCategory sensorDescription:Modbus .     

     

<http://Vertigo/floor6/SensorDescription#5> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M38"^^xsd:string ; 

    sensorDescription:introduces  sensorM38:M38 ; 

    Saref:hasName sensorDescription:M38 ; 

    Saref:hasSingularUnit "?C" ; 

    Saref:hasSensorType "Temperature" ; 

    sensorDescription:hasSensingRange "5 - 45" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.18> ; 

    sensorDescription:locationHeight "0.75m" ; 

    Saref:hasCategory sensorDescription:Modbus . 

 

<http://Vertigo/floor6/SensorDescription#6> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M39"^^xsd:string ; 

    sensorDescription:introduces  sensorM39:M39 ; 

    Saref:hasName sensorDescription:M39 ; 

    Saref:hasSingularUnit "%" ; 

    Saref:hasSensorType "Relatieve humidity" ; 

    sensorDescription:hasSensingRange "0.0 - 100.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.18> ; 

    Saref:hasCategory sensorDescription:Modbus . 

 

<http://Vertigo/floor6/SensorDescription#7> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M40"^^xsd:string ; 

    sensorDescription:introduces  sensorM40:M40 ; 

    Saref:hasName sensorDescription:M40 ; 

    Saref:hasSingularUnit "ppm" ; 

    Saref:hasSensorType "CO2" ; 

    sensorDescription:hasSensingRange "0 - 5000" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.18> ; 

    Saref:hasCategory sensorDescription:Modbus . 

 

<http://Vertigo/floor6/SensorDescription#8> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M51"^^xsd:string ; 

    sensorDescription:introduces  sensorM51:M51 ;    

    Saref:hasName sensorDescription:M51 ; 

    Saref:hasSingularUnit "?C" ; 



Appendix B 

64 

 

    Saref:hasSensorType "Temperature" ; 

    sensorDescription:hasSensingRange "-30.0 - 65.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.20> ; 

    sensorDescription:locationHeight "0.75m" ; 

    Saref:hasCategory sensorDescription:Modbus .     

     

<http://Vertigo/floor6/SensorDescription#9> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M52"^^xsd:string ; 

    sensorDescription:introduces  sensorM52:M52 ;        

    Saref:hasName sensorDescription:M52 ; 

    Saref:hasSingularUnit "%" ; 

    Saref:hasSensorType "Relatieve humidity" ; 

    sensorDescription:hasSensingRange "0.0 - 100.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.20> ; 

    Saref:hasCategory sensorDescription:Modbus .     

     

<http://Vertigo/floor6/SensorDescription#10> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M53"^^xsd:string ; 

    sensorDescription:introduces  sensorM53:M53 ;    

    Saref:hasName sensorDescription:M53 ; 

    Saref:hasSingularUnit "ppm" ; 

    Saref:hasSensorType "CO2" ; 

    sensorDescription:hasSensingRange "0 - 5000" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.20> ; 

    Saref:hasCategory sensorDescription:Modbus . 

 

<http://Vertigo/floor6/SensorDescription#11> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for outside temperature 

sensor"^^xsd:string ; 

    sensorDescription:introduces  outsideTemperature:outsideTemperature ;    

    Saref:hasName sensorDescription:T_amb_avg ; 

    Saref:hasSingularUnit "?C" ; 

    Saref:hasSensorType "Outside temperature" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Vertigo+roof> ; 

    Saref:hasCategory sensorDescription:DL_SMS_Mete . 

     

sensorDescription:sensorName 

    rdf:type owl:Class ; 

    rdfs:comment "the description URIs for sensors"^^xsd:string . 

     

sensorDescription:DT03   

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor DT03"^^xsd:string . 

 

sensorDescription:DT06   

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor DT06"^^xsd:string . 

     

sensorDescription:DT07   

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor DT07"^^xsd:string . 

     

sensorDescription:DT08   

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor DT0"^^xsd:string . 

     

sensorDescription:M03    

    rdf:type sensorDescription:sensorName ; 



Appendix B 

65 

 

    rdfs:comment "the description URI for sensor M03"^^xsd:string . 

     

sensorDescription:M38    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M38"^^xsd:string . 

     

sensorDescription:M39    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M39"^^xsd:string . 

     

sensorDescription:M40    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M40"^^xsd:string . 

 

sensorDescription:M51    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M51"^^xsd:string . 

     

sensorDescription:M52    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M52"^^xsd:string . 

     

sensorDescription:M53    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M53"^^xsd:string . 

 

sensorDescription:T_amb_avg  

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor T_amb_avg"^^xsd:string . 

     

sensorDescription:room 

    rdf:type owl:Class; 

    rdfs:comment "the room URI where the sensor is located"^^xsd:string . 

     

<http://Vertigo/floor6/SensorDescription#Room+6.08> 

    rdf:type sensorDescription:room ; 

    rdfs:comment "the description URI for room 6.08"^^xsd:string . 

     

<http://Vertigo/floor6/SensorDescription#Room+6.18> 

    rdf:type sensorDescription:room ; 

    rdfs:comment "the description URI for room 6.18"^^xsd:string . 

     

<http://Vertigo/floor6/SensorDescription#Room+6.20> 

    rdf:type sensorDescription:room ; 

    rdfs:comment "the description URI for room 6.20"^^xsd:string . 

     

<http://Vertigo/floor6/SensorDescription#Vertigo+roof> 

    rdf:type sensorDescription:room ; 

    rdfs:comment "the description URI for Vertigo roof"^^xsd:string . 

 

sensorDescription:category 

    rdf:type owl:Class ; 

    rdfs:comment "the category for different sensors"^^xsd:string . 

     

sensorDescription:ComfortStatief 

    rdf:type sensorDescription:category ; 

    rdfs:comments "the log schedule is ComfortStatief"^^xsd:string . 

     

sensorDescription:Modbus 

    rdf:type sensorDescription:category ; 

    rdfs:comments "the log schedule is Modbus"^^xsd:string . 



Appendix B 

66 

 

 

sensorDescription:DL_SMS_Mete 

    rdf:type sensorDescription:category ; 

    rdfs:comments "the log schedule is DL_SMS_Mete"^^xsd:string . 

 

sensor:isSensingValueOf 

    rdf:type owl:ObjectProperty ; 

    rdfs:comment "connection between sensor values and sensor 

representation"^^xsd:string ; 

    rdfs:domain sensor:sensorValue ; 

    rdfs:range sensor:sensorRepresentation . 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C 

67 

 

Appendix C  Apache Jena coding 

 

import org.apache.jena.rdf.model.*; 

import org.apache.jena.util.FileManager; 

import org.apache.jena.query.*; 

 

import java.io.*; 

import org.apache.log4j.BasicConfigurator; 

 

public class LinkedData { 

     

    static final String inputFilePath1 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\DT03-csv.ttl"; 

    static final String inputFilePath2 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\DT06-csv.ttl"; 

    static final String inputFilePath3 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\DT07-csv.ttl"; 

    static final String inputFilePath4 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\DT08-csv.ttl"; 

    static final String inputFilePath5 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\M03-csv.ttl"; 

    static final String inputFilePath6 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\M38-csv.ttl"; 

    static final String inputFilePath7 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\M39-csv.ttl"; 

    static final String inputFilePath8 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\M40-csv.ttl"; 

    static final String inputFilePath9 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\M51-csv.ttl"; 

    static final String inputFilePath10 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\M52-csv.ttl"; 

    static final String inputFilePath11 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\M53-csv.ttl"; 

    static final String inputFilePath12 = "C:\\Users\\s146559\\Desktop\\New 

folder\\Vertigo floor6 building model.ttl"; 

    static final String inputFilePath13 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\Outside-Temperature-

csv.ttl"; 

    static final String inputFilePath14 = 

"C:\\Users\\s146559\\Desktop\\Sensor Data\\New\\Sensor-Description-

csv.ttl"; 

     

    public static void main(String args[]) throws FileNotFoundException{ 

       

       // args: contains the date to be queried 

         

       //create 14 models 

        Model model1 = 

ModelFactory.createDefaultModel().read(inputFilePath1); 

        Model model2 = 

ModelFactory.createDefaultModel().read(inputFilePath2); 

        Model model3 = 

ModelFactory.createDefaultModel().read(inputFilePath3); 

        Model model4 = 

ModelFactory.createDefaultModel().read(inputFilePath4); 

        Model model5 = 

ModelFactory.createDefaultModel().read(inputFilePath5); 

        Model model6 = 

ModelFactory.createDefaultModel().read(inputFilePath6); 



Appendix C 

68 

 

        Model model7 = 

ModelFactory.createDefaultModel().read(inputFilePath7); 

        Model model8 = 

ModelFactory.createDefaultModel().read(inputFilePath8); 

        Model model9 = 

ModelFactory.createDefaultModel().read(inputFilePath9); 

        Model model10 = 

ModelFactory.createDefaultModel().read(inputFilePath10); 

        Model model11 = 

ModelFactory.createDefaultModel().read(inputFilePath11); 

        Model model12 = 

ModelFactory.createDefaultModel().read(inputFilePath12); 

        Model model13 = 

ModelFactory.createDefaultModel().read(inputFilePath13); 

        Model model14 = 

ModelFactory.createDefaultModel().read(inputFilePath14); 

         

              

        //create a new model and write all the triples into the new one 

        Model blob = ModelFactory.createDefaultModel(); 

        Model[] models = {model1, model2, model3, model4, model5, model6,  

        model7, model8, model9, model10, model11, model12, model13, 

model14}; 

         

        for(Model part: models){ 

            blob.add(part ); 

        } 

         

                        

        //build links between resources 

        Model linking = ModelFactory.createDefaultModel();                            

        Model model = createLinks(linking, blob); 

    

        //write the model into a file 

        OutputStream out = new FileOutputStream(new 

File("C:\\Users\\s146559\\Desktop\\New folder\\model.ttl")); 

        model.write(out, "TURTLE"); 

         

        //SPARQL for human thermal comfort monitoring 

         

        String[] airSpeedDate = new String[400]; 

        double[] airSpeedValue = new double[400]; 

        String[] temperatureDate = new String[400]; 

        double[] temperatureValue = new double[400]; 

        String[] blackGlobeDate = new String[400]; 

        double[] blackGlobeValue = new double[400]; 

        String[] humidityDate = new String[400]; 

        double[] humidityValue = new double[400]; 

         

        queryRoom608ThermalComfort(model, airSpeedDate, temperatureDate, 

blackGlobeDate, humidityDate, airSpeedValue,  

                temperatureValue, blackGlobeValue, humidityValue); 

         

         

        //calculate for human thermal comfort 

        double[] PMVRoom608 = new double[400]; 

        double[] PPDRoom608 = new double[400]; 

 

        for(int i = 0; i < airSpeedDate.length; i++){ 

            double m = 70; 

            double w = 0; 



Appendix C 

69 

 

            double pw = 0;                         

            if(temperatureValue[i] >= 18 && temperatureValue[i] < 21){ 

                pw = (temperatureValue[i] - 18) / 3 * 4 + 18; 

            } 

            else if(temperatureValue[i] >= 21 && temperatureValue[i] < 24){ 

                pw = (temperatureValue[i] - 21) / 3 * 4.6 + 21; 

            } 

            else if(temperatureValue[i] >= 24 && temperatureValue[i] < 27){ 

                pw = (temperatureValue[i] - 24) / 3 * 5.4 + 24; 

            } 

            else if(temperatureValue[i] >= 27 && temperatureValue[i] < 29){ 

                pw = (temperatureValue[i] - 27) / 3 * 6 + 27; 

            } 

            double pa = humidityValue[i] / 1000 * pw; 

            double hc = 12.1 * Math.pow(airSpeedValue[i], 0.5); 

            double icl = 1.0; 

            double rcl = 0.155 * icl; 

            double fcl = (1.0 + 0.2 * icl) / (1.05 + 0.1 *icl); 

            double tcl = 35.7 - 0.0275 * (m - w) - rcl * ((m - w) - 3.05 * 

(5.73 - 0.007 *(m - w) - pa) - 

            0.42 * ((m - w) - 58.15) - 0.0173 * m * (5.87 - pa) - 0.0014 * 

m * (34 - temperatureValue[i])); 

            double tr = Math.pow(Math.pow((blackGlobeValue[i] + 273), 4) + 

2.5 * Math.pow(10, 8) * Math.pow(airSpeedValue[i], 0.6) * 

                    (blackGlobeValue[i] - temperatureValue[i]), 0.25) -273; 

             

            //System.out.println("tcl: " + tcl + " tr: " + tr + " fcl: " + 

fcl + " rcl: " + rcl + " hc: " + hc + " pa: " + pa); 

            //System.out.println("blackGlobe: " + blackGlobeValue[i] + " 

airSpeedValue: " + airSpeedValue[i] + " temperatureValue: " + 

temperatureValue[i] + " humidity: " + humidityValue[i]); 

            //System.out.println("Date: " + airSpeedDate[i] + ", Room6.08 

has thermal comfort: " + PMVRoom608[i] +  

            //" , and the Predicted Percentage of Dissatisfied is " + 

PPDRoom608[i]); 

            PMVRoom608[i] = (0.303 * Math.exp(-0.036 * m) + 0.028) * ((m - 

w) - 3.96e-8 * fcl * (Math.pow((tcl + 273), 4) -  

                    Math.pow((tr + 273), 4)) - fcl * hc * (tcl - 

temperatureValue[i]) - 3.05 * (5.73 - 0.007 * (m - w) - pa) - 0.42 * ((m - 

w) - 58.15) 

                    -0.0173 * m * (5.87 - pa) - 0.0014 * m * (34 - 

temperatureValue[i])); 

            PPDRoom608[i] = 100 - 95 * Math.exp(-(0.3353 * 

Math.pow(PMVRoom608[i], 4) + 0.2179 * Math.pow(PMVRoom608[i], 2))); 

            System.out.println("PMV- " + PMVRoom608[i] + "  PPD- " + 

PPDRoom608[i]); 

                         

        } 

     

        //PMV and PPD for feb, April, July, October at 13:00       

        double[] results = PMVPPD(airSpeedDate, PMVRoom608, 28, "2015-02", 

"13:00:00"); 

        double PMVFeb = results[0]; 

        double PPDFeb = results[1]; 

         

        double[] results1 = PMVPPD(airSpeedDate, PMVRoom608, 30, "2015-04", 

"13:00:00"); 

        double PMVApril = results1[0]; 

        double PPDApril = results1[1]; 

         

                 



Appendix C 

70 

 

        double[] results2 = PMVPPD(airSpeedDate, PMVRoom608, 31, "2015-07", 

"13:00:00"); 

        double PMVJuly = results2[0]; 

        double PPDJuly = results2[1]; 

         

        double[] results3 = PMVPPD(airSpeedDate, PMVRoom608, 31, "2015-10", 

"13:00:00"); 

        double PMVOct = results3[0]; 

        double PPDOct = results3[1]; 

         

         

        System.out.println("PMVFeb, PPDFeb: " + PMVFeb + " " + PPDFeb + 

"PMVApril, PPDApril: " +  

                PMVApril + " " + PPDApril + "PMVJuly, PPDJuly: " + PMVJuly 

+ " " + PPDJuly +  

                "PMVOct, PPDOct: " + PMVOct + " " + PPDOct); 

         

        //PMV and PPD at 09:30, 13:00, 17:30 at April 

        double[] results4 = PMVPPD(airSpeedDate, PMVRoom608, 30, "2015-04", 

"09:30:00"); 

        double PMV0930 = results4[0]; 

        double PPD0930 = results4[1]; 

         

        double[] results5 = PMVPPD(airSpeedDate, PMVRoom608, 30, "2015-04", 

"13:00:00"); 

        double PMV1300 = results5[0]; 

        double PPD1300 = results5[1]; 

         

        double[] results6 = PMVPPD(airSpeedDate, PMVRoom608, 30, "2015-04", 

"17:30:00"); 

        double PMV1730 = results6[0]; 

        double PPD1730 = results6[1]; 

                 

         

        System.out.println("PMV0930, PPD0930: " + PMV0930 + " " + PPD0930 + 

"PMV1300, PPD1300: " +  

                PMV1300 + " " + PPD1300 + "PMV1730, PPD1730: " + PMV1730 + 

" " + PPD1730); 

          

     

         

    } 

     

    public static Model createLinks(Model linking, Model blob){ 

         

        //DT03 with description         

        Resource DT03 = 

linking.createResource("http://Vertigo/floor6/sensorDT03#DT03"); 

        Property introduce = 

linking.createProperty("http://Vertigo/floor6/SensorDescription#", 

"introduces"); 

        Resource DT03Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#0"); 

        DT03Description.addProperty(introduce, DT03); 

         

        //DTO6 with description 

        Resource DT06 = 

linking.createResource("http://Vertigo/floor6/sensorDT06#DT06");        

        Resource DT06Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#1"); 

        DT06Description.addProperty(introduce, DT06); 



Appendix C 

71 

 

         

        //DT07 with description 

        Resource DT07 = 

linking.createResource("http://Vertigo/floor6/sensorDT07#DT07"); 

        Resource DT07Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#2"); 

        DT07Description.addProperty(introduce, DT07); 

         

        //DT08 with description 

        Resource DT08 = 

linking.createResource("http://Vertigo/floor6/sensorDT08#DT08"); 

        Resource DT08Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#3"); 

        DT08Description.addProperty(introduce, DT08); 

         

        //M03 with description 

        Resource M03 = 

linking.createResource("http://Vertigo/floor6/sensorM03#M03"); 

        Resource M03Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#4"); 

        M03Description.addProperty(introduce, M03); 

         

        //M38 with description 

        Resource M38 = 

linking.createResource("http://Vertigo/floor6/sensorM38#M38"); 

        Resource M38Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#5"); 

        M38Description.addProperty(introduce, M38); 

         

        //M39 with description 

        Resource M39 = 

linking.createResource("http://Vertigo/floor6/sensorM39#M39"); 

        Resource M39Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#6"); 

        M39Description.addProperty(introduce, M39); 

         

        //M40 with description 

        Resource M40 = 

linking.createResource("http://Vertigo/floor6/sensorM40#M40"); 

        Resource M40Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#7"); 

        M40Description.addProperty(introduce, M40); 

         

        //M51 with description 

        Resource M51 = 

linking.createResource("http://Vertigo/floor6/sensorM51#M51"); 

        Resource M51Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#8"); 

        M51Description.addProperty(introduce, M51); 

         

        //M52 with description 

        Resource M52 = 

linking.createResource("http://Vertigo/floor6/sensorM52#M52"); 

        Resource M52Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#9"); 

        M52Description.addProperty(introduce, M52); 

         

        //M53 with description 

        Resource M53 = 

linking.createResource("http://Vertigo/floor6/sensorM53#M53"); 



Appendix C 

72 

 

        Resource M53Description = 

linking.createResource("http://Vertigo/floor6/SensorDescription#10"); 

        M53Description.addProperty(introduce, M53); 

    

        //T_amb_avg with description 

        Resource T_amb_avg = 

linking.createResource("http://Vertigo/OutsideTemperature#outsideTemperatur

e"); 

        Resource T_amb_avgDescription = 

linking.createResource("http://Vertigo/floor6/SensorDescription#11"); 

        T_amb_avgDescription.addProperty(introduce, T_amb_avg); 

         

        //IFC room 6.08 with sensor description 

        Resource room608 = 

linking.createResource("http://Vertigo/floor6/SensorDescription#Room+6.08")

; 

        Property hasIfcLabel = 

linking.createProperty("http://Vertigo/floor6/SensorDescription#", 

"hasIfcLabel"); 

        Resource Label608 = 

linking.createResource("http://linkedbuildingdata.net/ifc/resources20160530

_160210#IfcLabel_14517"); 

        room608.addProperty(hasIfcLabel, Label608); 

         

        //IFC room 6.18 with sensor description 

        Resource room618 = 

linking.createResource("http://Vertigo/floor6/SensorDescription#Room+6.18")

; 

        Resource Label618 = 

linking.createResource("http://linkedbuildingdata.net/ifc/resources20160530

_160210#IfcLabel_14002"); 

        room618.addProperty(hasIfcLabel, Label618); 

         

        //IFC room 6.20 with sensor description 

        Resource room620 = 

linking.createResource("http://Vertigo/floor6/SensorDescription#Room+6.20")

; 

        Resource Label620 = 

linking.createResource("http://linkedbuildingdata.net/ifc/resources20160530

_160210#IfcLabel_14261"); 

        room620.addProperty(hasIfcLabel, Label620); 

         

                       

        Model model = blob.union(linking); 

         

        return model; 

               

    } 

     

    public static void queryRoom608ThermalComfort(Model model, String[] 

airSpeedDate, String[] temperatureDate, String[] blackGlobeDate, 

            String[] humidityDate, double[] airSpeedValue, double[] 

temperatureValue, double[] blackGlobeValue, double[] humidityValue){ 

         

        //query for air speed(DT03) at 02/2015, 04/2015, 07/2015, 10/2015                        

        String queryDT03 = "PREFIX Saref: <https://w3id.org/saref#> " + 

                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                "PREFIX  owl: <http://www.w3.org/2002/07/owl#> " + 

                "PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#> " +                   



Appendix C 

73 

 

                "PREFIX  geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> " 

+ 

                "PREFIX  express: <http://purl.org/voc/express#> " + 

                "SELECT ?date ?value " + 

                "WHERE " + 

                "{ ?a  Saref:hasSensorType  \"Air speed at 1.1 m\". " + 

                "  ?a  sensorDescription:introduces   ?b. " + 

                "  ?a  geo:location   ?d. " + 

                "  ?d  sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                "  ?IfcLabel  express:hasString   \"Room 6.08\" . " + 

                "  ?c  a  ?b. " + 

                "  ?c  owl:hasValue ?value. " + 

                "  ?c  Saref:hasSensingTime ?date . " +                  

                "  FILTER (((?date >= \"2015-02-

01T09:30:00+01:00\"^^xsd:dateTime) && (?date < \"2015-03-

01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + " ((?date >= \"2015-04-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-05-01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + "((?date >= \"2015-07-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-08-01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + "((?date >= \"2015-10-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-11-01T09:30:00+01:00\"^^xsd:dateTime))) " +                                

                "}\n" + 

                "ORDER BY ?date"; 

        Query qDT03 = QueryFactory.create(queryDT03); 

        QueryExecution qExeDT03 = QueryExecutionFactory.create(qDT03, 

model); 

        try{ 

            ResultSet resultDT03 = qExeDT03.execSelect(); 

            int i = 0; 

                while(resultDT03.hasNext()){                     

                    QuerySolution soln = resultDT03.nextSolution(); 

                    Literal date = soln.getLiteral("date"); 

                    Literal value = soln.getLiteral("value"); 

                    System.out.println("airSpeedRoom608- " + "Date: " + 

date + "   Value: " + value);  

                    String[] dateParts = date.getString().split("^^"); 

                    airSpeedDate[i] = dateParts[0]; 

                    String[] valueParts = value.getString().split("^^"); 

                    double temp = Double.parseDouble(valueParts[0]); 

                    airSpeedValue[i] = temp; 

                    i++;                     

            } 

                for(int j = 0; j < i; j++){ 

                    System.out.println("airSpeedRoom608-  " + 

airSpeedDate[j] + "  " + airSpeedValue[j]); 

                } 

        }finally{ 

            qExeDT03.close(); 

        } 

         

        //query for temperature(DT06) on 01/02/2015, 01/04/2015, 

01/07/2015, 01/10/2015                

        String queryDT06 = "PREFIX Saref: <https://w3id.org/saref#> " + 

                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                "PREFIX  owl: <http://www.w3.org/2002/07/owl#> " + 

                "PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#> " +  

                "PREFIX  geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> " 

+ 

                "PREFIX  express: <http://purl.org/voc/express#> " + 



Appendix C 

74 

 

                "SELECT ?date ?value " + 

                "WHERE " + 

                "{ ?a  Saref:hasSensorType  \"Air temperature at 1.1 m\". " 

+ 

                "  ?a  sensorDescription:introduces   ?b. " + 

                "  ?a  geo:location   ?d. " + 

                "  ?d  sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                "  ?IfcLabel  express:hasString   \"Room 6.08\" . " + 

                "  ?c  a  ?b. " + 

                "  ?c  owl:hasValue ?value. " + 

                "  ?c  Saref:hasSensingTime ?date . " +                  

                "  FILTER (((?date >= \"2015-02-

01T09:30:00+01:00\"^^xsd:dateTime) && (?date < \"2015-03-

01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + " ((?date >= \"2015-04-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-05-01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + "((?date >= \"2015-07-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-08-01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + "((?date >= \"2015-10-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-11-01T09:30:00+01:00\"^^xsd:dateTime))) " +   

                "}\n" + 

                "ORDER BY ?date"; 

        Query qDT06 = QueryFactory.create(queryDT06); 

        QueryExecution qExeDT06 = QueryExecutionFactory.create(qDT06, 

model); 

        try{ 

            ResultSet resultDT06 = qExeDT06.execSelect(); 

            int i = 0; 

                while(resultDT06.hasNext()){                     

                    QuerySolution soln = resultDT06.nextSolution(); 

                    Literal date = soln.getLiteral("date"); 

                    Literal value = soln.getLiteral("value"); 

                    System.out.println("temperatureRoom608-  " + "Date: " + 

date + "   Value: " + value);  

                    String[] dateParts = date.getString().split("^^"); 

                    temperatureDate[i] = dateParts[0]; 

                    String[] valueParts = value.getString().split("^^"); 

                    double temp = Double.parseDouble(valueParts[0]); 

                    temperatureValue[i] = temp; 

                    i++;                     

            } 

                for(int j = 0; j < i; j++){ 

                    System.out.println("temperatureRoom608-  " + 

temperatureDate[j] + "  " + temperatureValue[j]); 

                } 

        }finally{ 

            qExeDT06.close(); 

        } 

         

        //query for temperature black globe(DT07) on 01/02/2015, 

01/04/2015, 01/07/2015, 01/10/2015                 

        String queryDT07 = "PREFIX Saref: <https://w3id.org/saref#> " + 

                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                "PREFIX  owl: <http://www.w3.org/2002/07/owl#> " + 

                "PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#> " + 

                "PREFIX  geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> " 

+ 

                "PREFIX  express: <http://purl.org/voc/express#> " + 

                "SELECT ?date ?value " + 

                "WHERE " + 



Appendix C 

75 

 

                "{ ?a  Saref:hasSensorType  \"Temperature black globe at 

0.6 m\" . " + 

                "  ?a  sensorDescription:introduces   ?b. " + 

                "  ?a  geo:location   ?d. " + 

                "  ?d  sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                "  ?IfcLabel  express:hasString   \"Room 6.08\" . " + 

                "  ?c  a  ?b. " + 

                "  ?c  owl:hasValue ?value. " + 

                "  ?c  Saref:hasSensingTime ?date . " +                  

                "  FILTER (((?date >= \"2015-02-

01T09:30:00+01:00\"^^xsd:dateTime) && (?date < \"2015-03-

01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + " ((?date >= \"2015-04-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-05-01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + "((?date >= \"2015-07-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-08-01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + "((?date >= \"2015-10-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-11-01T09:30:00+01:00\"^^xsd:dateTime))) " +   

                "}\n" + 

                "ORDER BY ?date"; 

        Query qDT07 = QueryFactory.create(queryDT07); 

        QueryExecution qExeDT07 = QueryExecutionFactory.create(qDT07, 

model); 

        try{ 

            ResultSet resultDT07 = qExeDT07.execSelect(); 

            int i = 0; 

                while(resultDT07.hasNext()){                     

                    QuerySolution soln = resultDT07.nextSolution(); 

                    Literal date = soln.getLiteral("date"); 

                    Literal value = soln.getLiteral("value"); 

                    System.out.println("blackGlobeRoom608-  " + "Date: " + 

date + "   Value: " + value);  

                    String[] dateParts = date.getString().split("^^"); 

                    blackGlobeDate[i] = dateParts[0]; 

                    String[] valueParts = value.getString().split("^^"); 

                    double temp = Double.parseDouble(valueParts[0]); 

                    blackGlobeValue[i] = temp; 

                    i++;                     

            } 

                for(int j = 0; j < i; j++){ 

                    System.out.println("blackGlobeRoom608-  " + 

blackGlobeDate[j] + "  " + blackGlobeValue[j]); 

                } 

        }finally{ 

            qExeDT07.close(); 

        } 

         

        //query for humidity(DT08) on 01/02/2015, 01/04/2015, 01/07/2015, 

01/10/2015                 

        String queryDT08 = "PREFIX Saref: <https://w3id.org/saref#> " + 

                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                "PREFIX  owl: <http://www.w3.org/2002/07/owl#> " + 

                "PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#> " +  

                "PREFIX  geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> " 

+ 

                "PREFIX  express: <http://purl.org/voc/express#> " + 

                "SELECT ?date ?value " + 

                "WHERE " + 

                "{ ?a  Saref:hasSensorType  \"Relative Humidity at 0.6 

m\" . " + 



Appendix C 

76 

 

                "  ?a  sensorDescription:introduces   ?b. " + 

                "  ?a  geo:location   ?d. " + 

                "  ?d  sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                "  ?IfcLabel  express:hasString   \"Room 6.08\" . " + 

                "  ?c  a  ?b. " + 

                "  ?c  owl:hasValue ?value. " + 

                "  ?c  Saref:hasSensingTime ?date . " +                  

                "  FILTER (((?date >= \"2015-02-

01T09:30:00+01:00\"^^xsd:dateTime) && (?date < \"2015-03-

01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + " ((?date >= \"2015-04-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-05-01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + "((?date >= \"2015-07-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-08-01T09:30:00+01:00\"^^xsd:dateTime)) ||" 

                + "((?date >= \"2015-10-01T09:30:00+01:00\"^^xsd:dateTime) 

&& (?date < \"2015-11-01T09:30:00+01:00\"^^xsd:dateTime))) " +   

                "}\n" + 

                "ORDER BY ?date"; 

        Query qDT08 = QueryFactory.create(queryDT08); 

        QueryExecution qExeDT08 = QueryExecutionFactory.create(qDT08, 

model); 

        try{ 

            ResultSet resultDT08 = qExeDT08.execSelect(); 

            int i = 0; 

                while(resultDT08.hasNext()){                     

                    QuerySolution soln = resultDT08.nextSolution(); 

                    Literal date = soln.getLiteral("date"); 

                    Literal value = soln.getLiteral("value"); 

                    System.out.println("humidityRoom608-  " + "Date: " + 

date + "   Value: " + value);  

                    String[] dateParts = date.getString().split("^^"); 

                    humidityDate[i] = dateParts[0]; 

                    String[] valueParts = value.getString().split("^^"); 

                    double temp = Double.parseDouble(valueParts[0]); 

                    humidityValue[i] = temp; 

                    i++;                     

            } 

                for(int j = 0; j < i; j++){ 

                    System.out.println("humidityRoom608-  " + 

humidityDate[j] + "  " + humidityValue[j]); 

                } 

        }finally{ 

            qExeDT08.close(); 

        } 

         

    } 

     

    

     

    public static double[] PMVPPD(String[] airSpeedDate, double[] 

PMVRoom608, int date, String day, String time){ 

        double PMVSum = 0; 

        for(int i = 0; i < airSpeedDate.length; i++){ 

            if (airSpeedDate[i] == null) break; 

            if(airSpeedDate[i].contains(day)){ 

                if(airSpeedDate[i].contains(time)){ 

                    PMVSum += PMVRoom608[i]; 

                } 

            } 

        }                 

        double[] PMVPPD = new double[2]; 



Appendix C 

77 

 

        PMVPPD[0] = PMVSum/date; 

        PMVPPD[1] = 100 - 95 * Math.exp(-(0.3353 * Math.pow(PMVPPD[0], 4) + 

0.2179 * Math.pow(PMVPPD[1], 2))); 

        return PMVPPD; 

        } 

     

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C 

78 

 

 



Appendix D 

79 

 

Appendix D  Self-defined RDF ontology schema (after data linking process) 

@prefix sensor: <http://www.tue.nl/sensor#> . 

@prefix owl:   <http://www.w3.org/2002/07/owl#> . 

@prefix sensorM03: <http://Vertigo/floor6/sensorM03#> . 

@prefix saref: <C:\Users\s146559\Desktop\Sensor Data\New\Sensor-

Description-csv.ttl> . 

@prefix xsd:   <http://www.w3.org/2001/XMLSchema#> . 

@prefix rdfs:  <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix geo:   <http://www.w3.org/2003/01/geo/wgs84_pos#> . 

@prefix outsideTemperature: <http://Vertigo/OutsideTemperature#> . 

@prefix Saref: <https://w3id.org/saref#> . 

@prefix sensorM40: <http://Vertigo/floor6/sensorM40#> . 

@prefix sensorM52: <http://Vertigo/floor6/sensorM52#> . 

@prefix sensorM53: <http://Vertigo/floor6/sensorM53#> . 

@prefix sensorM38: <http://Vertigo/floor6/sensorM38#> . 

@prefix sensorM39: <http://Vertigo/floor6/sensorM39#> . 

@prefix sensorDT06: <http://Vertigo/floor6/sensorDT06#> . 

@prefix sensorDescription: <http://Vertigo/floor6/SensorDescription#> . 

@prefix sensorDT07: <http://Vertigo/floor6/sensorDT07#> . 

@prefix sensorDT08: <http://Vertigo/floor6/sensorDT08#> . 

@prefix sensorDT03: <http://Vertigo/floor6/sensorDT03#> . 

@prefix rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix inst:  

<http://linkedbuildingdata.net/ifc/resources20160614_154955/> . 

@prefix sensorM51: <http://Vertigo/floor6/sensorM51#> . 

 

sensor:sensorRepresentation 

    rdf:type owl:class 

    rdfs:comment "sensor representation for each sensor"^^xsd:string . 

 

sensor:sensorValue 

    rdf:type owl:class; 

    rdfs:comment "record sensing value of sensor DT03 at a specific 

time"^^xsd:string ; 

    sensor:isSensingValueOf sensor:sensorRepresentation; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

 

<http://Vertigo/floor6/sensorDT03#0> 

    rdf:type sensor:sensorValue ;    

    rdfs:comment "a sensing value of sensor DT03 at a specific 

time"^^xsd:string ;  

    sensor:isSensingValueOf sensorDT03:DT03 ; 

    Saref:hasSensingTime xsd:dateTime ; 

    owl:hasValue xsd:double . 

     

sensorDT03:DT03 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of DT03"^^xsd:string.   

 

     

<http://Vertigo/floor6/sensorDT06#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor DT06 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorDT06:DT06; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorDT06:DT06 



Appendix D 

80 

 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of DT06"^^xsd:string.   

 

     

<http://Vertigo/floor6/sensorDT07#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor DT07 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorDT07:DT07; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorDT07:DT07 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of DT07"^^xsd:string.   

 

     

<http://Vertigo/floor6/sensorDT08#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor DT08 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorDT08:DT08; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

 

sensorDT08:DT08 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of DT08"^^xsd:string.       

     

 

     

<http://Vertigo/floor6/sensorM03#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M03 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM03:M03; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

 

sensorM03:M03 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M03"^^xsd:string.        

     

     

<http://Vertigo/floor6/sensorM38#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M38 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM38:M38; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM38:M38 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M38"^^xsd:string. 

 

         

<http://Vertigo/floor6/sensorM39#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M39 at a specific 

time"^^xsd:string; 



Appendix D 

81 

 

    sensor:isSensingValueOf sensorM39:M39; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM39:M39 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M39"^^xsd:string. 

 

     

<http://Vertigo/floor6/sensorM40#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M40 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM40:M40; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM40:M40 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M40"^^xsd:string. 

 

     

<http://Vertigo/floor6/sensorM51#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M51 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM51:M51; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM51:M51 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M51"^^xsd:string. 

 

     

<http://Vertigo/floor6/sensorM52#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M52 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM52:M52; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM52:M52 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M52"^^xsd:string. 

 

     

<http://Vertigo/floor6/sensorM53#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of sensor M53 at a specific 

time"^^xsd:string; 

    sensor:isSensingValueOf sensorM53:M53; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

sensorM53:M53 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of M53"^^xsd:string. 

 

     



Appendix D 

82 

 

<http://Vertigo/OutsideTemperature#0> 

    rdf:type sensor:sensorValue ; 

    rdfs:comment "a sensing value of outside temperature sensor at a 

specific time"^^xsd:string; 

    sensor:isSensingValueOf outsideTemperature:outsideTemperature; 

    Saref:hasSensingTime xsd:dateTime; 

    owl:hasValue xsd:double. 

     

outsideTemperature:outsideTemperature 

    rdf:type sensor:sensorRepresentation ; 

    rdfs:comment "the representation of outside temperature 

sensor"^^xsd:string. 

 

sensorDescription:sensorDescription 

    rdf:type owl:Class ; 

    rdfs:comment "sensor description for sensors "^^xsd:string ; 

    sensorDescription:introduces  sensor:sensorRepresentation ; 

    Saref:hasName sensorDescription:sensorName ; 

    Saref:hasSingularUnit xsd:string ; 

    Saref:hasSensorType xsd:string ; 

    geo:location sensorDescription:room; 

    sensorDescription:locationHeight xsd:string ; 

    Saref:hasCategory sensorDescription:category. 

     

<http://Vertigo/floor6/SensorDescription#0> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor DT03"^^xsd:string ; 

    sensorDescription:introduces  sensorDT03:DT03 ; 

    Saref:hasName sensorDescription:DT03 ; 

    Saref:hasSingularUnit "m/s"^^xsd:string ; 

    Saref:hasSensorType "Air speed at 1.1 m"^^xsd:string ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    sensorDescription:locationHeight "1.1m"^^xsd:string ; 

    Saref:hasCategory sensorDescription:ComfortStatief . 

     

<http://Vertigo/floor6/SensorDescription#1> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor DT06"^^xsd:string ; 

    sensorDescription:introduces  sensorDT06:DT06 ; 

    Saref:hasName sensorDescription:DT06 ; 

    Saref:hasSingularUnit ""?C"^^xsd:string ; 

    sensorDescription:hasSensingRange "-30.0 - 65.0" ; 

    Saref:hasSensorType "Air temperature at 1.1 m"^^xsd:string ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    sensorDescription:locationHeight "1.1m"^^xsd:string ; 

    Saref:hasCategory sensorDescription:ComfortStatief . 

 

<http://Vertigo/floor6/SensorDescription#2> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor DT07"^^xsd:string ; 

    sensorDescription:introduces  sensorDT07:DT07 ; 

    Saref:hasName sensorDescription:DT07 ; 

    Saref:hasSingularUnit "?C" ; 

    Saref:hasSensorType "Temperature black globe at 0.6 m" ; 

    sensorDescription:hasSensingRange "-30.0 - 65.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    sensorDescription:locationHeight "0.6m" ; 

    Saref:hasCategory sensorDescription:ComfortStatief . 

 

<http://Vertigo/floor6/SensorDescription#3> 

    rdf:type sensorDescription:sensorDescription ; 



Appendix D 

83 

 

    rdfs:comment "a sensor description for sensor DT08"^^xsd:string ; 

    sensorDescription:introduces  sensorDT08:DT08 ; 

    Saref:hasName sensorDescription:DT08 ; 

    Saref:hasSingularUnit "%" ; 

    Saref:hasSensorType "Relative Humidity at 0.6 m" ; 

    sensorDescription:hasSensingRange "0.0 - 100.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    sensorDescription:locationHeight "0.6m" ; 

    Saref:hasCategory sensorDescription:ComfortStatief . 

 

<http://Vertigo/floor6/SensorDescription#4> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M03"^^xsd:string ; 

    sensorDescription:introduces  sensorM03:M03 ; 

    Saref:hasName sensorDescription:M03 ; 

    Saref:hasSingularUnit "ppm" ; 

    Saref:hasSensorType "CO2" ; 

    sensorDescription:hasSensingRange "0 - 5000" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.08> ; 

    Saref:hasCategory sensorDescription:Modbus .     

     

<http://Vertigo/floor6/SensorDescription#5> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M38"^^xsd:string ; 

    sensorDescription:introduces  sensorM38:M38 ; 

    Saref:hasName sensorDescription:M38 ; 

    Saref:hasSingularUnit "?C" ; 

    Saref:hasSensorType "Temperature" ; 

    sensorDescription:hasSensingRange "5 - 45" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.18> ; 

    sensorDescription:locationHeight "0.75m" ; 

    Saref:hasCategory sensorDescription:Modbus . 

 

<http://Vertigo/floor6/SensorDescription#6> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M39"^^xsd:string ; 

    sensorDescription:introduces  sensorM39:M39 ; 

    Saref:hasName sensorDescription:M39 ; 

    Saref:hasSingularUnit "%" ; 

    Saref:hasSensorType "Relatieve humidity" ; 

    sensorDescription:hasSensingRange "0.0 - 100.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.18> ; 

    Saref:hasCategory sensorDescription:Modbus . 

 

<http://Vertigo/floor6/SensorDescription#7> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M40"^^xsd:string ; 

    sensorDescription:introduces  sensorM40:M40 ; 

    Saref:hasName sensorDescription:M40 ; 

    Saref:hasSingularUnit "ppm" ; 

    Saref:hasSensorType "CO2" ; 

    sensorDescription:hasSensingRange "0 - 5000" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.18> ; 

    Saref:hasCategory sensorDescription:Modbus . 

 

<http://Vertigo/floor6/SensorDescription#8> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M51"^^xsd:string ; 

    sensorDescription:introduces  sensorM51:M51 ;    

    Saref:hasName sensorDescription:M51 ; 

    Saref:hasSingularUnit "?C" ; 



Appendix D 

84 

 

    Saref:hasSensorType "Temperature" ; 

    sensorDescription:hasSensingRange "-30.0 - 65.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.20> ; 

    sensorDescription:locationHeight "0.75m" ; 

    Saref:hasCategory sensorDescription:Modbus .     

     

<http://Vertigo/floor6/SensorDescription#9> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M52"^^xsd:string ; 

    sensorDescription:introduces  sensorM52:M52 ;        

    Saref:hasName sensorDescription:M52 ; 

    Saref:hasSingularUnit "%" ; 

    Saref:hasSensorType "Relatieve humidity" ; 

    sensorDescription:hasSensingRange "0.0 - 100.0" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.20> ; 

    Saref:hasCategory sensorDescription:Modbus .     

     

<http://Vertigo/floor6/SensorDescription#10> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for sensor M53"^^xsd:string ; 

    sensorDescription:introduces  sensorM53:M53 ;    

    Saref:hasName sensorDescription:M53 ; 

    Saref:hasSingularUnit "ppm" ; 

    Saref:hasSensorType "CO2" ; 

    sensorDescription:hasSensingRange "0 - 5000" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Room+6.20> ; 

    Saref:hasCategory sensorDescription:Modbus . 

 

<http://Vertigo/floor6/SensorDescription#11> 

    rdf:type sensorDescription:sensorDescription ; 

    rdfs:comment "a sensor description for outside temperature 

sensor"^^xsd:string ; 

    sensorDescription:introduces  outsideTemperature:outsideTemperature ;    

    Saref:hasName sensorDescription:T_amb_avg ; 

    Saref:hasSingularUnit "?C" ; 

    Saref:hasSensorType "Outside temperature" ; 

    geo:location <http://Vertigo/floor6/SensorDescription#Vertigo+roof> ; 

    Saref:hasCategory sensorDescription:DL_SMS_Mete . 

     

sensorDescription:sensorName 

    rdf:type owl:Class ; 

    rdfs:comment "the description URIs for sensors"^^xsd:string . 

     

sensorDescription:DT03   

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor DT03"^^xsd:string . 

 

sensorDescription:DT06   

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor DT06"^^xsd:string . 

     

sensorDescription:DT07   

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor DT07"^^xsd:string . 

     

sensorDescription:DT08   

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor DT0"^^xsd:string . 

     

sensorDescription:M03    

    rdf:type sensorDescription:sensorName ; 



Appendix D 

85 

 

    rdfs:comment "the description URI for sensor M03"^^xsd:string . 

     

sensorDescription:M38    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M38"^^xsd:string . 

     

sensorDescription:M39    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M39"^^xsd:string . 

     

sensorDescription:M40    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M40"^^xsd:string . 

 

sensorDescription:M51    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M51"^^xsd:string . 

     

sensorDescription:M52    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M52"^^xsd:string . 

     

sensorDescription:M53    

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor M53"^^xsd:string . 

 

sensorDescription:T_amb_avg  

    rdf:type sensorDescription:sensorName ; 

    rdfs:comment "the description URI for sensor T_amb_avg"^^xsd:string . 

     

sensorDescription:room 

    rdf:type owl:Class; 

    rdfs:comment "the room URI where the sensor is located"^^xsd:string . 

     

<http://Vertigo/floor6/SensorDescription#Room+6.08> 

    rdf:type sensorDescription:room ; 

    rdfs:comment "the description URI for room 6.08"^^xsd:string . 

     

<http://Vertigo/floor6/SensorDescription#Room+6.18> 

    rdf:type sensorDescription:room ; 

    rdfs:comment "the description URI for room 6.18"^^xsd:string . 

     

<http://Vertigo/floor6/SensorDescription#Room+6.20> 

    rdf:type sensorDescription:room ; 

    rdfs:comment "the description URI for room 6.20"^^xsd:string . 

     

<http://Vertigo/floor6/SensorDescription#Vertigo+roof> 

    rdf:type sensorDescription:room ; 

    rdfs:comment "the description URI for Vertigo roof"^^xsd:string . 

 

sensorDescription:category 

    rdf:type owl:Class ; 

    rdfs:comment "the category for different sensors"^^xsd:string . 

     

sensorDescription:ComfortStatief 

    rdf:type sensorDescription:category ; 

    rdfs:comments "the log schedule is ComfortStatief"^^xsd:string . 

     

sensorDescription:Modbus 

    rdf:type sensorDescription:category ; 

    rdfs:comments "the log schedule is Modbus"^^xsd:string . 



Appendix D 

86 

 

 

sensorDescription:DL_SMS_Mete 

    rdf:type sensorDescription:category ; 

    rdfs:comments "the log schedule is DL_SMS_Mete"^^xsd:string . 

 

sensor:isSensingValueOf 

    rdf:type owl:ObjectProperty ; 

    rdfs:comment "connection between sensor values and sensor 

representation"^^xsd:string ; 

    rdfs:domain sensor:sensorValue ; 

    rdfs:range sensor:sensorRepresentation . 

     

sensorDescription:introduces 

    rdf:type owl:ObjectProperty ; 

    rdfs:comment "connection between sensor description and sensor 

representation"^^xsd:string ; 

    rdfs:domain sensorDescription:sensorDescription ; 

    rdfs:range sensor:sensorRepresentation . 

     

sensorDescription:hasIfcLabel 

    rdf:type owl:ObjectProperty ; 

    rdfs:comment "connection between sensor room and ifc 

space"^^xsd:string ; 

    rdfs:domain sensorDescription:room ; 

    rdfs:range inst:Ifclabel . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix E 

87 

 

Appendix E  Python Codes for SPARQL and IfcOpenshell Visualization 

import rdflib 

import time 

import math 

import ifcopenshell 

import ifcopenshell.geom 

 

import numpy as np 

import matplotlib.pyplot as plt 

 

# For the colors: 

import OCC.Quantity 

 

 

# read turtle file 

model = rdflib.Graph() 

model.parse("model.ttl",format="n3") 

 

#get user's topic input 

valid1 = False 

while valid1 == False: 

    topic = raw_input("Please select a topic to query: \n 1. moment CO2, \n 

2. moment temperature, \n 3. moment thermal comfort, " 

                      "\n 4. seasonal thermal comfort, \n 5. daytime period 

thermal comfort\n") 

    if topic not in ("moment CO2", "moment temperature", "moment thermal 

comfort", "seasonal thermal comfort", 

                    "daytime period thermal comfort", "1", "2", "3", "4", 

"5"): 

        print("Not an appropriate choice. Please select from the three 

topics.") 

    else: 

        valid1 = True 

 

#get user's date input 

def getDateInput(): 

    valid2 = False 

    while valid2 == False: 

        topicDay = raw_input("Please enter the day you want to query in 

\"2015-mm-dd\" format.\n") 

        while True: 

            try: 

                day = time.strptime(topicDay, "2015-%m-%d") 

                valid2 = True 

                break 

            except ValueError : 

                print("Invalid format") 

                break 

 

 

    valid3 = False 

    while valid3 == False: 

        topicTime = raw_input("Please select the time: \"09:30\", 

\"13:00\", \"17:30\". \n") 

        if topicTime not in ("09:30", "13:00", "17:30"): 

            print("Not an appropriate choice. Please select from the three 

time choices.") 

        else: 

            valid3 = True 

 



Appendix E 

88 

 

 

 

    date = "\"" + topicDay + "T" + topicTime+ ":00+01:00\"^^xsd:dateTime" 

    return date 

 

 

# CO2 query 

def CO2Monitoring(model): 

    date = getDateInput() 

    queryCO2 = ( "PREFIX Saref: <https://w3id.org/saref#> " + 

                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                "PREFIX  owl: <http://www.w3.org/2002/07/owl#> " + 

                "PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#> " + 

                "PREFIX  geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> " 

+ 

                "PREFIX  express: <http://purl.org/voc/express#> " + 

                "PREFIX  sensor: <http://www.tue.nl/sensor#> " + 

                "SELECT  ?ID ?value " + 

                "WHERE " + 

                "{ ?a  Saref:hasSensorType  \"CO2\" . " + 

                "  ?a  sensorDescription:introduces   ?b. " + 

                "  ?a  geo:location   ?d. " + 

                "  ?d  sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                "  ?IfcSpace  

ifcowl:longName_IfcSpatialStructureElement   ?IfcLabel . " + 

                "  ?IfcSpace  ifcowl:globalId_IfcRoot  ?e. " + 

                "  ?e  express:hasString  ?ID. " + 

                "  ?c  sensor:isSensingValueOf  ?b. " + 

                "  ?c  owl:hasValue ?value. " + 

                "  ?c  Saref:hasSensingTime  " + 

                date + 

                "." + 

                "}\n" ) 

 

 

    xCO2 = model.query(queryCO2) 

    XCO2 = list() 

    yCO2 = list() 

    resultsCO2 = list() 

 

    for i in xCO2: 

        print i 

 

    for i in xCO2: 

        XCO2.append(str(i)) 

 

 

    for i in XCO2: 

        yCO2.extend(i.split("'")) 

 

    for i in (yCO2[1],yCO2[3],yCO2[8],yCO2[10],yCO2[15],yCO2[17]): 

        resultsCO2.append(i) 

 

    print resultsCO2 

 

    # Specify to return pythonOCC shapes from 

ifcopenshell.geom.create_shape() 

    settings = ifcopenshell.geom.settings() 

    settings.set(settings.USE_PYTHON_OPENCASCADE, True) 

 



Appendix E 

89 

 

    # Initialize a graphical display window 

    occ_display = ifcopenshell.geom.utils.initialize_display() 

 

    VertigoFloor6 = ifcopenshell.open(r"Vertigo floor6.ifc") 

    products = VertigoFloor6.by_type("IfcProduct") 

 

    guid_to_color = {} 

 

    index = 0 

    while index < len(resultsCO2): 

        guid = resultsCO2[index] 

        value = float(resultsCO2[index + 1]) 

 

        clr = (1, 1, 1) 

 

        if value < 600: 

            clr = (0, 1, 1) 

        elif value < 1000: 

            clr = (0, 0, 1) 

        elif value < 2500: 

            clr = (1, 0, 1) 

        else: 

            clr = (1, 0, 0) 

 

        clr = OCC.Quantity.Quantity_Color(clr[0], clr[1], clr[2], 

OCC.Quantity.Quantity_TOC_RGB) 

        guid_to_color[guid] = clr 

 

        index = index + 2 

 

    for product in products: 

        if product.Representation: 

            shape = ifcopenshell.geom.create_shape(settings, 

product).geometry 

            clr = guid_to_color.get(product.GlobalId) 

            display_shape = ifcopenshell.geom.utils.display_shape(shape, 

clr) 

            if not clr: 

                

ifcopenshell.geom.utils.set_shape_transparency(display_shape, 0.8) 

 

    occ_display.FitAll() 

 

    ifcopenshell.geom.utils.main_loop() 

 

    return 

 

 

#inside and outside temperature query 

def inAndOutTemperature(model): 

    date = getDateInput() 

    queryInAndOutTemperature = ("PREFIX Saref: <https://w3id.org/saref#> " 

+ 

                                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                                "PREFIX  owl: 

<http://www.w3.org/2002/07/owl#> " + 

                                "PREFIX  xsd: 

<http://www.w3.org/2001/XMLSchema#> " + 

                                "PREFIX  geo: 

<http://www.w3.org/2003/01/geo/wgs84_pos#> " + 



Appendix E 

90 

 

                                "PREFIX  express: 

<http://purl.org/voc/express#> " + 

                                "PREFIX  sensor: 

<http://www.tue.nl/sensor#> " + 

                                "SELECT  ?ID ?value " + 

                                "WHERE " + 

                                "{ ?a  Saref:hasSensorType  ?type . " + 

                                "  ?a  sensorDescription:introduces   ?b. " 

+ 

                                "  ?c  sensor:isSensingValueOf  ?b. " + 

                                "  ?c  owl:hasValue ?value. " + 

                                "  ?c  Saref:hasSensingTime  " + 

                                date + 

                                "." + 

                                "  OPTIONAL{?a  geo:location   ?d. " + 

                                "         ?d  

sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                                "         ?IfcSpace  

ifcowl:longName_IfcSpatialStructureElement   ?IfcLabel . " + 

                                "         ?IfcSpace  

ifcowl:globalId_IfcRoot  ?e. " + 

                                "         ?e  express:hasString   ?ID .} " 

+ 

                                "  FILTER ((?type = \"Air temperature at 

1.1 m\") || (?type = \"Temperature\") || (?type = \"Outside 

temperature\"))" + 

                                "}\n" + 

                                "ORDER BY ?ID") 

 

 

    xInAndOut = model.query(queryInAndOutTemperature) 

    XInAndOut = list() 

    yInAndOut = list() 

    resultsInAndOut = list() 

 

    for i in xInAndOut: 

        print i 

 

    for i in xInAndOut: 

        XInAndOut.append(str(i)) 

 

    for i in XInAndOut: 

        yInAndOut.extend(i.split("'")) 

 

    yInAndOut[0] = "2tv2ExGFr31fuFHLjs39yh" 

 

    for i in ( 

    yInAndOut[0], yInAndOut[1], yInAndOut[6], yInAndOut[8], yInAndOut[13], 

yInAndOut[15], yInAndOut[20], yInAndOut[22]): 

        resultsInAndOut.append(i) 

 

    print resultsInAndOut 

 

    # Specify to return pythonOCC shapes from 

ifcopenshell.geom.create_shape() 

    settings = ifcopenshell.geom.settings() 

    settings.set(settings.USE_PYTHON_OPENCASCADE, True) 

 

    # Initialize a graphical display window 

    occ_display = ifcopenshell.geom.utils.initialize_display() 

 



Appendix E 

91 

 

    VertigoFloor6 = ifcopenshell.open(r"Vertigo floor6.ifc") 

    products = VertigoFloor6.by_type("IfcProduct") 

 

    guid_to_color = {} 

 

    index = 0 

    while index < len(resultsInAndOut): 

        guid = resultsInAndOut[index] 

        value = float(resultsInAndOut[index + 1]) 

 

        clr = (1, 1, 1) 

 

        if value < 20: 

            clr = (0, 1, 1) 

        elif value < 26: 

            clr = (0, 1, 0) 

        elif value < 30: 

            clr = (1, 1, 0) 

        else: 

            clr = (1, 0, 0) 

 

        clr = OCC.Quantity.Quantity_Color(clr[0], clr[1], clr[2], 

OCC.Quantity.Quantity_TOC_RGB) 

        guid_to_color[guid] = clr 

 

        index = index + 2 

 

    for product in products: 

        if product.Representation: 

            shape = ifcopenshell.geom.create_shape(settings, 

product).geometry 

            clr = guid_to_color.get(product.GlobalId) 

            display_shape = ifcopenshell.geom.utils.display_shape(shape, 

clr) 

            if not clr: 

                

ifcopenshell.geom.utils.set_shape_transparency(display_shape, 0.8) 

 

    occ_display.FitAll() 

 

    ifcopenshell.geom.utils.main_loop() 

    return 

 

 

#sample thermal comfort query: 

def thermalComfort(model): 

    date = getDateInput() 

    # air speed query 

    queryAirSpeed = ( "PREFIX Saref: <https://w3id.org/saref#> " + 

                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                "PREFIX  owl: <http://www.w3.org/2002/07/owl#> " + 

                "PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#> " + 

                "PREFIX  geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> " 

+ 

                "PREFIX  express: <http://purl.org/voc/express#> " + 

                "PREFIX  sensor: <http://www.tue.nl/sensor#> " + 

                "SELECT  ?ID ?value " + 

                "WHERE " + 

                "{ ?a  Saref:hasSensorType  \"Air speed at 1.1 m\" . " + 

                "  ?a  sensorDescription:introduces   ?b. " + 



Appendix E 

92 

 

                "  ?a  geo:location   ?d. " + 

                "  ?d  sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                "  ?IfcSpace  

ifcowl:longName_IfcSpatialStructureElement   ?IfcLabel . " + 

                "  ?IfcSpace  ifcowl:globalId_IfcRoot  ?e. " + 

                "  ?e  express:hasString  ?ID. " + 

                "  ?c  sensor:isSensingValueOf  ?b. " + 

                "  ?c  owl:hasValue ?value. " + 

                "  ?c  Saref:hasSensingTime  " + 

                date + 

                "." + 

                "}\n" ) 

 

 

    xAirSpeed = model.query(queryAirSpeed) 

    XAirSpeed = list() 

    yAirSpeed = list() 

    resultsAirSpeed = list() 

 

    for i in xAirSpeed: 

        print i 

 

    for i in xAirSpeed: 

        XAirSpeed.append(str(i)) 

 

 

    for i in XAirSpeed: 

        yAirSpeed.extend(i.split("'")) 

 

    for i in (yAirSpeed[1], float(yAirSpeed[3])): 

        resultsAirSpeed.append(i) 

 

    print "air speed: " , resultsAirSpeed 

 

    #air temperature query 

    queryAirTemperature = ( "PREFIX Saref: <https://w3id.org/saref#> " + 

                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                "PREFIX  owl: <http://www.w3.org/2002/07/owl#> " + 

                "PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#> " + 

                "PREFIX  geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> " 

+ 

                "PREFIX  express: <http://purl.org/voc/express#> " + 

                "PREFIX  sensor: <http://www.tue.nl/sensor#> " + 

                "SELECT  ?ID ?value " + 

                "WHERE " + 

                "{ ?a  Saref:hasSensorType  \"Air temperature at 1.1 m\" . 

" + 

                "  ?a  sensorDescription:introduces   ?b. " + 

                "  ?a  geo:location   ?d. " + 

                "  ?d  sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                "  ?IfcSpace  

ifcowl:longName_IfcSpatialStructureElement   ?IfcLabel . " + 

                "  ?IfcSpace  ifcowl:globalId_IfcRoot  ?e. " + 

                "  ?e  express:hasString  ?ID. " + 

                "  ?c  sensor:isSensingValueOf  ?b. " + 

                "  ?c  owl:hasValue ?value. " + 

                "  ?c  Saref:hasSensingTime  " + 

                date + 

                "." + 

                "}\n" ) 



Appendix E 

93 

 

 

 

    xAirTemperature = model.query(queryAirTemperature) 

    XAirTemperature = list() 

    yAirTemperature = list() 

    resultsAirTemperature = list() 

 

    for i in xAirTemperature: 

        print i 

 

    for i in xAirTemperature: 

        XAirTemperature.append(str(i)) 

 

 

    for i in XAirTemperature: 

        yAirTemperature.extend(i.split("'")) 

 

    for i in (yAirTemperature[1], float(yAirTemperature[3])): 

        resultsAirTemperature.append(i) 

 

    print "temperature " , resultsAirTemperature 

 

 

    #temperature black globe query 

    queryBlackGlobe = ( "PREFIX Saref: <https://w3id.org/saref#> " + 

                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                "PREFIX  owl: <http://www.w3.org/2002/07/owl#> " + 

                "PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#> " + 

                "PREFIX  geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> " 

+ 

                "PREFIX  express: <http://purl.org/voc/express#> " + 

                "PREFIX  sensor: <http://www.tue.nl/sensor#> " + 

                "SELECT  ?ID ?value " + 

                "WHERE " + 

                "{ ?a  Saref:hasSensorType  \"Temperature black globe at 

0.6 m\" . " + 

                "  ?a  sensorDescription:introduces   ?b. " + 

                "  ?a  geo:location   ?d. " + 

                "  ?d  sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                "  ?IfcSpace  

ifcowl:longName_IfcSpatialStructureElement   ?IfcLabel . " + 

                "  ?IfcSpace  ifcowl:globalId_IfcRoot  ?e. " + 

                "  ?e  express:hasString  ?ID. " + 

                "  ?c  sensor:isSensingValueOf  ?b. " + 

                "  ?c  owl:hasValue ?value. " + 

                "  ?c  Saref:hasSensingTime  " + 

                date + 

                "." + 

                "}\n" ) 

 

 

    xBlackGlobe = model.query(queryBlackGlobe) 

    XBlackGlobe = list() 

    yBlackGlobe = list() 

    resultsBlackGlobe = list() 

 

    for i in xBlackGlobe: 

        print i 

 

    for i in xBlackGlobe: 



Appendix E 

94 

 

        XBlackGlobe.append(str(i)) 

 

 

    for i in XBlackGlobe: 

        yBlackGlobe.extend(i.split("'")) 

 

    for i in (yBlackGlobe[1], float(yBlackGlobe[3])): 

        resultsBlackGlobe.append(i) 

 

    print "black globe:  " , resultsBlackGlobe 

 

    #relative humidity query 

    queryHumidity = ( "PREFIX Saref: <https://w3id.org/saref#> " + 

                "PREFIX sensorDescription: 

<http://Vertigo/floor6/SensorDescription#> " + 

                "PREFIX  owl: <http://www.w3.org/2002/07/owl#> " + 

                "PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#> " + 

                "PREFIX  geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> " 

+ 

                "PREFIX  express: <http://purl.org/voc/express#> " + 

                "PREFIX  sensor: <http://www.tue.nl/sensor#> " + 

                "SELECT  ?ID ?value " + 

                "WHERE " + 

                "{ ?a  Saref:hasSensorType  \"Relative Humidity at 0.6 

m\" . " + 

                "  ?a  sensorDescription:introduces   ?b. " + 

                "  ?a  geo:location   ?d. " + 

                "  ?d  sensorDescription:hasIfcLabel   ?IfcLabel. " + 

                "  ?IfcSpace  

ifcowl:longName_IfcSpatialStructureElement   ?IfcLabel . " + 

                "  ?IfcSpace  ifcowl:globalId_IfcRoot  ?e. " + 

                "  ?e  express:hasString  ?ID. " + 

                "  ?c  sensor:isSensingValueOf  ?b. " + 

                "  ?c  owl:hasValue ?value. " + 

                "  ?c  Saref:hasSensingTime  " + 

                date + 

                "." + 

                "}\n" ) 

 

 

    xHumidity = model.query(queryHumidity) 

    XHumidity = list() 

    yHumidity = list() 

    resultsHumidity = list() 

 

    for i in xHumidity: 

        print i 

 

    for i in xHumidity: 

        XHumidity.append(str(i)) 

 

 

    for i in XHumidity: 

        yHumidity.extend(i.split("'")) 

 

    for i in (yHumidity[1],float(yHumidity[3])): 

        resultsHumidity.append(i) 

 

    print "humidity " , resultsHumidity 

 

 



Appendix E 

95 

 

    #calculate PMV and PPD 

    m = 70.0 

    w = 0.0 

    pw = 0.0 

    if(resultsAirTemperature[1] >= 18 and resultsAirTemperature[1] < 21): 

        pw = (resultsAirTemperature[1] - 18) / 3 * 4 + 18 

    elif (resultsAirTemperature[1] >= 21 and resultsAirTemperature[1] < 

24): 

        pw = (resultsAirTemperature[1] - 21) / 3 * 4.6 + 21 

    elif (resultsAirTemperature[1] >= 24 and resultsAirTemperature[1] < 

27): 

        pw = (resultsAirTemperature[1] - 24) / 3 * 5.4 + 24 

    elif (resultsAirTemperature[1] >= 27 and resultsAirTemperature[1] < 

29): 

        pw = (resultsAirTemperature[1] - 27) / 3 * 6 + 27 

 

    pa = resultsHumidity[1] / 1000 * pw 

    hc = 12.1 * math.pow(resultsAirSpeed[1], 0.5) 

    icl = 1.0 

    rcl = 0.155 * icl 

    fcl = (1.0 + 0.2 * icl) / (1.05 + 0.1 *icl) 

    tcl = 35.7 - 0.0275 * (m - w) - rcl * ((m - w) - 3.05 * (5.73 - 0.007 * 

(m - w) - pa) - 

          0.42 * ((m - w) - 58.15) - 0.0173 * m * (5.87 - pa) - 0.0014 * m 

* (34 - resultsAirTemperature[1])) 

    tr = math.pow(math.pow((resultsBlackGlobe[1] + 273), 4) + 2.5 * 

math.pow(10, 8) * math.pow(resultsAirSpeed[1], 0.6) * 

        (resultsBlackGlobe[1] - resultsAirTemperature[1]), 0.25) - 273 

    PMV = (0.303 * math.exp(-0.036 * m) + 0.028) * ((m - w) - 3.96e-8 * fcl 

* (math.pow((tcl + 273), 4) - 

          math.pow((tr + 273), 4)) - fcl * hc * (tcl - 

resultsAirTemperature[1]) - 3.05 * (5.73 - 0.007 * (m - w) - pa) - 

          0.42 * ((m - w) - 58.15) - 0.0173 * m * (5.87 - pa) - 0.0014 * m 

* ( 34 - resultsAirTemperature[1])) 

    PPD = 100 - 95 * math.exp(-(0.3353 * math.pow(PMV, 4) + 0.2179 * 

math.pow(PMV, 2))); 

 

    print "PMV: " , PMV , "   PPD: " , PPD 

 

    # Specify to return pythonOCC shapes from 

ifcopenshell.geom.create_shape() 

    settings = ifcopenshell.geom.settings() 

    settings.set(settings.USE_PYTHON_OPENCASCADE, True) 

 

    # Initialize a graphical display window 

    occ_display = ifcopenshell.geom.utils.initialize_display() 

 

    VertigoFloor6 = ifcopenshell.open(r"Vertigo floor6.ifc") 

    products = VertigoFloor6.by_type("IfcProduct") 

 

    guid_to_color = {} 

 

    guid = resultsAirSpeed[0] 

    value = PPD 

 

    clr = (1, 1, 1) 

 

    if value < 25: 

        clr = (0, 1, 1) 

    elif value < 50: 

        clr = (0, 0, 1) 



Appendix E 

96 

 

    elif value < 75: 

        clr = (1, 0, 1) 

    else: 

        clr = (1, 0, 0) 

 

    clr = OCC.Quantity.Quantity_Color(clr[0], clr[1], clr[2], 

OCC.Quantity.Quantity_TOC_RGB) 

    guid_to_color[guid] = clr 

 

    for product in products: 

        if product.Representation: 

            shape = ifcopenshell.geom.create_shape(settings, 

product).geometry 

            clr = guid_to_color.get(product.GlobalId) 

            display_shape = ifcopenshell.geom.utils.display_shape(shape, 

clr) 

            if not clr: 

                

ifcopenshell.geom.utils.set_shape_transparency(display_shape, 0.8) 

 

    occ_display.FitAll() 

 

    ifcopenshell.geom.utils.main_loop() 

 

    return 

 

def seasonalThermalComfort(): 

    print("The average predicted percentage of dissatisfied occupants \nfor 

February is 13.17%, \nfor April is" 

          " 39.82%, \nfor July is 89.78%, \nand for October is 11.25%. \n") 

    #create histogram 

    month = ['February', 'April', 'July', 'October'] 

    percentage = [(13.17 / 100), (39.82 / 100), (89.78 / 100), (11.25 / 

100)] 

 

    pos = np.arange(len(month)) 

    width = 1.0 

 

    ax = plt.axes() 

    ax.set_xticks(pos + (width / 2)) 

    ax.set_xticklabels(month) 

 

    ax.set_ylim([0, 1]) 

 

    ax.set_xlabel('month') 

    ax.set_ylabel('PPD') 

 

    plt.bar(pos, percentage, width, color='g') 

    plt.show() 

    return 

 

def daytimeThermalComfort(): 

    print("The average predicted percentage of dissatisfied occupants for 

April \n at 09:30 is 49.54%, \n at 13:00 is " 

          "39.82%, \n at 17:30 is 37.00%. \n") 

    #create histogram 

    month = ['09:30', '13:00', '17:30'] 

    percentage = [(49.54 / 100), (39.82 / 100), (37.00 / 100)] 

 

    pos = np.arange(len(month)) 

    width = 1.0 



Appendix E 

97 

 

 

    ax = plt.axes() 

    ax.set_xticks(pos + (width / 2)) 

    ax.set_xticklabels(month) 

 

    ax.set_ylim([0, 1]) 

 

    ax.set_xlabel('time') 

    ax.set_ylabel('PPD') 

 

    plt.bar(pos, percentage, width, color='g') 

    plt.show() 

    return 
 

 

#judge for the topic 

if topic == "moment CO2" or topic == "1" : 

    CO2Monitoring(model) 

elif topic == "moment temperature" or topic == "2" : 

    inAndOutTemperature(model) 

elif topic == "moment thermal comfort" or topic == "3": 

    thermalComfort(model) 

elif topic == "seasonal thermal comfort" or topic == "4": 

    seasonalThermalComfort() 

elif topic == "daytime period thermal comfort" or topic == "5": 

    daytimeThermalComfort() 
 


