
i 

 

 

 

 

 

 

 

MASTER'S THESIS 

Vehicle Users' Preferences  

Concerning Automated Driving 
 

Implications for Transportation and Market Planning 
 

by 

I.C.H.M. Megens 

 

 

 

 

 

 

 

 

 

 

Eindhoven, August 2014 

 



ii 

 

  



iii 

 

 

 

 

 

 

 

 

 

Colophon 
 

 

 

Master's thesis 

In partial fulfillment of the requirements for the Master's degree Construction Management 

and Engineering 

 

 

Student name    I.C.H.M. (Ilse) Megens 

Student ID    0637315 

E-mail address    ilse.megens@gmail.com 

 

Graduation date    20 August 2014 

 

 

Graduation program   Construction Management and Urban Development  

Faculty     Faculty of the Built Environment 

Institute    Eindhoven University of Technology  

 

 

Graduation committee  Prof. dr. ir. W.F. (Wim) Schaefer   

     Eindhoven University of Technology 

      

     Dr. Ing. P.J.H.J. (Peter) van der Waerden  

     Eindhoven University of Technology 

 

     Drs. P.H.A.M. (Paul) Masselink   

     Eindhoven University of Technology 

  

     Drs. M.H.W. (Marcel) Clerx    

     WeMobile. B.V. 

  



iv 

 

  



v 

 

Management summary 

 

 
The everlasting demand for mobility has led to three key challenges: the daily occurrence of 

traffic accidents, a dense road network that often results in long traffic jams, and emissions 

that pollute the environment. A next step in the evolution of technology to aid society is the 

introduction of automated driving for passenger vehicles. To benefit from the technology, 

widespread user support is required. To use automated driving systems, vehicle users have 

to release control. However, literature indicates that this is a very critical point. 

 

Vehicle users trust themselves more in carrying out the control function, than they trust 

automated technology in doing this. Therefore, this thesis aims to gain insights for which 

level of automation and in which driving circumstances, vehicle users are willing to release 

driving control. With this insights, recommendations concerning market and transportation 

plans can be given as it forecasts in which driving situations most support for automated 

driving is expected.  

 

Five levels of automation are distinguished by BASt expert group. These levels go from no 

active driving control by automated systems, to carrying out full driving control by 

automated systems. The five levels are labeled as: driver only, assisted driving, partial 

automation, high automation, and full automation. Driving circumstances, including 

associated levels, that are taken in account in the research are: 

- Road type:     highway, regional road, local road 

- Density of traffic on the road:  low, average, high 

- Length of the trip:    < 20 km, 20-100 km, > 100 km 

- Familiarity with the route:   familiar, unfamiliar 

- Secondary task:    yes, no 

 

By a discrete choice experiment it is described which level of automation and which driving 

circumstances contribute to the willingness of vehicle users to release driving control. These 

are: 

- Assisted driving or partial automation; 

- Highways; 

- Familiar route; 

- Not performing a secondary task. 

 

The results indicate that most vehicle users are not yet willing to use fully automated 

systems. However, although small, there is a group that is willing to release all control. This 

group can grow when developments around automated driving mature. The following 

recommendations are stressed concerning the transportation planning. First focus to 

successfully implement automated driving should be on creating strong collaborations and 

feasibility studies for automation on highways. Eventually public parties should aim at also 

enabling automated driving on regional roads, because this could offer very high safety 

benefit levels. Furthermore, it is recommended to enable automated driving on dense roads. 

Along these lines, benefits for society are highest. Lastly, it is recommended to be careful 

with enabling high automated driving. Although very less attention from vehicle users is 

required, small human errors could lead to fatal accidents.   
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Chapter 1  
 

Introduction 
 

 

Passenger vehicle mobility enables daily activities of businesses and consumers. It therefore 

provides a valuable contribution to welfare in the Netherlands. It provides economic and 

personal growth along with the experience of freedom. However, mobility has also exposed 

society to some dangers. Traffic accidents occur on daily basis, the dense road network often 

leads to long traffic jams, and emissions are polluting the environment. These dangers are 

the result of the everlasting demand for mobility, leading to several key societal challenges 

(Kennisinstituut voor Mobiliteitsbeleid, 2013; Ministry of Transport, Public Works and Water 

Management, 2005). 

 

 

1.1 Societal challenges concerning passenger vehicle mobility 
The first challenge is the search for safer transportation possibilities. Every year accidents 

costs Dutch society around 12,5 billion euro. In 2009, these costs represented 2,2% of the 

gross domestic product (Kennisinstituut voor Mobiliteitsbeleid, 2013). Motorized vehicles 

have a high share in this. They are involved in almost half of the traffic accidents (Norden & 

Bijleveld, 2011). SWOV, an institute for road safety research has found that most of the 

traffic accidents occur due to driver error, such as driver's fatigue, the loss of the driver's 

attention or are related to substance abuse of alcohol and drugs (SWOV, 2011; 2012a; 

2012d). Other factors involve speeding, aggressive driving, over-compensation, 

inexperience, slow reaction times, and various other human driving shortcomings (Fagnant 

& Kockelman, 2014). Luckily, over the last years the number of traffic causalities has strongly 

decreased. In 2013 this resulted in 570 traffic causalities, of which more than one-third 

traveled by passenger vehicle (CBS, 2014). According to the Kennisinstituut voor 

Mobiliteitsbeleid (KiM), a Dutch institute for transport policy analysis (2013), the decreasing 

number can be partly attributed to the application of airbags, cruise control, Antilock Braking 

System and other comparable systems. Still, every fatal traffic causality is one too many and 

therefore, further use of technology developments could have even more safety benefits.  

 

The second challenge is to improve the traffic flow. According to KiM, the total travel time 

on Dutch main road network keeps on growing. The reason for the rise is twofold: the 

distance drivers travel, as well as the amount of vehicles on the road is increasing. Negative 

effects of these developments are the increased congestion and delayed traffic flow. 

Congestion has cost society between 1,8 and 2,4 billion euro in 2009, of which more than 

two-third is on account of passenger driving. To lower the negative effects, measures such as 

additional lanes and better traffic management are implemented (Kennisinstituut voor 

Mobiliteitsbeleid, 2013). However, the effects of the current policy measures lag with the 

increasing need for mobility. Without taking effective measures, traffic flow on Dutch roads 

will worsen and the roads will clog up (Raad voor Verkeer en Waterstaat, 2007). 

 

The third challenge concerns the world's climate change. Vehicles emit greenhouse gasses, 

especially air pollution and CO₂. Air pollution has a negative influence on people's health and 

causes damage to nature, agriculture crops and buildings (Kennisinstituut voor 

Mobiliteitsbeleid, 2013). This results in societal welfare loss. CO₂ emission of traffic is 
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connected to energy use and therefore a measurement of environmental savings. Traffic 

accounts for one-fifth on the total CO₂ emissions in the Netherlands, of which more than half 

of the CO₂ emission is caused by passenger vehicles. In 2012, the costs of CO₂ and air 

pollution by traffic were around 5,1 billion euro, one-fourth less than in 2000 

(Kennisinstituut voor Mobiliteitsbeleid, 2013). This reduction is in line with the aim of the 

European Union to stabilize climate change by reducing greenhouse gas emissions and 

saving primary energy (European Parliament and the Council of the European Union, 2009). 

However, to achieve this goal, a structural decline of CO₂ emission of passenger vehicles is 

required (Kennisinstituut voor Mobiliteitsbeleid, 2013; Atsma, 2011). 

 

 

1.2 Technological solution 
The above-mentioned issues expose society to health risks and result in financial costs. 

Moreover, the road network in Netherlands is clogging up which leads to a reduction of 

welfare. In recent years, different platforms, such as Nederland Innovatief Onderweg and 

Connected Mobility, have recognized the effects of Intelligent Transportation Systems as 

beneficial to these societal challenges. Intelligent Transportation Systems (ITS) are usually 

seen as information and communication technologies that are applied within vehicles as well 

as within the driving environment. ITS enable a flexible and dynamic traffic system, adapted 

to up to date situations (SWOV, 2010b). Although ITS have a low usage rate and are only 

purchased in vehicles in high-end segments, vehicle manufacturers are working on a next 

step of technology to aid society: an automated driving experience in which systems take 

over driving control (of driving tasks) from humans (Arem, 2013; Zwaneveld & Arem, 1997). 

Automated driving should improve safety, traffic flow and increase environmental savings. 

Driving control can be taken over to varying degrees, which is reflected by different levels of 

automation. With a higher level of automation, more control of is released from vehicle 

users to automated systems. The introduction of automated driving changes the control that 

is performed by vehicle users while driving, and thus creates a new role division for vehicle 

users, the vehicle and its driving environment. However, it is not granted that vehicle users 

want to adjust their current role, as they are not always eager to release control (Muir, 

1987). The willingness of drivers to release driving control to automated systems is thus 

critical to the success of automated driving (SWOV, 2010b; KPMG & CAR, 2012; Driel & 

Arem, 2005).  

 

While driving, safety-critical tasks, such as steering clear of other vehicles, must be 

performed. However, vehicle users seem to trust themselves more in correctly carrying out 

the control than they trust automated systems in doing this (Lee & Moray, 1994). The 

control that should be carried out by humans depend on the level of automation and the 

driving circumstances, and therefore determine the vehicle user's interaction with the 

vehicle and driving environment. The new role of the vehicle user in the driving situation can 

alter this interaction and therefore can lead to changes in vehicle users' preferences 

concerning driving (Saad, 2006). This is acknowledge by previous research concerning ITS. 

For example, euroFOT research has indicated that systems that take braking and 

accelerating tasks are perceived as more useful on highways than on rural roads. In addition, 

the same systems are perceived as more useful on highways with heavy traffic than on 

highways with light traffic. In addition, the same systems are perceived as more useful on 

highways than on rural roads (Sanchez, et al., 2012). Besides, previous research has 
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indicated that preference concerning automated driving also differ per user group (KPMG, 

2013). 

 

Hence, the vehicle user's preferences regarding the driving circumstances and the level of 

automation, determine if the vehicle user wants to release driving control. It is assumed that  

the more the implementation plans of automated driving are aligned with the preferences of 

vehicle users, the higher the support for automated driving. Support is a precondition that 

will permit the automated driving to achieve their potential societal benefit levels (Adell, 

2010).  

 

 

1.3 Research questions 
Implementation plans concerning automated driving are in exploration phase. However, 

Literature lacks insights in the preferences of vehicle users concerning automated driving in 

different driving circumstances. The research described in this thesis sets out to breach this 

gap and therefore aims to answer the following main question:  
 

Which level of automation and which driving circumstances 

contribute to the willingness of different vehicle user groups to 

release driving control? 
 

To support the main question, four sub-questions are defined: 

What is automated driving and what are current and expected 

technological capabilities?  
 

What are the benefits of automated driving for society, regarding 

safety, traffic flow and environmental savings? 
 

How do the level of automation and driving circumstances determine 

usage rate of automated driving systems? 
 

What are the preferences concerning automated driving for different 

user groups? 

 

Answering these questions firstly results in more theoretical insights in the preferences of 

vehicle users concerning road transportation innovations. Secondly, it offers insight in the 

perception of vehicle users to release driving control in different driving situations, which 

accordingly provides managerial guidelines for successful implementation. Transportation 

and market planners can take measures that are in accordance with preferences of vehicle-

users and hence maximize the potential benefits of automated driving.  

 

 

1.4 Research method 
Information processed in this thesis is obtained from literature research and from a discrete 

choice experiment. On account of the found literature, a questionnaire with closed 

questions is set up to gain data for the discrete choice experiment. The experiment involves 

three choice models that describe the willingness of vehicle users to cede driving tasks in 

different driving situations. The models which are applied are: Multinomial logit model, 

Latent class model, and Mixed logit model. 



4 

 

1.5 Scope 
This thesis involves passenger driving in the Netherlands. It does not involve freight traffic as 

the circumstances and aims of driving are totally different (Houses of Parliament, 2013). Nor 

does it involve automated parking, as this does not considerably contribute to safety, traffic 

flow and environmental savings. Furthermore, the thesis provides only insights in which 

implementation plans could benefit effects for society. According to Adell (2010), societal 

and individual benefits do not necessarily coincide and therefore are not taken in account. In 

addition, it will not describe how individual motives such as costs, liability and privacy, 

influence automated driving acceptance. It will only focus on the willingness to release 

control. 

 

For two main reasons it is interesting to focus this research on the Netherlands. First, Dutch 

society is dealing with very dense traffic conditions. Implementing automated driving on 

Dutch roads can majorly increase the economic welfare and the livability. Secondly, the 

Dutch Secretary of Infrastructure and Environment wants to have a leading role in 

implementation of automated driving. In the coming years, Dutch roads will be available for 

test drives and the Secretary seems to target at a high usage rate (Secretary Schultz van 

Haegen, 2014).  

 

 

1.6 Outline  
This thesis consists of 8 chapters, in which the research questions as formulated in the 

introduction will be answered. The outline is depict in  

Figure 1.1. 

 

 

Figure 1.1: Thesis outline 

 

Chapter 2 gives a theoretical overview about the topic automated driving and thereby aims 

at answering the first two sub-questions. With this background knowledge, Chapter 3 

presents driving circumstances that influence the willingness to release driving control and 

provides insights in how the usage rate of automated systems is influenced, and thereby 

aims to answer the third sub-question. Next, Chapter 4 describes how preferred driving 

circumstances and level of released tasks can be measured by modeling choice behavior. 

Subsequently, Chapter 5 provides insights how an experiment is designed to attain data to 

model choice behavior. In Chapter 6, data is analyzed and modeled choice behavior of 

vehicle users is described. This provides insights in automated driving preferences of 

different user groups. Chapter 7 answers the main research question with support of concise 

answers on the sub-questions. Furthermore, it will provide managerial recommendations for 

stakeholders. In Chapter 8, the results will be discussed. 



 

5 

 

Chapter 2  
 

Automated driving 
 

 

Since almost a century, planners, engineers, and visionaries are involved in the quest to 

enable people to travel in passenger vehicles without being constantly attentive . This quest 

seems to come to an end as several vehicle manufacturers have said that they are close to 

making automated driving reality (Autoblog, 2013; Weber, 2014). In Section 2.1, history of 

the quest for automated driving is concisely explained. Next, Section 2.2 discusses the 

technological developments around automated driving. Thereafter, Section 2.3 explains 

what the main benefits for society could be if vehicle manufacturers succeed in their goal to 

enable fully automated driving. Further, the implementation plans of policy makers and 

additional implementation challenges of automated driving are explained in Section 2.4. To 

summarize, Section 2.5 captures the main points from the previous sections. 

 

 

2.1 History of automated driving 
After manually driven vehicles took over traveling possibilities from horse-drawn wagons, a 

new experience of driving was constituted (Hayes, 2011). This experience involved a mix of 

anxiety, alertness, and boredom, which resulted in the dream for self-driven vehicles which 

could rule out these negative states of mind (Weber, 2014). In 1939 at the General Motors 

Futurama exhibit, planners would image that in 1960 vehicles would drive at a safe distance 

through automatic radio control on dedicated automated tracks1. By the 1960's, sensing and 

reacting with an appropriate movement was feasible. However, how to process and deal 

with the outside world was still unknown (Weber, 2014). Again, several new predictions 

were made which implied that automated vehicles would be on public roads within 15 to 25 

year. Once more, this prediction was not correct. But later on, around the mid-1980s, 

several driverless-systems were designed and tested which resulted in vehicles with 

automated functionalities (Anderson, et al., 2014).  

 

In the last 25 years, three development phases can be identified. Firstly, between 1980 and 

2003, two main technology concepts emerged. The first concept was the development of 

automated highway systems, in which vehicles where guided by the highway infrastructure. 

As a second technology concept, semi-automated vehicles were developed that could in 

steer or navigate by automation in several circumstances. Successively, from 2003 to 2008, 

the U.S. Defense Advanced Research Projects Administration (DARPA) Grand Challenges 

were held. The challenge was to automatically navigate vehicles over a course that ran 

across a desert. DARPA's purpose was to accelerate technological developments of 

automated vehicles which could ultimately substitute humans in hazardous military 

operations. In the first years, the vehicles of research teams failed miserably and traveled 

only a few miles before they crashed. But some years later, successes extended from desert 

                                                      
1 The City - American Insititude of City Planners, 1939,   

https://www.youtube.com/watch?v=7sic-Q_weok 
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driving to a mock city environment. This markedly accelerated advancements in automated 

vehicle technology (Anderson, et al., 2014).  

 

In the last years, major technology steps are taken. Firstly, there are some mobiles that can 

fully drive themselves. However, they are restricted by the fact that they can only drive in 

very limited driving situations, such as closed environments with a really low top speed 

(Weber, 2014). Secondly, most well-known vehicle manufacturers are currently working on 

fully automated vehicles (Fagnant & Kockelman, 2014). In April 2014, Google's vehicles have 

logged nearly 700.000 miles, more than one million kilometers (Urmson, 2014). Examples of 

other manufacturers that started test drives are Audi, BWM, Nissan, Volvo, Lexus, Tesla and 

Mercedes (Autoblog, 2013). Most of these manufacturers already had experience with 

automated systems as they have several ITS on the market.  

 

 

2.2  Technological developments 
The technology behind automated driving depends on three factors. Firstly, In-car systems 

provide the driver with information, for example about traffic congestion or weather 

circumstances. Secondly, Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I) and 

Infrastructure to Infrastructure (I2I) applications provide the ability to communicate with 

each other and take action accordingly. For example, when the brakes are pushed, this 

information will be communicated to vehicles in the vicinity. In response, these will take 

action to maintain a safe distance. Thirdly, autonomous systems are incorporated which 

independently respond to situations. For example, when a sensor of the vehicle notices 

another object in its near environment, it will act accordingly. Hence, the difference 

between cooperate and autonomous working systems is that the first responds to 

information of other vehicles, while the second responds to the situation. Together, the 

three abilities will form the basis of a fully automated vehicle (National Highway Traffic 

Safety Administration, 2013; Timmer, et al., 2013; Wilmink & Schuurman, 2014). 

 

In literature, often the terms 'autonomous' and 'automated' are used to describe the vehicle 

that is not fully human-driven. The difference between those terms is that autonomous 

refers to the vehicle being operated independently or by itself on basis of own sensors, while 

automated refers to the vehicle being operated by a machine by using communication as 

well as own sensors (DITCM, 2014). In this thesis the term 'automated driving' is used as this 

is deployed more often in professional environments. Automated driving refers to the 

vehicle as well as the road based infrastructure.  

 

Automated technology enables vehicles to partly or fully drive themselves by taking over 

control from humans. If a vehicle does not perform a control function, but provides warnings 

or information, it is not considered as automated. Human-driven vehicles could ultimately 

be replaced by vehicles that do not require a driver anymore (Anderson, et al., 2014). 

 

In the next three subsections will provide more information about respectively the types of 

driving tasks, the levels of automation, and available systems.  
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2.2.1 Driving tasks  

Automated driving differs from manual driving as the technology behind the vehicle and 

road infrastructure executes the driving tasks (KPMG, 2013). The performance of the 

automation can be divided in primary, secondary and tertiary driving tasks. Primary tasks 

include control over steering, accelerating, braking, choosing the right lane, speed, route, 

and distance to other vehicles. Secondary tasks include over dimming, operating windscreen 

wipers, coupling, changing gears and blinking. Both primary and secondary tasks are mainly 

safety related, while tertiary tasks, which include activities like operating air conditioner, 

seat heater, radio and phone, are more comfort-related (Eyben, et al., 2010).  

 

2.2.2 Levels of automation 

Collaborating Intelligent Transportation Systems together form a continuum from vehicles 

with no active control to vehicles which have fully automated control. Different 

organizations have provided a categorization of the levels of automation: Bundesanstalt für 

Straßenwesen (BASt) expert group, National Highway Traffic Safety Administration (NHTSA), 

and SAE International. The analogy between these categorizations is very high. The main 

difference is that BASt expert group did not include a level for driverless vehicles, while 

NHTSA and SAE International do. The analogy between the levels of the different 

categorizations are presented in Appendix I. This thesis will use the BASt expert group labels 

as these labels are also very understandable for non-experts in the field of automated 

driving. The labels are described in Table 2.1. 

 

 
Table 2.1: Levels on automation, indicated by BASt expert group (Gasser, et al., 2013) 

Levels of automation Role-divsion of driver and system 

Driver only The driver continuously (throughout the complete 

trip) accomplishes longitudinal (accelerating/ 

braking) and lateral (steering) control. 

 

 

 

 

 

 

Assisted The driver continuously accomplishes either lateral 

or longitudinal control. The other/remaining task is – 

within certain limits - performed by the system. 

• The driver must monitor the system permanently. 

• The driver must be prepared to take over complete 

control over the vehicle at any time. 

 

 

 

Partial automation The system takes over the lateral and longitudinal 

control (for a certain period of time and/or in specific 

situations). 

• The driver must monitor the system permanently. 

• The driver must be prepared to take over the 

complete control of the vehicle at any time. 
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High automation The system takes over lateral and longitudinal 

control for a certain period of time in specific 

situations. 

• Here, the driver need not monitor the system 

permanently. 

• If necessary, the driver will be prompted to take 

over control, allowing for a sufficient lead time. 

• All system limits are recognized by the system. The 

system is not capable of re-establishing the minimal 

risk condition from every initial state. 

 

Full automation The system takes over lateral and longitudinal 

control completely within the specification of the 

application.  

• The driver need not monitor the system. 

• Before specified limits of the application are 

reached, the system prompts the driver to take over 

control, with sufficient lead time. 

• In absence of driver takeover, the system will 

return to the minimal risk condition. 

• All system limits are recognized by the system. The 

system is capable of returning to the minimal risk 

condition out of every situation. 

 

 

 

 

2.2.3 Available systems 

Automated driving systems use information that comes from sensors, radars, scanners, 

cameras, GPS, telecommunication, and maps. The automated vehicle itself works also as an 

important sensor within the network. With information exchange, consequences of weather, 

density on the road, braking movements and lane changes of other vehicle users can be 

monitored (Timmer, et al., 2013). An example of how an automated vehicle captures 

environmental information is shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: data captured by the technology of 

Google's automated vehicle (Knight, 2013) 
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There are several ITS on the market that can take over control of driving tasks. The system-

names, which numerous vehicle manufacturers use, are often different, but incorporate the 

same functionalities. Currently, ITS on the market only take over control one driving task or 

two collaborative driving tasks. Therefore, only assisted and partial automation is currently 

on the market. The different systems are often designed to operate on definite road types. 

For example, standard Adaptive Cruise Control-systems only operate with speeds above 30 

km/h (SWOV, 2010a). An overview of the functionalities made by Working Group 

Automation in Road Transport (2013) is shown in Appendix II. Well-known systems that take 

over manual control of driving tasks are (Fagnant & Kockelman, 2014; Mercedes-Benz, n.d.; 

Özgüner, et al., 2007): 

- (Cooperative) Adaptive cruise control - allows automated braking and accelerating; 

- Pre crash system - allows automated emergency braking; 

- Automatic parking system - allows automated steering; 

- Lane-keeping system - allows the vehicle to maintain between road lanes; 

- Stop and go system - including an automated steering system it allows automated 

congestion driving. 

 

Current technology for highly automated driving in controlled environments is quite mature 

(Working Group Automation in Road Transport, 2013). Tests have been executed with highly 

automated vehicles driving on urban and in highway environments by vehicle manufacturers 

such as Google, Mercedes-Benz, BMW, NISSAN and General Motors (Google Blog: Chris 

Urmson, 2014; Mercedes-Benz, n.d.; Volvo Cars, 2014; Knight, 2013). Volvo, for example, will 

bring hundred automated test vehicles on a 50 km long lane Sweden. However, no high or 

fully automated vehicle that is so well tuned that it can be available for public is on the 

market yet. Usage of a combination of Adaptive Cruise Control, Lane Keeping and Driver 

Monitoring, comes closest to automated driving.  

 

 

2.3 Implications for society 
Assuming that the technology for automated vehicles matures and will be successfully 

implemented, entering the mass user market can have major implications for the mobility 

system. Increase of traffic safety, improvement of traffic flow and environmental savings are 

often mentioned positive effects. But also other effects may have high influence on society. 

Table 2.2 shows an overview of the expected strengths, weaknesses, opportunities and 

threats of full automated driving that can be found in literature (e.g. Fagant & Kockelman, 

2014; KPMG & CAR, 2012; Litman, 2014). Many of these implications are interrelated and 

interdependent; some of the implications can be directly observed while others are 

indirectly present.  

 

Impacts like reduced driver stress and increased roadway capacity will occur when partial or 

high automated driving is deployed. However, most impacts will only be recognized when 

full automation is used by the critical user mass (Litman, 2014). Examples are reduction of 

congestion and accidents (Litman, 2014). It should be taken in account that on longer term, 

the use of automated driving could have effect on issues that are currently not measurable. 

Examples are a loss of driving skills, a reduction of attention level and an increase of the 

attraction of using highways (Rijkswaterstaat, 2007).  
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Table 2.2: Implications of automated driving 

 

 

The automotive industry and many researchers have focused on models, simulations and 

field operational tests (FOT) to give an quantitative indication of the effects of public usage 

of automated driving. However, it appears to be hard to give an empirical prove of its 

effectiveness as the automated driving system is very complex (Timmer, et al., 2013). 

Accurate estimations of the effects of automated driving are not yet available. Besides, ITS 

that are currently on the market tend to have a low usage rate and thus cannot prove much 

empirical evident of the implications automated driving could have (Arem, 2013; Malone, 

2008). However, although most results are only based on assumptions, or are based on 

assisted driving, they can give an indication of effects. Therefore, most implications 

addressed below are qualitative of nature, very basic or only based on independently 

working systems. At least the same performance indications as with independently working 

systems are assumed to be reached for automated driving as automated vehicles and 

environment also incorporate these or similar working systems.  

 

The next three subsections will further pay attention to most recognized implications for 

automated driving. These effects are also the main challenges for the passenger vehicle 

mobility system, as explained in Chapter 1.  

 

2.3.1 Safety 

The first main positive effect is increased traffic safety. When the technology for automated 

driving is matured, they could detect and neutralize safety-critical driving events more 

adequately than human drivers. They prevent unsafe traffic participation, unsafe actions 

during traffic participation, and reduce the impact of accidents (SWOV, 2010b).  

 

Strengths Weaknesses 

-  Fuel savings - Reduced employment and business activity 

-  Averted (deadly) crashes - Increased ownership costs because of     

-  Reduction of stress level for vehicle users     vehicle equipment etc. 

-  Possibility to rest or work while travelling  
-  Reduction of traffic congestion  
-  Efficient parking  
-  Increased road capacity  

  

Opportunities Threats 

-  Independent mobility for elderly and disabled -  Data challenges 

-  New models for vehicle ownership and  -  Technology failure 

   vehicle sharing -  Liability, licensing, and insurance concerns 

-  Travel time dependability -  Security and privacy concerns 

-  New business models and scenarios -  Too much additional vehicle traffic  

    because of experienced comfort  

 -  Social equity concerns, unfair impacts 

 -  Misplaced planning emphasis 

 -  Poor Human-Machine interaction 
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According to Secretary Schultz van Haegen (2014) of the Ministry of Infrastructure and 

Environment, 90% of the accidents occur due to human errors. Therefore, the scope of 

potential benefits of using automated driving is substantial. Hayes (2011) suggests that 

fatality rates could eventually approach similar results as seen in aviation and rail, which is 

one percent of the current rate. TNO and around 20 IT and Infrastructure companies, which 

are united in Nederland Innovatief Onderweg (2010), have made some predictions of effects 

of several transportation systems in the Netherlands. They estimate that the amount of 

deadly accidents can be declined with 25 to 50%, depending on the level of compulsion of 

the system. In another research of TNO it is predicted that there will be 25% less road 

fatalities when Intelligent transportation Systems will work together (Arem, et al., 2008).  

 

The potential total safety contribution of driving automated depends on the driving 

situation. Most accidents in the Netherlands occur on "gebiedsonsluitendewegen" (GOW), 

further referred as regional roads (Figure 2.0.2). These roads are limited obstacle free, while 

driving with a high speed is enabled (Davidse, 2012). In addition, many accidents happen on 

"erftoegangswegen" (ETW), further referred to as local roads. The least number of accidents 

occur on "stroomwegen" (SW), further referred to as highways (Rijkswaterstaat, 2007). 

Mesken (2012) found a positive relation between density on the road and the number of 

accidents. Also weather circumstances have different effect on traffic safety. Therefore, 

assumed that technology could diminish all human errors, the reduction of accidents is 

highest when vehicle-users release driving control on dense regional roads. However, the 

actual effects depend on the exact actions of the system, the penetration rate and the 

possible unintended side effects (SWOV, 2010b). 

 

 

 
 

 

 

For Adaptive Cruise Control (ACC), Table 2.3 shows that there is no continue usage. Besides, 

the system will not be totally effective as it cannot be used in all driving situations. The 

results indicate that the usage in combination with the system's effectiveness are higher on 

highways than on regional roads (Rijkswaterstaat, 2007).   

 

Figure 2.0.2: Share of traffic accidents regarding different road types [Dutch] (Rijkswaterstaat, 

2007) 

 



12 

 

Table 2.3: Safety potential of ACC and LDW [Dutch] (Rijkswaterstaat, 2007) 

 
 

 

2.3.2 Traffic flow 

The second main effect is the potential to improve traffic flow. Technologies in vehicles can 

sense and anticipate on lead vehicles' braking and accelerating decisions. The following 

vehicles can directly respond on this by smooth braking and fine speed adjustments. This 

leads to reductions in destabilized traffic shockwave propagation. Besides, through shorter 

headways, coordinated platoons, and more efficient route choices, existing lanes and 

intersections can be more efficiently used (Fagnant & Kockelman, 2014). For effective 

benefits, in-vehicle technologies, V2V and V2I techniques are essential. But as a significant 

part of poor traffic flow is caused by traffic incidents, crashes should decrease to improve 

traffic flow. 

 

When 10% of the vehicles is equipped with Intelligent Transportation Systems, congestion 

could be reduced with 30%. When the penetration degree increases to 30%, it could in long 

term resolve most of the congestion (Nederland Innovatief Onderweg, 2010). Arem, et al. 

(2008) indicate that collaborating Intelligent Transportation Systems could reduce 

congestion with 50%. If automated driving will actually resolve most congestion, this could 

impose high economic benefits for businesses and consumers (Kennisinstituut voor 

Mobiliteitsbeleid, 2013).   

 

 

 

 
 '-' indicates that there is no significant effect 

Table 2.4: Effects of ACC and RCW on FOT level (Faber, et al., 2012) 
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According to Timmer, et al. (2013), ACC can currently manage the traffic more efficient than 

humans is. From the euroFOT test is seems that ACC+FCW can decrease delay with 0 to 18%, 

depending on the road type. This is shown in Table 2.4 (Faber, et al., 2012). A simulation 

study of Arem, et al. (2008), shows that ACC can result in 30% less time loss in congestion.  

 

2.3.3 Environmental savings 

As a third main benefit, automated driving can reduce the energy use and emissions. It could 

decrease the energy use in at least three main ways: more efficient driving, lighter and more 

fuel-efficient vehicles and efficient infrastructure. Currently available automated systems 

that make driving more energy efficient are Intelligent Speed Adaption and Adaptive Cruise 

Control (Timmer, et al., 2013). The ability of vehicles to drive closer to each other results in 

savings of the system's fuel and a increase in highway capacity on existing lanes (Fagnant & 

Kockelman, 2014). According to KPMG & CAR (2012), platooning alone would reduce the 

highway fuel use by up to 20%. (Working Group Automation in Road Transport, 2013) 

estimates that widespread implementation of automated driving could provide fuel 

efficiency improvement of around 20%. Nederland Innovatief Onderweg (2010) suggests 

that fuel use will decrease with around 5% when ITS are used nationwide. Additionally, the 

need for visual input to manually navigate is reduced. Therefore, traffic lights in the streets, 

at intersections and highways can be less lit as the autonomous vehicle operates with means 

like infrared and radars. Night light is only needed for safety and security instead of for being 

able to driver. This also reduces the energy use (KPMG & CAR, 2012). 

 

The CO₂ emission of a the passenger vehicles depends on the composition of the fleet and 

the driving behavior (Kennisinstituut voor Mobiliteitsbeleid, 2013). The smart vehicles can be 

manufactured lighter and more efficient, because they do not need heavy safety features 

anymore like reinforced steel bodies, crumple zones and airbags. A reduction of 20% of the 

vehicle's weight can result in a 20% increase in efficiency (KPMG & CAR, 2012). For the 

behavior of driving, driving speed and driving dynamics are of influence. High or low 

velocities cause higher emission than an in-between velocity. Also, braking and accelerating 

increases the CO₂ emission. The driving speed and driving dynamics highly correlate with the 

road type. In urban areas the speed is low and the dynamic is high, then emission will be 

much higher than on motorways or rural roads (Kennisinstituut voor Mobiliteitsbeleid, 

2013). Emissions may decline with 10% and emission of CO2 with around 5% when several 

ITS systems work together (Nederland Innovatief Onderweg, 2010). Arem, et al. (2008) 

suggest that there may be 20% less pollution and 10% less CO₂ when Intelligent Transport 

Systems will work together. The CO, HC, and NOx emission reduction of an active ACC 

compared to a non-active ACC is 9% on highways, while the reduction on regional roads is 

quite higher (Rijkswaterstaat, 2007).  

 

 

2.4 Future planning and challenges 
Vehicle manufacturers are currently dealing with the integrity of the technology and human-

machine interaction. But besides these developments that enable automated driving, public 

authorities are responsible for implementation planning of automated driving. The 

infrastructure should be integrated with the automated vehicles and the connect traffic 

should be coordinated and managed to gain optimal traffic flow. This will be assessed and 

optimized by test drives. An example is a collaboration between different public and private 
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parties and knowledge institutions from the province of Brabant that will execute test drives 

in the near future. The A270 highway will be used as a real highway to further research the 

capabilities of automated vehicles in real driving situations (Beter Bereikbaar Zuidoost-

Brabant, 2013). 

 

Policy makers in the Netherlands have a strong focus on automated driving. To create a 

leader role on in the field of automated driving, Secretary Schultz van Haegen (2014), has set 

up a roadmap of implementation in the Netherlands. This roadmap can be seen in Figure 

2.3. Between now and some years automated parking and automated congestion driving are 

assumed to be seen on Dutch roads. Secretary Schultz van Haegen wants to stimulated to 

start tests of highly automated driving between 2015 and 2020, by setting up the right legal 

framework. The gained experience will provide benefit and cost input to evaluate the 

innovation. Around 2025, highly and fully automated driving is assumed to be enabled. 

Litmat (2014) predicts that on a more mondial level, affordable automated vehicles are for 

sale between 2040 and 2050. Between 2040 and 2060 the level of the exact benefits are 

tangible. Finally, between 2060 and 2080 most vehicles will drive fully automated and 

society will highly profit from the benefits.  

 

 

 

 
Figure 2.3: Roadmap of development of automated functions, based on roadmap of Secretary Schultz 

van Haegen (2014).  

 

 

However, implementation of automated driving is a very unstable balance and still many 

issues have to be addressed (Arem, 2013; Fagnant & Kockelman, 2014; National Highway 

Traffic Safety Administration, 2013; SWOV, 2010b). Main issues are: 
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- Technical issues; 

- Human-Machine Interaction for safe operation; 

- Driver awareness and acceptance; 

- System security / data availability; 

- Liability in case of malfunctioning; 

- Licensing and insurance regulation; 

- Organization forms; 

- Financing and business models. 

 

 

2.5 Conclusions 

Visions, ideas, and developments around automated driving go way back in time and after 

around a century of predictions, the technology is not yet matured enough to let vehicles 

navigate through complex environments without human monitoring. However, technical 

developments have enabled automated systems to take over manual control of driving tasks 

to a certain degree. This is enabled by systems that provide information to the vehicle, 

systems that communicate with each other, and systems that independently respond to 

situations. Currently, automated systems which are available for public can only take over 

control of one primary driving task or two primary collaborating driving tasks, in definite 

road types. However, many well-known vehicle manufacturers are testing automated 

systems in vehicles that aim to take over all driving tasks.  

 

Automated driving could offer many benefits to society. The first main benefit deals with 

traffic safety improvement. Automated driving can prevent unsafe traffic participation, 

prevent unsafe actions during driving, and can reduce the impact of accidents. The second 

main benefit concerns an improved traffic flow. Automated driving can allow closer 

headways between vehicles, as the required reaction distance is much smaller than the 

distance needed for human reaction. Besides, communication with the vehicle's 

environment can result in smoother braking an finer speed adjustments. This can reduce 

destabilized traffic shockwave propagation. The third main benefit concerns environmental 

savings. A reduction of emissions and energy use is enabled by more efficient driving, lighter 

and more efficient vehicles and efficient infrastructure. When automated systems work 

together, safety can be improved by 25%, traffic flow by 50%, and pollution and CO₂ 

emission by respectively 20% and 10%. While currently used systems include most safety 

effects on highways, the eventually effects may be higher on regional roads, as the number 

of severe accidents is higher. Environmental savings potential is higher on regional roads 

than on highways, as in these circumstances the traffic flow is less fluent. However, actual 

effects of the systems depend on the exact actions of the system, the penetration rate and 

unintended side effects. Dutch Ministry of Infrastructure and Environment envisions that 

between 2015 and 2020, test drives can be performed on Dutch roads. They aim that around 

2025, fully automated vehicles are enabled to use in all driving situations.   

 

In the coming years, some striking challenges have to be overcome. Besides liability, costs, 

and privacy concerns, technical developments have to make sure that driving with 

automated control is more safe than driving manually. However, to utilize the safety 

potential of automated driving, vehicle users should be willing to release control. More 

insights in factors that influence this use are presented in the next chapter.  
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Chapter 3  
 

Influencing the usage rate of automated driving systems 
 

 

As explained in the previous chapter, automated driving is enabled by vehicle users releasing 

driving control. This changes interaction of the vehicle user with the vehicle and driving 

environment. This is further explained in 3.1, including driving circumstances that determine 

the interaction. When automated driving is implemented in accordance with vehicle users' 

preferred driving interaction, chance of a high usage rate is assumed to increase. Theory 

behind this assumption is explained in Section 3.2. Additionally, this section provides 

knowledge of how stakeholders can influence the usage rate. Furthermore, in Section 3.3 

attention is paid to the choice process vehicle users go through when determining which 

driving situations is most preferred by them. Lastly, in Section 3.4, conclusions from this 

chapter are drawn.   

 

 

3.1 Vehicle user, vehicle and driving environment  
In a driving situation, the vehicle user and vehicle do not function on their own. It is a 

cohesion between the user, the vehicle, and the driving environment. This is depicted in 

Figure 3.1. Where the interaction user-vehicle-driving environment is the most intense, most 

effort should be paid to guarantee a safety and a good traffic flow (Lax, 2011). For a large 

extent the driving environment, together with specifics of the vehicle, determined the 

manual task requirements for the vehicle user (Wilschut, et al., 2012). However, automation 

changes the task requirements for the vehicle user. Automated driving is enabled only 

enabled when systems have control over the driving tasks. This changes the role of the 

vehicle user within the user-vehicle-driving environment interaction framework. Under high 

influence of trust in automation, the preferred interaction with the vehicle and driving 

environment is determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Traffic interaction framework 
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Lee & Moray (1994) and Vries, et al. (2003) indicate that vehicle users are biased to trust 

their own capabilities more than the technological capabilities when it comes to safety-

critical events. When risks are involved, vehicle users do not feel at ease when technology is 

making decisions for them. The strong relation between trust and automated systems 

therefore indicates that people will only release control of when they experience sufficient 

trust (Lee and Moray, 1992; Muir, 1987).  

 

The task executers (user or system, or a combination) need to navigate in the complex 

environment of urban streets. They pass humans only on a very limited distance. Because of 

this little distance between the vehicle user and other humans there is no margin of error 

(Lax, 2011). This suggests a reason that automation is already applied more in other 

transport modes. Autopilots in airplanes, automated vehicles on container terminals, 

automated military vehicles and automated mass-transit, are examples of modalities and 

environments which are (partly) automated. Although also with these modes, the impacts of 

an accident can be high, the immediate environment is far less complex (Weber, 2014).  

 

Trust is seen as a continuous feedback loop. If the systems perform according to the vehicle 

user's expectations, trust is maintained or increased. If the expectations are not in line with 

the actual performance, trust is lowered (Vries, et al., 2003). This is underlined by Lee and 

Moray (1994) who indicate that people with positive automated systems experience will use 

a these repeatedly. Also Parasuraman & Riley (1997) suggest that a more and better 

knowledge of how automation works will increase the trust in the capabilities and may lead 

to usage.  

 

The interaction between vehicle user, vehicle, and driving environment is acknowledged by 

previous research. Results from European Field Operational Tests (EuroFOT) show that the 

usefulness that vehicle users perceive with automated systems is also influenced by driving 

circumstances. EuroFOT has tested Adaptive Cruise Control in real driving situations. 

Adaptive Cruise Control (ACC) is an Intelligent Transportation System that takes over the 

longitudinal (accelerating and braking) driving task. These tests indicated that vehicle users 

found ACC most useful in normally dense traffic; primarily on highways but also on rural 

roads. Figure 3.2 shows also other driving circumstances in which ACC was tested. The 

results show that the perceived usefulness of taking over certain tasks differ per driving 

circumstance (Sanchez, et al., 2012).  

 

A research by Dutch experts in the field of automated systems, van Driel and van Arem 

(2005), also recognize the interaction between the user, vehicle and driving environment. 

The results suggest that the greatest preference for assistance from the vehicle exists when 

driving on highways. Dutch respondents preferred the assistance less on rural roads and 

least of all on urban roads. It is desired from the vehicle that it provides help in critical 

situations, such as with imminent crashes or reduced visibility. Respondents only wanted 

automated control when they were maintaining a self-chosen speed on highways or rural 

roads, or when they were driving in dense traffic, irrespective of the road type (Driel & 

Arem, 2005).  
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The following subsections will explain how vehicle users experience different driving 

circumstances and usage of automated driving systems. Again, here examples of ACC are 

used as this system takes over important primary driving tasks of humans.  

 

3.1.1 Weather and light circumstances 

Circumstances concerning weather and light highly influence the task requirements. Driving 

risks increase when it is dark, rainy, snowy or foggy. Because of weather circumstances, the 

road can be dry, wet, slushy, icy or snowy. The risk with rainy weather is even twice as high 

as with dry weather. Vehicle users will adjust their driving behavior to the weather, but not 

enough to compensate with the higher risk (Mesken, 2012). Mesken (2012) also indicates 

that many safety measures are already taken to reduce the risks. Examples are warnings, salt 

strewing and the use of winter tires.  

 

3.1.2 Road type 

Since 1997 there are national agreements on the division of road (Rijkswaterstaat & 

Goudappel Coffeng, 2007; SWOV, 2012b). The three different road types are: (in Dutch) 

stroomwegen, gebiedsontsluitingswegen en erftoegangswegen. 

 

- Stroomwegen (highways) are aimed to have as less conflict with other motorized 

traffic as possible. They are characterized by physical driving way separation and non-

pavement level crossings. The maximum velocity is 100-130 kilometer per hour. 

 

- Gebiedsontsluitingswegen (regional roads) are aimed at fluent traffic flow and 

exchange. They are characterized by a division between fast and slow traffic and 

pavement level crossings. The maximum velocity is 50-80 kilometer per hour. 

 

- Erftoegangswegen (local roads) are aimed at making plots and buildings accessible. 

There is no division of lanes and fast and slow traffic is mixed. The maximum velocity 

is 30-60 kilometer per hour.  

 

Figure 3.2: Perceived usefulness of ACC in different driving situations. 

(Sanchez, et al., 2012) 
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Driving on highways is perceived as more safe and provides more comfort than local roads 

(Road Wiki, 2014). This is the result of the uniformity of the driving situation. Where 

highways contain transport modes that have nearly the same mass and speed, and where 

only motorized vehicles drive in one way, local roads are characterized by many mixed used 

transport modes. Hence, the consistency and continuity of the driving environment is an 

important determinant of road safety (Mesken, 2012). Therefore, the task requirement is 

higher for driving automated in urban areas than on regional roads or highways. This could 

explain results in Table 3.1. ACC is more active on highways then on regional ways, and even 

less on local roads: vehicle users only may trust automation in situations with low task 

requirement.   

 

 

 
 

3.1.3 Density of traffic on the road 

There is a negative relation between the density and speed, comfort and safety. The higher 

the density on the road, the more task requirements vehicle users experience, but also the 

more advanced the automated system should be (Marchesini & Weijermars, 2010; Mesken, 

2012). This could declare the outcomes shown in Table 3.2. ACC was relatively most used on 

open roads. The usage was a slightly less on more dense roads and was even less slightly 

used during congestion. This contradicts with results from Figure 3.2. As the results from 

Table 3.2 come from Dutch research and measure actual hours, these results are used as 

guidance. 

 

 

 

 
 

3.1.4 Length of the trip 

Vehicle users experience long distance driving different than short trips. During long distance 

driving people have to be concentrated for a longer time. Although navigation systems do 

not take over control of driving tasks, results from euroFOT show that route guidance is 

more often activated on long trips. This is depict in Figure 3.3 (Sanchez, et al., 2012).  

Table 3.1: Usage of ACC on different road types [Dutch] (Rijkswaterstaat, 2007) 

 

Table 3.2: Usage of ACC for different densities [dutch] (Rijkswaterstaat, 2007) 
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3.1.5 Familiarity with the route 

Vehicle users seem to have more trust in themselves in familiar environments (Vries, et al., 

2003). People that frequently drive the same road, tend to pay less attention to the driving 

environment, as the subjective experience of the difficulty level of driving decreases when 

the familiarity increases (Charlton & Starkey, 2011; Yanko & Spalek, 2013) Therefore, when 

an unforeseen traffic event occurs, risk may be higher.  

 

3.1.6 Secondary task 

Besides primary tasks, vehicle users are often also involved in other tasks during driving. 

Examples are talking to someone on the phone or to fellow passengers of the vehicle, or 

listening to the radio. Automated driving can increase the ability to perform these tasks 

which are mostly based on experiencing comfort or being productive while driving (Eyben, et 

al., 2010). Public parties have tried with several measures to lower the execution of these 

kind of tasks as they bring along safety risks (Govenment of the Netherlands, n.d.). In Section 

2.2.1, these comfort related tasks were addressed as tertiary tasks. But to make the term 

and meaning more comprehensible, in the latter of the thesis this will be referred to as 

secondary task. 

 

 

3.2 Implementing automated driving in line with users' preferences 
The previous section has indicated attributes that could influence the willingness of vehicle 

users to release control. The willingness to release control is a requirement for vehicle users 

to use automated systems. KPMG & CAR (2012), KMPG (2013) and Litman (2014) explain 

that the achievement of potential benefit levels is depended of whether or not a critical user 

mass will use automated systems. Hence, In order to benefit from the earlier mentioned 

effects of automated driving, automated driving should spread among vehicle users. An 

Figure 3.3: Proportion of trips with active navigation 

system separate from familiarity of route and length of 

trip (Sanchez, et al., 2012).  
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example of how automated vehicles could spread is presented in 

to as the diffusion process, as further explained in the next subsection. 

have influence on this process are 

 

 

 

 

 

3.2.1 Diffusion process 

Rogers (2003) proposed the Diffusion of Innovations theory to describe a diffusion process 

of innovations. It focuses on the market share that grows when

an innovation, as depicted in Figure 

individuals' decision whether not to adopt a

concerns willingness to release control to a technological 

spread among users follows the same diffusion path. Therefore, this theory is used to 

describe how automated driving may spread among vehicle users. The faster ve

start to automated driving, the more 

 

 

 

 
Figure 3.5: General diffusion process as proposed by Rogers (2003)

 

Figure 3.4: Deployment rates
travel (Litman, 2014)

 

le of how automated vehicles could spread is presented in Figure 3.

to as the diffusion process, as further explained in the next subsection. 

have influence on this process are described in Subsection 3.2.2.  

 

Rogers (2003) proposed the Diffusion of Innovations theory to describe a diffusion process 

of innovations. It focuses on the market share that grows when successive groups that adopt 

Figure 3.5 by the yellow line. Although this theory concerns and 

individuals' decision whether not to adopt a technological innovation

willingness to release control to a technological innovation, it is assumed that the 

spread among users follows the same diffusion path. Therefore, this theory is used to 

describe how automated driving may spread among vehicle users. The faster ve

automated driving, the more society could benefit from the technology. 

 

: General diffusion process as proposed by Rogers (2003) 

Deployment rates of projected automated vehicle sales, fleet and 
(Litman, 2014) 

Figure 3.4. This is referred 

to as the diffusion process, as further explained in the next subsection. Stakeholders that 

 

Rogers (2003) proposed the Diffusion of Innovations theory to describe a diffusion process 

successive groups that adopt 

by the yellow line. Although this theory concerns and 

innovation, while this thesis 

innovation, it is assumed that the 

spread among users follows the same diffusion path. Therefore, this theory is used to 

describe how automated driving may spread among vehicle users. The faster vehicle users 

society could benefit from the technology.  

ehicle sales, fleet and 
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Diffusion is defined by (Rogers, 2003) as "Diffusion is the process by which an innovation is 

communicated through certain channels over time among the members of a social system". 

In a sequence of steps, from niche to widespread level, the diffusion occurs. Niches provide 

learning opportunities for different dimensions, such as technology, user preferences, 

regulations and infrastructure. When the niche accumulates, more stakeholders will support 

the innovation. When stakeholders come together, the system becomes increasingly stable 

(Rogers, 2003). Therefore, niches are important. At a point in time, the critical mass ensures 

self-sustaining use. The replacement of human driving to automated driving is assumed to 

happen in gradual fashion, as creation of a new system takes place. This is depict in Figure 

3.6.  

 

 

 
Figure 3.6: Spread of technology among niches 

 

The uptake by vehicle users can be divided in five categories: innovators, early adopters, 

early majority, late majority and laggards, which are depict under the blue line in Figure 3.5. 

Innovators are characterized by their willingness to take risks, they have a high social status 

and financial wealth. They have close contact to scientific sources and interact with other 

innovators. Early users have the highest degree of opinion leadership. They have a higher 

social status, financial liquidity, advanced education and are socially forward. In addition, 

early users are more discreet in adoption choices than innovators. The early majority has an 

above average social status, contact with early adopters. Late majority only adopts an 

innovation after the average participant has done this. They are typically more skeptical 

about an innovation and have little financial liquidity. Laggards are the last group to adopt 

an innovation. They show little to no opinion leadership and an aversion to change-agents. 

They focus on traditions and have the lowest social status and financial liquidity.  

 

Litman (2014) expects that the implementation rates are higher in areas that are more 

affluent (residents can more quickly afford automated vehicles), more congested (potential 

benefits are greater) and have more public support. J.D. Power and Associates 2012 U.S. 

Emerging Technologies Study (2012) and KPMG (2013) also have given an indication that not 

all people are even likely to embrace automated driving. However, their results do not 

correspond. A reason for these differences could be the research approach. While Power 

and Associates have done a research involving 17.400 vehicle owners, KPMG's results come 

from a focus group of 32 participants. Power and Associates have found that males prefer 

fully automated driving more than females. Moreover, younger people are more willing to 

purchase an automated vehicle than older generations. KPMG has found that females are 

little more willing to ride in automated vehicles than males. Additionally, older people are 

more willing than younger people. The results concerning vehicle ownership are the same 

for both studies: premium vehicle owners are more interested in automation than mass 

market vehicle owners. 
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This section has indicated that a critical user mass should use automated systems to achieve 

the potential benefits for safety, traffic flow and environmental savings. To enable 

widespread use, the first focus should be on a niche user group that is expected to be the 

first to use this systems. According to Rogers (2003), these may be vehicle users with high 

social status, financial liquidity and advanced education. Furthermore, literature indicates 

that there could be a difference in gender and age concerning the willingness to embrace 

automated driving. The next sections pays attention to stakeholders which have power to 

influence the use by transport and market implementation planning.  

 

3.2.2 Stakeholders  

Different stakeholders have power over transportation and market planning concerning 

automated driving. and therefore they can influence on vehicle users. The following 

stakeholders will be identified: public parties, consumer supporting organizations, vehicle 

manufacturers, and vehicle users. They all have their own interests, problem perceptions, 

values, preferences, strategies and resources (Geels, 2005).  

 

 Public parties 

The public parties can use its power by road infrastructure, education, public campaigns, 

regulations and enforcement, rewarding, knowledge development and collaboration with 

private parties (Ministry of Transport, Public Works and Water Management, 2009; Timmer, 

et al., 2013). Current measures to promote a certain mobility behavior are the tax people 

pay for ownership and use of vehicles, such as motor vehicle tax (Dutch: 

motorrijtuigenbelasting), tax on passenger vehicles and motor cycles (Dutch: belasting van 

personenauto's en moterrijwielen), and excise on fuel (Ministry of Transport, Public Works 

and Water Management, 2005). Below, public parties are split up in policy makers, 

regulators and transportation planners. 

 

Policy makers - The Netherlands has a one of the lowest or the lowest number of traffic 

deaths in world level. The central aim of policy makers is to lower this number to be able 

prevent and limit grief and societal costs. This is a big challenge as mobility grows and 

society is ageing. Therefore, innovation concerning mobility is very relevant for society. 

Besides the safety aspect, policy makers adjust policies in the field of traffic flow and 

environmental savings, as they can make mobility more efficient and cleaner. When making 

decisions concerning the mobility innovations, policy makers will take in account side 

effects, public support and the costs and benefits (Kennisinstituut voor Mobiliteitsbeleid, 

2013).  

 

Regulators - Practice has thought that innovative products are usually applied on voluntary 

bases. When the support is growing, the application becomes standard or it will be legally 

obliged (Ministry of Transport, Public Works and Water Management, 2009). However, 

liability is a crucial factor for user acceptance. To increase public support, regulators can take 

measures on the basis of behavior, vehicles and infrastructure. These measures have 

influence on societal interest, effectiveness, proportionality, and costs.   

 

Transportation planners - One of the important considerations for transportation planners is 

how to mix automated vehicles with non-automated vehicles (Fagnant & Kockelman, 2014). 

Partial automation is already available within mixed traffic. Zwanenveld and Arem (1997) see 
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solution introducing an automated driving lane. When the adoption rate is low, the road 

capacity will increase. However, a high adoption rate, including automated infrastructure 

can lead to high capacity improvements. An important issue here is the connection of high 

capacity automated driving lanes with local roads. This connection is required for receiving 

and dispersing traffic onto and off the automated driving lane. 

 

 Consumer supporting organizations 

Consumer supporting organizations like ANWB or Veilig Verkeer Nederland support vehicle 

users to increase their driving benefits. They gain insights in what developments are possible 

to benefit from, but also gain insights in what developments are preferred by the driver. 

These groups will perform tests with vehicle applications in the real world. With this, it will 

be questioned how automated driving can be in line with users needs (ANWB, 2014; Veilig 

Verkeer Nederland, 2014). 

 

 Vehicle manufacturers 

Vehicle manufacturers have several aims, whereof the main aim mostly is gaining high 

market share. Reaching this aim is done by different strategies. Vehicle manufacturers want 

to connect with the needs of its consumers, by increasing consumers' benefits, ease and 

comfort. Secondly, they want to distinguish themselves and create a strong profile. Thirdly, 

they attempt to lower the costs and to raise the revenues (Ministry of Transport, Public 

Works and Water Management, 2009). 

 

The vehicle manufacturers distinguish themselves by developing products that lead to better 

safety and comfort for the users. A vehicle manufacturer could get high market share when 

it appropriately implements these techniques in vehicles which deliver a driving experience 

that is esthetically and emotionally pleasing to the users. The vehicle manufacturers should 

offer an attractive value proposition which is customized for different user groups in the 

market. This will increase the willingness to pay (KPMG, 2013). 

 

 Vehicle users 

Vehicle users are stakeholders who eventually determine in which level automated driving 

will benefit society. They are the ones who make the decision to use or not use a certain 

level of automation in a certain driving situation. As indicated in Chapter 1, an critical motive 

for this decision is the control they want to have when driving automated. Likewise, there 

are more motives that influence the use of a certain level of automation in a certain driving 

situation. Main motives which can be split up in instrumental and affective motives. Motives 

that are often mentioned in literature can be seen in Table 3.3 (e.g. Anable & Gatersleben, 

2005; Beirão & Cabral, 2007; Boer & Hoedemaeker, 1998; Gardner & Abraham, 2007; 

Hagman, 2003; Jensen, 1999; Steg, et al., 2001). As stated in the scope of this research, 

these factors will not be further researched. 
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Table 3.3: Instrumental and affective driving motives  

Instrumental motives Affective motives 

- Speed; Comfort; 

- Safety; Control; 

- Financial costs; Excitement and sensation; 

- Energy use; Perceived stress; 

- Physical effort or exertion; Relaxation; 

- Travel time; Privacy. 

- Convenience;  

- Predictability.  

 

 

 

3.3 Choice process  
In previous sections of this chapter, it is explained that the role of the vehicle user will 

change when he or she will release driving control. The changed role of the vehicle user 

within the traffic interaction framework could change user's preferences concerning its 

interaction with the vehicle and the driving environment. Driving circumstances are 

presented that determine the experience of interaction. Stakeholders can influence these 

determinants. By having insights in the preferred driving circumstances and the level of 

automation, stakeholders can adjust their transport and market plans to the preferences of 

vehicle users.  

 

Insights in which choice vehicle users would make in a certain driving situations, can be 

obtained by a discrete choice modeling. A discrete choice model can describe the decision 

process of vehicle users in a particular context. Within discrete choice modeling, alternatives 

and attributes are used. Attributes represent the level of automation and the driving 

circumstance. The driving situation that is formed by these attributes are referred to as 

alternatives. To model the vehicle users' decision process, individuals are asked to make 

trade-offs among different attributes within an alternative. The advantage of a choice-

approach is, that compared to more traditional approaches, individuals will less 

overestimate the importance of unimportant attributes, as well as underestimate the 

importance of important attributes (Marchau, et al., 2001). 

 

A general individual choice process is described by Louviere, et al. (2000), and is depicted in 

Figure 3.7. First, the vehicle user becomes aware of its needs. This is followed by learning 

about technology and circumstances which can satisfy these needs. Vehicle users will 

evaluate which alternatives are available to attain their objectives. With this information, 

the vehicle users will form a utility function which involves valuing and trading off attributes 

that have influence on their decision. Depending on other constraints, they decide which 

alternative they want to choose.   
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3.4 Conclusions 
Automated driving results in a new role for the vehicle user. The interaction between 

vehicle, vehicle user and the driving environment has changed, as control of driving tasks is 

released to automated systems. This could change the users' perception of driving and their 

driving preferences. These preferences are highly influenced by the trust vehicle users have 

in automation. Several driving circumstances are described which could influence vehicle 

users' willingness to use automated systems. These are, weather and light circumstances, 

road type, length of the trip, density of traffic on the road, familiarity with the route and 

whether or not to perform a secondary task. Vehicle users' willingness to release control is a 

precondition to gain potential societal benefits. Literature explains that only when a critical 

mass uses automated systems, society will achieve benefits from the technology. The 

spreading of this use can be characterized by a diffusion of automated driving among a 

certain group, as proposed by Rogers' Diffusion of Innovations theory. The relative speed at 

which a vehicle user will use automated systems is related with the user's background. 

Vehicle users with higher social status, financial liquidity, more advanced education and are 

assumed to use automated systems more early than vehicle users with lower social status, 

less financial liquidity and lower education. Thus, it is important to appeal transportation 

and market implementation plans to the right user groups in order to gain a high usage rate. 

Main stakeholders that could influence transportation and market implementation plans are 

policy makers, regulators, transportation planners, societal interest groups, vehicle 

manufacturers, and vehicle users. The vehicle users are the one eventually choosing to 

release control in a particular driving situation. The choice process that vehicle users 

experience in different driving situations, can be described by discrete choice models, which 

are explained in the next chapter. 

Figure 3.7: Overview of the consumer's choice process 
(Louviere, et al., 2000) 
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Chapter 4  
 

Measuring discrete choices 
 

 

In the previous chapter, the interaction between vehicle user, vehicle and driving 

environment of automated driving is outlined. A combination of different driving 

circumstances form a specific driving situation. In this chapter provides theory about the 

weights that potential users place on certain automated driving situations. This weight is 

named 'utility'. Utility (��) tells something about how much a driving situation, or in a more 

general term 'alternative', is preferred (Hensher, et al., 2005). This chapter starts with a 

more detailed explanation of maximum utility. This is followed up by defining three types of 

models that predict choice. Respectively Multinomial logit model in Section 4.2; Latent class 

model in Section 4.3; and Mixed logit model in Section 4.4. In Section 4.5, it is described how 

the predicated power of the models can be calculated. The last section will contain 

conclusions from this chapter. 

 

 

4.1 Utility maximization 
According to the random utility theory, it is assumed that an individual n will base the 

preferred choice amongst i alternatives with attributes j within a choice situation on the 

alternative with the highest utility. The individual respondent chooses for alternative i if and 

only if �� > �� ∀	 j	 ≠	 i.	 (Train, 2009). The individual will evaluate the set of alternatives 

rationally. The utility associated with each alternative within a choice situation is 

represented by a utility function (Hensher & Greene, 2002).  

 

�� = 	� + 
�          (1) 

 

Where 

	� is the indicated structural utility associated with alternative i. This component can be 

measured as it is related to the alternatives in the choice situation; 


� is the error term, which cannot be observed by the researcher but are known to the 

individual respondents.  

 

With 
	� = �� + 
� ��� * ����         (2) 

 

Where  

�� is the constant term, indicating on average the role of all unobserved sources of utility; 
��� is the parameter associated with attribute j and level k; 

���� is the effect coded attribute-level k of attribute j of alternative i. 

 

With 
��� * ���� = ����          (3) 
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Where 
����  is the part-worth utility associated with alternative i, with attribute j, with regard to 

level k.  

 

The constant term �� is equal to the mean of the observed alternative ratings. β₀ indicates 

the general attitude towards a certain alternative. The attitude can be positive or negative. 

The bigger the value of β₀ parameter, the more influence it has on the overall preference. 

The part-worth utilities are expressed in terms of the deviation from this mean. The sum of 

an attribute's part-worth utilities is equal to zero (Marchau, et al., 2001) 

.  

To get insights in the probability that a certain driving situation is chosen above another 

driving situation, utility will be derived from models that estimate choice behavior. There are 

several options to model choice behavior. The aim is to choose for a model that best 

represents the underlying choice process that generates the observed data. In the following 

sections, three models that can give insights in preferences of different target groups are 

discussed.  

 

 

4.2 Multinominal logit model 
Multinomial logit (MNL) model is the most basic and widely used model for analyzing 

discrete choice modeling. It has a short estimation time and its computation is simple. Also 

the goodness of model's fit is easy to measure. MNL model gives one set of globally optimal 

parameters and therefore the parameters are easy to interpret. The model is homogeneous 

of degree zero in attributes. MNL model has an important and strong assumption, namely 

that the unobserved error term is independently and identically distributed (Louviere, et al., 

2000). Another main assumption is that the ratio of probabilities of choosing between 

alternatives is independent of the choice set. With the MNL model, the probability that a 

certain alternative has the highest utility can be predicted by the following formula 

(Hensher, et al., 2005): 

 

��=  
��� 	

��	�
�� 	

          (4) 

 

Where 

��  is the probability that alternative i is chosen. 

 

 

4.3 Latent class model 
Latent class (LC) model has an improved model fit over the Mutlinomial logit model. Also the 

parameters of the Latent class (LC) model are also easy to interpret. With Latent class model, 

this heterogeneity is observed by discrete parameter variation. In a an MNL model these 

factors are not directly observed. Respondents who have similar observed variable 

distributions are implicitly grouped into the same latent class with parameters to be 

estimated. A drawback is that with this model, it will not be known by the researcher which 

particular individual contains which class (Greene & Hensher, 2003). Another disadvantage 

of the LC model is that an extra analysis needs to be done to decide the number of classes. 
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With the parameters given by the LC model, the probability that an individual with a certain 

characteristic belongs to a certain class can be calculated. This is expressed by the following 

formula (Heijden, et al., 1996; Greene & Hensher, 2003): 

 

��(class = c) = ��|�= 
���� 

∑ ���� �
�"#

       (5) 

 

Where 
��|�  is the probability of an individual n belonging to class c; 

$� is the vector of utility weights belonging to characteristics z specified for class c; 

%� is the vector of observed individual, situation invariant, characteristics of individual n. 

 

Individual specific class probabilities are calculated with the following formula (Kikulwe, et 

al., 2009; Greene & Hensher, 2003): 

 

��|� = 
	&�|�∗	(�| 

∑ &�|�∗	(�| 
�
�"#

        (6) 

 
��|� is the probability of individual n with a certain probability of belonging to class c, 

chooses alternative i;  
��|� is the probability of choosing alternative i, given the class c (same calculation as with 

MNL probability). 

 

 

4.4 Mixed logit model 
Mixed logit (ML) model is a more adequate model than the Latent class model n terms of its 

overall flexibility and range of behavior it can accommodate. The Mixed logit model can 

explain individual differences in the mean of the attribute levels (Greene & Hensher, 2003). 

It differs with MNL as Mixed logit does also not require to make specific assumptions about 

the distribution of parameters across individuals. The disadvantage is that analyzing this 

decomposition is not easy. Estimating the parameters is time consuming and parameters are 

difficult to interpret. 

 

A distribution to the random component within the utility function can be assigned to gain 

more insights in the individual choice process. The mean and standard deviation of one or 

more random parameters can be decomposed to reveal sources of systematic taste 

heterogeneity (Greene & Hensher, 2003).  

 

With an ML model heterogeneity can be modeled, estimating the range of each utility 

weight among the sample. It can be seen if utility weights are approximately equal for the 

whole sample or severely differ. The utility function associated with alternative i as 

evaluated by each individual n is represented by the following formula: 

 

��� = �� * ��� + 
��         (7) 
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For the Mixed logit model the �'s are the not fixed for the total sample but are different for 

each respondent. �� is not observed by the researcher and is treated as a stochastic 

influence, determined by, where θ are the parameters of the distribution of �� over the 

sample, such as the mean and the standard deviation of �� (Hensher & Greene, 2002; Train, 

2009). For a given value of �� the conditional choice probability that individual n chooses 

alternative i is: 

 

*��(��) = 
�, 	∗	- � 	

��	�
, 	∗	- � 	

        (8) 

 

As �� is not given, the (unconditional) choice probability is equation 12 integrated over the 

density of ��. This equation is shown below (Hensher & Greene, 2002). 

 

���= ∫	*��(�) f(�|θ)d�        (9) 

 

Where 

*�(�) is the likelihood of an individual's choice if they had this specific β; 

f(�|θ) is the density of � where θ are the fixed parameters of the distribution; 

���  is the probability of individual n chooses alternative i. 

 

The probability cannot be exactly calculated as the integral does not have a closed form. So 

to approximately estimate the parameters β's of the Mixed logit model, simulation is 

applied. These parameters are (in this thesis) normally distributed with θ referring 

collectively to the mean and standard deviation parameters. For any random value within 

the normal distribution, β can be calculated by inversing the normal cumulative distribution 

for the specified mean and standard deviation. With this β, the logit probability *�� 	is 

calculated. The choice probability ���  is then calculated by repeating this step and averaging 

the results as in equation 10 (Train, 2009).  

 

/���  = 
0

1
 ∑*��(�)         (10) 

 

Where 

/���   is the simulated probability that an individual n chooses alternative i; 

R is the number of draws of �. 

 

 

4.5 Model's goodness-of-fit 
To get insight in whether the models predict the observed data well, the model's fit will be 

calculated. It can be tested if the estimated parameters of the model provide an 

improvement of the model without estimations. Also, different models with both estimated 

parameters can be compared to know which one has the best predictive power. In this 

research, maximum Pseudo R², likelihood ratio test and to information criteria are applied.   

 

The basis of the fitness or comparison tests, is the maximum likelihood estimation. This is 

based on a set of parameters that produce the observed sample most often (Train, 2009). 

The maximized log likelihood function can be defined by the following formula: 
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**2 = ∑ ∑ 3��	(���)�
4
�50         (11) 

 

Where 

**2 is the log likelihood function for the estimated model, maximized with respect to 

estimated parameters; 

N is the sample size; 

3��  is the choice of individual n for alternative i, which is equal to 1 if i is chosen and 0 

otherwise; 

���  is the probability of individual n chooses alternative i. 

 

4.5.1 Pseudo R² 

The Pseudo R² measures how the estimated model performs against a model where all 

parameters are set to zero. Louviere, et al. (2000) indicate that a model's Pseudo R² should 

be between 0.2 and 0.4. Models with R² value below 0,1 are considered as weak. According 

to Hensher, et al. (2005) 0,3 represents a decent model fit. 

 

R²= 1-  
667

668
          (12) 

 

Where  

**2 is the log likelihood function for the estimated model;  

**� is the log likelihood function for the model estimated with no parameters;  

R² suggests the level of improvement between the two models and falls between 0 and 1. 

 

When the number of parameters increases, the adjusted psuedo R² should be examined. 

When the value of this estimation increases with parameters raising, it indicates the 

existence of heterogeneity in the data.  

 

adjusted R² = 1-  
6679	:

668
        (13) 

 

Where 

p is the number of parameters. 

 

4.5.2 Likelihood ratio  

The likelihood ratio test is another popular form of testing the model fit. It is based on the 

likelihood function and therefore has the same foundation as the psuedo R². The likelihood 

ratio is the likelihood of the estimated model divided by the likelihood of the base model 

with zero parameters. The likelihood ratio-test expresses how much more likely the data 

under one model is than under the other model. This ratio is between 0 and 1 and the less 

likely the assumption is, the smaller the ratio will be. The likelihood ratio can be compared 

to a critical value to decide if the estimated model outperforms the base comparison model. 

The formula for the likelihood ratio is described as:  

 

D= -2 ( **� -  **2 )         (14) 
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Where 

D is the likelihood ratio of two models. 

 

It should be compared to a chi-square statistic with degrees of freedom equal to the 

difference in number of parameters between the compared models. If D is larger than the 

chi-square the ratio the assumption is rejected, and the estimated model is preferred over 

the model with restrictions. If D is less than the chi-square, it cannot be concluded that the 

estimated model is better than the base model (Hensher, et al., 2005). 

 

For the Latent class model and the Mixed logit model, not all terms of the smaller model 

occur in a larger model. Therefore, a likelihood ratio test will only be applicable for the 

Multinomial logit model (Greene & Hensher, 2003).  

 

4.5.3 Information Criteria 

Information criteria are applied when an estimated model should be compared with another 

estimated model. Akaike information criterion (AIC) and Bayesian Information Criterion (BIC) 

are suggested as good indicators (Akaike, 1974; Schwarz, 1978). The lower the value, the 

best the model represents the data (Kass & Raftery, 1995). 

 

AIC is defined by:  AIC = -2 *	**2 + 2 * p     (15) 

 

BIC is defined by :  BIC = -2 * **2 + ln(N) * p    (16) 

 

Where 

N is the number of observations. 

 

 

4.6 Conclusions 
In this chapter theory is presented of how to estimate choice behavior of vehicle users. 

Three models that are introduced are Multinomial logit model, Latent class model and Mixed 

logit model. All three models have their advantages and disadvantages. While a Multinomial 

logit model is relatively simple, it does not take into account heterogeneity between 

individuals or groups of individuals. With a Latent class model heterogeneity can be 

estimated by allowing different preferences between discrete classes. Mixed logit models 

are even more flexible as they allow to estimate individual taste heterogeneity. However, 

Mixed logit models are not so easy to analyze. As chapter 3 indicates, it is valuable to get 

insights in customized preferences within different user groups. Therefore, analyzing a 

Latent class model and Mixed logit model is most interesting. How well these models predict 

the actuality, depends on the goodness of fit which could be calculated on the basis of the 

maximum likelihood estimation, a set of parameters that produces the observed sample 

most often. The data-input for the models comes from a discrete choice experiment, which 

will be elaborated in the next chapter.  
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Chapter 5  
 

Experiment design 
 

 

A discrete choice experiment will be set up to predict discrete choices of vehicle users with 

regard to automated driving situations. This chapter will pay attention to how this 

experiment is constructed. For a proper design, the guidelines of Hensher, et al. (2005) are 

applied. In Section 5.1 the problem statement of this research is refined. Secondly, with 

insights from literature, attributes and attribute-levels are identified and refined. In Section 

5.3, the experimental design is considered. Next, in Section 5.4 the experimental design is 

generated and attributes are allocated. This is followed in Section 5.5 by setting up proper 

choice sets. The construction of the experiment is finished, as explained in Section 5.6. This 

chapter concludes in Section 5.7 with an overview the constructed experiment. 

 

 

5.1 Research question refinement 
As discussed in previous chapters, one possibility to increase traffic safety, improve traffic 

flow and achieve significant environmental savings is automated driving by releasing driving  

tasks to automated systems. The more vehicle users are willing to release control in different 

driving situations, the more benefits for society can be obtained. However, literature 

indicates that it is not granted that vehicle users are willing to release control. Vehicle users 

seem to have more trust in their own task capabilities than in task capabilities of the 

technology. Certainly when the driving situation is more complex, they tend to be unwilling 

to release control. The willingness to ride with automated systems seems to differ per user 

group.  

 

Therefore the main research question is:  

Which level of automation and which driving circumstances contribute to the willingness of 

different vehicle user groups to release driving control? 

 

 

5.2 Identification and refinement of attributes and attribute-levels 
The attributes that influence the choice behavior of interest form an alternative. Together, 

these alternatives form choice sets. The choice sets have a fixed number of alternatives. The 

assignment of the respondents is to indicate which alternative he or she is most likely to 

choose (Hensher, et al., 2005).  

 

According to Hensher, et al. (2005), the second step involves selecting alternatives and 

attributes. In this experiment only labeled alternatives are defined. Firstly, because the 

unlabeled alternatives are assumed to be less correlated with the attributes than labeled 

alternatives, they may be more robust in terms of violating the assumption that error terms 

are independent and identically distributed. Secondly, while labeled alternatives may take 

effects into account which respondents may have learned to associated with different 

driving situations, this does not occur with unlabeled alternatives. Thirdly, using labels 

results in many alternatives, while not using labels results in limited alternatives (Hensher, et 

al., 2005). 
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As the second step involved the determination of a list of attributes and attribute-levels, 

insights of literature from is used. One of the identified attributes is the level of automation. 

The levels that are associated with this attribute are presented in Sub-section 2.2.2. The 

explanation of the role of the driver and system per level are quite understandable. 

However, it is assumed that the labels associated with the levels are not so easy to interpret 

for vehicle users that are participating in this experiment. The level of automation is directly 

linked with level driving tasks that has to be released. Therefore, the experiment and 

analysis of the data, the attribute 'level of automation' is replaced by 'level of released 

driving tasks', including associated levels. In the conclusion again 'level of automation' is 

used in order to clearly answer the main question.  

 
Other attributes come from Section 3.1. Weather and the level of light seem to have influence on the 

task environment. However, these attributes are very hard for respondents to trade off, which can 
influence the predictive power of the results. Moreover, they have little to no influence policies or 

action for public parties, consumer supporting organizations and private parties. Therefore, they are 

not taken in account in this research. The remaining six attributes, including the associated levels 

used in the experiment, are presented in  

Table 5.1.  
 

Table 5.1: Selected attributes and corresponding levels 

Attribute Level Label 

Level of released driving tasks 0 
1 

2 

3 

Release very little tasks 
Release little tasks 

Release many tasks 

Release all tasks 

Road type 0 
1 

2 

Highway 
Regional road 

Local road 

Length of trip 0 
1 

2 

<20 km 

20-100 km 

>100 km 

Density on road 0 
1 

2 

Low 

Average 

High 

Familiarity with route 0 Familiar 

1 Unfamiliar 

Secondary task 0 Yes  

1 No 

 

 

5.3 Experimental design considerations 
The primary source of choice response used in this research is stated choice data. Stated 

choice data derives choices that are made or stated given hypothetical situations. On the 

contrary, revealed preference/choice data derives actual choices of decision makers in a real 

market (Hensher, et al., 2005). With stated choice approach method, reliable estimates of 

the relative importance of each of the attributes are provided. It allows robust 
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understanding of how individuals make choices by observing multiple choices from one 

individual. Individuals can be assigned by corresponding user groups. This enables the 

models to examine the choices made by different user groups (Dumont & Falzarano, 2012). 

The task is to make the hypothetical scenarios as realistic as possible. A drawback of 

applying stated choice is that it uncertain how much faith can be put in the results as it is 

unclear of individuals are actually doing what they stated they would do when the case 

arises. Moreover, stated choice is only reliable when respondents understand, are 

committed and can respond to tasks (Ortuzar & Willumsen, 2011).   

 

 

5.4 Generation of experimental design and allocation of attributes  
The next step is to combine levels into alternatives which can be evaluated by the 

respondents. They are explicitly forced to make trade-offs among attributes in the 

alternatives (Marchau, et al., 2001). A full-factorial design would result in 432 alternatives (4¹ 

* 3³ * 2²). This is based on an unlabeled experiment where the number of alternatives is 

calculated by L^A. L represents is the number of levels and A the number of attributes. As it 

is impossible to let respondents adequately evaluate this number of alternatives, the 

number of alternatives evaluated should be reduced. This can be done by making 

assumptions on how decision-makers combine part-worth utilities into structural utilities. 

This results in a fractional factorial design which consists of 16 alternatives. These are based 

on a scheme designed by Addelman (1962) which estimates the main-effects of the different 

attributes. This reduction results in the fact that this research does not involve interaction 

effects between attributes. This means that the structural utility is assumed equal to the 

sum of separate part-worth utilities (Louviere, 1988). In Table 5.2 a matrix shows 16 rows 

which represent the alternatives and 6 columns which represent the attributes.  

 
Table 5.2: Experiment alternatives 

Treatment 

combination 

Level of 

released 

driving tasks 

Road type Length of 

trip 

Density on 

road 

Familiarity 

with route 

Secondary 

task 

1 0 0 0 0 0 0 

2 0 1 1 2 1 0 

3 0 2 2 1 1 1 

4 0 1 1 1 0 1 

5 1 0 1 1 1 1 

6 1 1 0 1 0 1 

7 1 2 1 2 0 0 

8 1 1 2 0 1 0 

9 2 0 2 2 0 1 

10 2 1 1 0 1 1 

11 2 2 0 1 1 0 

12 2 1 1 1 0 0 

13 3 0 1 1 1 0 

14 3 1 2 1 0 0 

15 3 2 1 0 0 1 

16 3 1 0 2 1 1 
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5.5 Generation of choice sets 
The alternatives are randomly paired in combinations of two. This results in eight choice 

sets, presented in Table 5.3. 

 
Table 5.3: Generated choice sets 

Choice set Driving situation 1 Driving situation 2 

1 4 9 

2 11 13 

3 3 6 

4 14 15 

5 2 16 

6 1 10 

7 5 7 

8 8 12 

 

 

Figure 5.1 illustrates an example of a choice set. As can be seen, the title of the first 

alternative does not convey any information to the decision maker, other than that it is the 

first of the two driving situations. This is the same for the second alternative. As this is a 

stated choice experiment, the decision maker should make a choice between at least two 

alternatives, given the level each alternative assumes. A constant base 'geen van beide' is 

added to the choice sets. This can be chosen by respondents who are not willing to choose 

for one of the first two alternatives. 

 

 
Figure 5.1: Example of a choice set [Dutch] 

 

 

5.6 Survey instrument  
A Dutch internet-based questionnaire is distributed to a random sample of respondents in 

the Netherlands. The questionnaire is presented in Appendix III. This questionnaire is set up 

in the Berg Enquete System, an online survey tool. 

 

The respondents are shortly informed about the objectives and procedure of the survey. As 

the concept of automated driving is not well-known, respondents are smoothly introduced 

with this. It is aimed to construct the survey with appropriate questions and information 
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which are established in a way that they are understandable for the respondents. Moreover, 

questions and information should relate to the respondent's current level of experience and 

appear realistic (Ortuzar & Willumsen, 2011). Besides, there should not be ambiguity, 

include different vernacular and it should not contain biased questions (Hensher, et al., 

2005). The questionnaire is tested against these sorts of flaws by around 10 test 

respondents. A second bigger test-questionnaire involves 50 respondents.  

 

There are two sources which influence the choice behavior. Firstly, attributes relate to the 

description of the alternative. Secondly, characteristics that relate to the individual's 

prejudice which is represented by its socio-economic variables and its context influence 

(Hensher, et al., 2005). To get insights in both sources of influence, the questionnaire 

consists, besides a stated choice part, of individual's background questions. The aim is to find 

homogeneity within groups and heterogeneity between groups. With this information, 

different groups can be addressed more appropriately. Consumer characterization can be 

done by socio-demographic factors, perceptions, attitudes and habits (Beirão & Cabral, 

2007). In the light of automated driving, therefore insight is provided by questioning the 

participant's driving experience, its view on ITS and basic socio-demographic and 

psychographic variables. In the following four sections these three parts, including the stated 

choice part, are explained. However, before questioning respondents about personal related 

factors, they have to oblige to one requirement: having a passage vehicle driver's license (in 

the Netherlands: driver's license B). This decision is made as one can only make a proper 

choice between alternatives if they have experience with driving.   

 

5.6.1 Part 1: Driving experience and personality traits regarding driving 

First, a set characterizations is presented by questioning respondents about their driving 

experience, kilometers driven per year, and whether or not they owned a vehicle. Also, it 

was asked if they agreed with the following sentence: I consciously use fuel to save the 

environment. The characterization is shown in Table 5.4. The link of the characterizations 

with automated driving is not yet made by literature. However, these points all link to 

driving and questioning this, can give insights if there is a link. 

 
Table 5.4: Driving experience factors  

Driving experience Average kilometers per 

year 

Most driven vehicle Environmental 

aware driving 

Less than 5 year Less than 10.000  Own vehicle Very much disagree 

5-19 year  10.000-30.000 Lease vehicle Slightly disagree 

20-34 year More than 30.000 A free to use vehicle Neutral 

35 or more year  Different Slightly agree 

  I do not drive a vehicle Very much agree 

   Do not know/  

no opinion 

 

 

Secondly, personality traits related to driving, are assumed to have influence on the 

willingness to release control in a certain driving environment. People with traits of 

sensation seeking, impulsiveness, and  thrill and adventure seeking seem to have the 

strongest repulsion of automated driving as they are restricted in enjoying these traits. Also, 

people with a high need of control, extraversion and neuroticism, and self-esteem are 
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assumed to have a particular reaction to automated driving (Saad, 2006; Taubman-Ben-Ari, 

et al., 2004; Hoedemaeker & Brookhuis, 1998). Therefore these personality traits are 

measured by giving respondents propositions concerning their driving behavior. These 

propositions, related with one of the personality traits come from Taubman-Ben-Ari, et al. 

(2004) If respondents agree with the proposition more than average, they are assumed to 

have a certain personality trait. 

 

5.6.2 Part 2: View on Intelligent Transportation Systems  

Lee and Moray (1994) indicate that people with positive automated systems experience will 

use a these repeatedly. Hence, the probability of usage increases with the level of familiarity 

and experience with ITS. Therefore, these factors are used as bench-marks. People with ITS 

experience are expected to have more interest in these technologies and have more 

resources available to pay for it. Seven Intelligent Transport Systems are presented to the 

respondents. Explanation of the systems comes from euroFOT. It describes the systems 

generally and not based on one vehicle manufacturer (euroFOT, n.d).  

- Adaptive Distance Control (replaced for Adaptive Cruise Control, as many people 

read ACC as cruise control which is not the same). 

- Forward Collision Warning 

- Speed Regulation System 

- Blind Spot Information System 

- Lane Departure Warning/Lane Keeping Assist 

- Navigation System 

 

As trust also seemed an important factor, this is measured in the experiment. This is done by 

presenting people propositions which come from Carlson, et al., (2013) and Parasuraman & 

Riley (1997). These sentences were perceived as having the most influence on someone's 

trust of an automated system in the automotive domain.  

- Information of the effects of the automated vehicle 

- Extent of research on the automated vehicle's reliability 

- My own understanding of the automated vehicle  

 

Respondents had to give a score to who much they agreed with the particular propositions 

with a likelihood scale of 1 to 5. Measuring how much they would deviate on average of the 

mean would give them a mark of how much trust they had in an automated vehicle.  

 

Lastly, to learn respondents more about automated  systems having control of driving tasks , 

they are asked how much they are willing to release the tasks velocity determination, 

braking and accelerating, route determination and determination of position on the road.  

 

5.6.3 Part 3: choice  

The third part consists of the stated choice part, which is based on 8 choice sets. However, 

as 8 choice sets are too much to handle for a respondent, blocking is used. The first 4 choice 

sets are represented in the first block and the last 4 choice sets are represented in the 

second block. Each respondent will be randomly assigned to one of the two blocks. 

Attributes that will be researched are given in Section 5.2. 

  



 

 

5.6.4 Part 4: Socio-demographic and psychographic factors

The socio-demographic factors that 

household situation, as described in

appeared to have influence in previous research or becaus

driving is interesting to research.  

 
Table 5.5: Socio-demographic factors 

Gender Age 

Male Less than 25 

Female 25-39 

 40-54 

 55 of more

 

 

It appears that consumption behavior is often closely linked to lifestyle. People tend to 

consume products that they associate with their way of life. With the division of 

Motivaction, depicted in Figure 5.

activities and interest they are assumed to have. Every 

people with the same norms and values

questionnaire, the division is made by letting people chose a sentence that best reflects their 

way of living. These sentences

stimulating sustainable consumer behavior and the role

 

 

 

 

 

 

 

 

Figure 5.2: Lifestyle division in the Netherlands, 

according to Motivaction (2012) 

 

demographic and psychographic factors 

demographic factors that are questioned are gender, age, education level and 

, as described in Table 5.5 . The reason there are studied is because they 

appeared to have influence in previous research or because their link with automated 

driving is interesting to research.   

mographic factors  

Education level Household situation

Less than 25  No or primary 

education 

Single 

household

 Secondary education Multiple

hold with children

 Lower education 

(MBO) 

Multiple

hold without children

55 of more Higher education/ 

university 

Different

It appears that consumption behavior is often closely linked to lifestyle. People tend to 

consume products that they associate with their way of life. With the division of 

Figure 5.2, a target user group can be addressed easier with the 

activities and interest they are assumed to have. Every user group represents a group of 

people with the same norms and values and are described differently. Within the 

he division is made by letting people chose a sentence that best reflects their 

way of living. These sentences come from a report of Drijver & Broer (2013) 

onsumer behavior and the role of the government

 

Lifestyle division in the Netherlands, 
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gender, age, education level and 

. The reason there are studied is because they 

e their link with automated 

Household situation 

Single person 

household 

ultiple person house-

hold with children 

ultiple person house-

hold without children 

Different 

It appears that consumption behavior is often closely linked to lifestyle. People tend to 

consume products that they associate with their way of life. With the division of 

can be addressed easier with the 

represents a group of 

and are described differently. Within the 

he division is made by letting people chose a sentence that best reflects their 

(2013) who write about 

of the government.  
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5.7 Conclusions 
In this chapter the proper steps are given to conduct a discrete choice experiment. This 

experiment provides data to estimate models which gives insights in the automated driving 

situations preferred by vehicle users. The questionnaire starts with attracting respondent's 

attention by asking about their driving experience and if they agreed with certain driving 

style propositions. In the following parts, the questionnaire focuses more on the subject of 

automated systems. In the second part, the respondents are asked which ITS they are 

familiar with and have experience with. Later on, they are informed about systems that take 

over control of driving tasks and are asked how willing they are to take over four primary 

tasks. The last question of this part aims at providing insights in how important three trust-

factors are for respondents' willingness to use an automated vehicle. The third part of the 

questionnaire consisted of the stated choice questions. The respondents are randomly 

divided in one of the two groups. One group is assigned to four particular choice sets, while 

the other groups is assigned to four other particular choice sets. The choice sets consist of 

refinement of attributes presented in Chapter 3. Respondents are asked to choose the 

driving situation that they prefer. They can choose between 3 alternatives. The first two are 

built up by one level of each attribute, which was previously randomly assigned to the 

alternative. The third alternative is labeled as 'none of both'. It is assumed that when 

respondents choose this alternative, they do not prefer to release control of driving tasks. In 

part 4, respondents are asked to give socio-demographic and psychographic information. 

Lastly, respondents can give some remarks and then are thanked for their participation. The 

following chapter describes the data collection and analysis of the experiment.  
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Chapter 6  
 

Identifying vehicle users' preferences 
 

 

The set up questionnaire provides data that enables modeling the choice behavior of 

respondents. This chapter describes the data collection approach in Section 6.1. Next, 

Section 6.2 continues with a descriptive analysis of the obtained data. In this section, insight 

is provided in respondents' background. With this knowledge, interesting user groups for 

further research are determined and explained in Section 6.3. The insights described by 

three choice models are given in Section 6.4 to 6.6. Section 6.7 provides an overview of the 

found results. 

 

 

6.1 Data collection 
Two approaches are applied to invite respondents for this questionnaire. The first approach 

was to address an Internet panel of the market agency PanelClix2. This resulted in 524 

complete responses. The other way was though personal and business network. A hyperlink 

to the survey was sent via e-mail and spread via social media. This second approach resulted 

in 149 complete responses. Hence, in total the data set consists of 673 respondents. 

 

A rule of thumb by Orme is used to calculated the desired number of respondents. According 

to Rose & Bliemer (2013) this is the most commonly cited rule of thumb to calculate stated 

choice study sample size requirements. 

 

N ≥ 
;��	6<=>

?∗@
          (17) 

 

Where 

*ABC  is the largest number of levels of any of the attributes; 

J is the number of alternatives per choice set; 

S is the number of choice sets.  

 

Within this experiment, *ABC  is 4; J is 3; and S is 4. Therefore the desired minimal number of 

respondents is 167. However, for this experiment the needed number of respondents has to 

be multiplied by 2, as there are two blocks of respondents that both are four times 

presented with different choices sets. Thus, in this experiment a minimum of 334 responses 

is desired. In the present study, 673 complete responses are obtained, which is sufficient to 

the rule of thumb. It is assumed that this number is also sufficient to analyze the differences 

between target groups. 

 

 

6.2 Descriptive analysis 
This section describes information drawn from the data of the experiment. Information is 

presented about how user characteristics are divided over the sample, the differences in 

                                                      
2
 http://www.panelclix.com 
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familiarity with ITS, the degree of influence several factors have on trust in automated 

systems. Additionally, a description of which user groups are likely to prefer automated 

driving and which groups do not is provides.  

 

6.2.1 Description of research sample 

The results of this experiment are based on answers from 673 respondents. Table 6.1 

illustrates characteristics of the target group and the resulting sample.  

 
Table 6.1: Characteristics of the sample and target group¹ 

User group Target Research sample 

Gender²   

Male 53% 51% 

Female 47% 49% 

   

Age¹   

18-24 9% 17% 

25-39 25% 35% 

40-54   31% 47%³ 

55 +  35%  

   

Education⁴   

Primary education 8% 1% 

Secondary education 33% 12% 

Lower education (MBO) 30% 34% 

Higher education/university 29% 54% 

   

Household situation   

Single person household  18% 

Multiple person household with children  40% 

Multiple person household without children  37% 

   

Driving experience   

Less than 5 year  16% 

5-19 year  40% 

20-34 year  25% 

35 or more year  19% 

   

Kilometers per year   

Less than 10.000  37% 

10.000-30.000  47% 

More than 30.000  13% 

¹ The total sample of the different characteristics is not always 100%. This is caused by rounding-off, or because 

respondents indicated that they did not know the answer to the question, or because they indicated that their 

suiting option was not in the option list. 

² Target group is defined by people in the Netherlands that own a passenger driver's license in 2012 (SWOV, 

2012c); 

³ Age divisions of this thesis and SWOV did not correspond, therefore 40-54 and 55+ are gathered; 

⁴ Target group is defined by degree of education of people between 15 and 65 years old (CBS Statline, 2013).  
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6.2.2 Further insights  

Besides the description of the sample group, also insights are obtained concerning how 

familiar males and females and people of different ages are with ITS. In addition, the 

importance of three trust-factors is described. Lastly, the willingness to release control to 

automated systems per user group is described.   

 

When relating the level familiarity of ITS with gender and age, it appears that males know 

more ITS than woman. The Chi-square calculation matrix can be found in Appendix IV. This 

matrix also shows that females of 40 or older know less ITS than the average sample. As ITS 

are closely linked to systems in automated vehicles, the following assumption is made: it is 

assumed that the probability that males will come in contact with automated driving is 

higher than the that females will come in contact with automated driving. 

 

Next, also insights are gained in the importance for vehicle users to use automated vehicles, 

concerning three trust-factors. Firstly, of the total sample, 37% of the respondents denote 

that information of the effects of the automated vehicle is important to very important for 

them to ride in these vehicles.  Secondly, 50% of the respondents indicate that their own 

understanding of the automated vehicle is important to very important for their willingness 

to use it. Thirdly, 43% of the respondents agree that the extent of research on the 

automated vehicle's reliability is important to very important for their willingness to use 

automated vehicles. 

 

Furthermore, within the stated choice questions, respondents could choose for 'none of 

both' when they were not willing to drive in the given driving situations. When respondents 

chose four times for 'none of both' but have seem to answer other questions with care, it is 

assumed that these respondents do not prefer automated driving. This category contains 60 

respondents. Valuable insights can be drawn from descriptive of this category as it estimates 

which people not tend to use automated driving possibilities in real life. It has to be taken 

into account that the some groups within the sample are rather small, therefore these 

numbers are only seen as an indication of which user groups do, and which groups do not 

prefer automated driving. An elaborated overview can be found in Appendix V. and a concise 

overview is presented in Table 6.2. A '+' indicates that the user group within a the sample is 

on average willing to release control of driving tasks to automated systems. A '-' indicates 

that the particular user group is not willing to release control.  

 

Tables 6.2 shows that males and young respondents are more willing to cede driving tasks, 

than females and older respondents. Furthermore, there is significant difference in the 

willingness of higher educated respondents to release control, compared to lower educated 

respondents. Respondents with most driving experience are least willing to release tasks. 

The years of driving experience could be in accordance with age, which explains the same 

trend of willingness. Respondents with much familiarity as well as experience with different 

ITS, are more willing to release control. Furthermore, as indicated by previous research, 

people with low trust in automated vehicles do not chose to use automated systems, while 

people with high trust are preferring automated driving. Additionally, it is striking that 

respondents with a high need for control seem to prefer automated driving more than 

respondents with a lower need for control.  
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Table 6.2: Willingness to release control  

User groups Chi-square p<0,05  User groups Chi-square p<0,05 

Gender     ITS familiarity    

Male +    Low -   

Female -    High + 16,880 * 

  7,784 *      

Age     ITS experience    

18-24 +    Low -   

25-39 +    High + 11,649 * 

40-55 +        
55+ -    Trust    

  17,045 *  Low -   

Education     Average +   

Primary education¹     High + 21,914 * 

Secondary education -        

Lower education (MBO) -        

Higher education/university +    Personality traits    

  20,659 *  Self-esteem    

Household situation     High +   

Single person household +    Low - 0,114  
Multiple person household  +        

   with children     Need for control    

Multiple person household   -    High +   

   without children     Low - 6,059 * 

  4,104       

Driving experience     Sensation seeking    

Less than 5 year +    High -   

5-19 year +    Low + 0,530  

20-34 year +        

35 or more year -    Extraversion    
  16,074 *  High -   

Kilometers per year     Low + 4,049 * 

Less than 10.000 -        

10.000-30.000 +        

More than 30.000 +        

  2,750       

¹ Chi-square condition is violated: expected value is below 1 (Cochran, 1954) 

 

 

6.3 Model analysis 
Several user characteristics are found to explain possible differences in the willingness to 

release control of driving tasks. These characteristics are gender, age, education, driving 

experience, familiarity and experience with ITS, trust and two personality traits. Because of 

time constraints, not every characteristic can be researched in depth. According to the 

previous literature, gender and age are predicted to explain differences in preferences. 

Taking in account that these are the most easily addressable and identifiable user 

characteristics, gender and age will be further researched. In addition, the preferences of 

respondents with different experiences with ITS and different education levels will be 

further researched. These user groups are assumed to explain differences in willingness to 

cede driving tasks.   
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This present research is about choice data. This means that an alternative is chosen or not 

chosen and therefore results in binary data (i.e. 0 or 1). The chosen alternative is the one 

that produces the highest level of utility, or the least amount of negative utility. There is no 

direct information about the order of preferences. But with repeated observations, it is 

possible to collect enough information of the preference formation.  

 

To be able to estimate the preferred levels of attributes in the models, the attribute-levels 

were coded. This is done by effect coding (Hensher, et al., 2005). This means that n levels of 

the attributes are coded by n-1 indicator variables. The n-1 levels are coded 1 on the 

corresponding indicators and coded 0 on all other indicator variables. The last n level is 

coded -1 for all indicator variables.  

 

In this research, a NLOGIT Version 5 is used to estimate the parameters of the choice 

models. From the results of the choice sets, the utility of each alternative can be estimated. 

For every attribute-level, parameter β can be estimated. �� defines the base alternative. 

With the 'none of both' alternative nothing is known of its attributes and levels and 

therefore this alternative is coded by zero's. When analyzing the β₀ insights in the 'none of 

both' utility is gained (Marchau, et al., 2001). To derive the part-worth utilities of the 

attribute-levels, the parameters are multiplied with the coded values as can be seen in Table 

6.3. 

 
Table 6.3: Calculation of example part-worth utilities (����) 

Attribute level First 

indicator 

variable 

Second 

indicator 

variable 

Third 

indicator 

variable 

Derived part-worth utility 

Level 1 1 0 0 �0*  1 + �D*  0  +	�E*  0 

Level 2 0 1 0 �0*  0 + �D*  1  +	�E*  0 
Level 3 0 0 1 �0*  0 + �D*  0  +	�E*  1 

Level 4 -1 -1 -1 �0* -1 + �D* -1 +	�E* -1 

 

 

In Appendix VI, a correlation matrix of the estimated levels is given. This matrix shows that 

there are no significant correlations between levels of different attributes.  

 

 

6.4 Multinomial logit 
The most basic model, the Multinomial logit model, is a model which presents the user’s 

preferences, assuming that the error terms (
�) are identically and independently 

distributed. The Likelihood ratio of the model is 301,289 and therefore the estimated 

parameters fit significantly better than the model with no parameters. However, as can be 

seen in Appendix VII, this model's pseudo R² is only 0,051 and therefore the model fit is very 

weak. Hence, this research will not further go into more specific estimates of the 

Multinomial logit model. According to theory, the Latent class model's predictive power is 

higher. Therefore, the next section will describe the application of the Latent class model, 

which is used to find unobservable heterogeneity with latent class division.  



48 

 

6.5 Latent class model 
The Latent class model is assumed to have a better model fit as the Multinomial logit model 

as heterogeneity among respondents is taken in account by grouping respondents with 

similar observable parameter distributions into different classes. The probability that the 

respondent has a certain user-characteristic, is considered. With this information, it can be 

calculated what the probability it is that a respondent with certain characteristics belongs to 

a group with certain preferences for automated driving.  

 

As indicated in Section 6.3, it is interesting to further go into the preferences differences 

between male and female and respondents from different age groups. Therefore, these 

user-characteristics are included as parameters. As the same individual is observed in four 

different choice situations, the data in NLOGIT is used as panel data.  

 

6.5.1 Model for gender and age 

First, the number of classes is determined. This is done by comparing the model fit of 

different classes. The estimated model with the best fit will be further researched. Hereby it 

has to be taken into account that the higher the number of classes, the lower the number of 

respondents and therefore the less representative the class is. For this reason, only 2 to 7 

classes are estimated. For comparison the proposed information criteria as introduced in 

subsection 4.5.3 are used. In Table 6.4, an overview of the information criteria outcomes and 

the adjusted R² value is given for models with 2, 3, 4, 6 and 7 classes. A model with 5 classes 

has an estimated variance matrix of estimates which is singular, and is therefore is not 

included in this overview. All other models have a quite well model fit and therefore are all 

an improvement over the Multinomial logit model.  

 
Table 6.4: Model fit parameters for 2-7 classes 

# classes       FFG     						FFH # parameters     R²ajd     AIC    BIC 

2 -2479,23381 -2957,46430 27 0,152573 5012,468 5171,715 

3 -2432,68847 -2957,46430 42 0,163240 4949,377 5197,095 

4 -2434,80018 -2957,46430 57 0,157454 4983,600 5319,789 

5       

6 -2387,30132 -2957,46430 87 0,163371 4948,603 5461,732 

7 -2371,71485 -2957,46430 102 0,163569 4947,430 5549,030 

 

 

The BIC value is lowest with the lowest number of classes. The AIC value seems to increase 

with a higher number of classes, but also is low with a model with 3 classes. The adjusted R² 

follows the same pattern as AIC. As compared to all other models, the model with 2 classes 

includes the most significant individual parameters. Besides, the AIC tends to overestimate 

the number of classes. Therefore, a model with two classes will be further researched. The 

part-worth utilities of the attributes per class are presented in Figure 6.1a-g. An overview of 

the part-worth utilities in numbers is given in Appendix VIII.  

 

 

 

 

 



 

49 

 

-1,2

-0,8

-0,4

0,0

0,4

0,8

1,2

P
ar

t-
w

o
rt

h
 u

ti
lit

y

Class 1

Class 2

 

 

 

 

 

 

 

 

 
 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 
 

   ..    

 
 

      ..  
 

 

Figures 6.1a-g: Effects of the constant and attributes of LC model 
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To characterize the two different classes, also the relative importance of the attribute in 

relation to the overall importance is calculated. This is done by measuring the range 

between the highest and lowest parameter value per attribute. This range is then divided by 

the sum of the ranges of all attributes in order to derive a percentage (Marchau, et al., 

2001). The result is depicted in Figure 6.. 

. 
 

 
 

 

As can be seen from Figure 6.1, the constant of class 1 is very negative. From this it is 

assumed that class 1 is not so willing to drive with automation. Also, Figure 6. shows that the 

level of released tasks and the secondary task are very important for class 1, compared to 

other attributes. Within these attributes respondents do not want to give high control to the 

vehicle or perform other tasks while focusing on driving. This group is therefore labeled as 

the less-potential users. In contrast, the constant of class 2 is positive. Compared to class 1, 

class 2 does not find the attribute secondary task important. Their willingness depends on 

the level of released control of driving tasks and the road type. Although they are not 

positive about full automated driving, this negative contribution to the structural utility is 

not so high as with class 1. They prefer to release control on a highway. Because of this more 

positive attitude, this class is referred to as more-potential users. 

 
As calculated with Equation 5 from Chapter 4, it is indicated that the probability to be in class 1 is 

27%. For class 2 this probability is 73%. The probabilities to be either in class 1 or 2 can be depicted 
from Table 6.5. From this table it appears that the probability that males belong to the more-

potential users class is higher than the probability that woman belong to this class. Also, it is seems 

that young people have more probability to be in the more-potential users group than old people. 

However, for both user groups the differences are not so big. 
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Table 6.5: Probability of belonging to a class with characteristic z 

  Class 1 Class 2 

18-39 

40+ 
23% 77% 

32% 68% 
  

 
 

Male 22% 78% 
 18-39 18% 82% 
 40+ 26% 74% 
  

 
 

Female 34% 66% 
 18-39 29% 71% 
 40+ 40% 60% 

 

 

6.5.2 Scenarios from the Latent class model 

With these estimates, the probability an individual with certain characteristics chooses one 

driving situation over the other is calculated, taking into account the probability that the 

individual belongs to one of the two classes. As an useful example, two driving situations are 

compared, as shown in Table 6.6. The first driving situation is one that is assumed to be 

currently available and useful for people who are willing to spend some resources on their 

vehicle purchase. This is based on ACC, where level 1 tasks should be released and which is 

used on highways with low density. For the second driving situation, a more intervening 

situation is proposed: all control of driving tasks are released on a regional road with high 

density. The length of the trip, the familiarity with the route and whether or not to perform 

a secondary tasks is the same for both driving situations.  

 

 
Table 6.6: Structural utilities of two driving situations of the LC model 

Driving situation 1 Utility Driving situation 2 Utility 

Available on current market Class 1 Class 2 Intervening sit. Class 1 Class 2 

Constant -2,06937 2,11394 Constant -2,06937 2,11394 

Very little tasks released 1,48349 0,20433 All tasks released -1,90742 -0,42615 

Highway 0,03517 0,27502 Regional way -0,02162 0,10761 

Trip of 20-100 km -0,09960 0,07609 Trip of 20-100 km -0,09960 -0,09960 

Low density on road -0,06967 0,14916 High density on road -0,15040 -0,00311 

Familiar with trip 0,15579 -0,04116 Familiar with trip 0,15579 0,15579 
No secondary task 0,51502 -0,01954 No secondary task 0,51502 -0,01954 

Total -0,04917 2,75784 Total -3,57760 1,82894 

 

 

From Equation 6 is calculated that the probability that a young male with a certain 
probability to belong to class 1, will chose driving situation 1 is 17%, with ��|� = 97%. With 

the same steps, more probabilities can be calculated as can be seen in Table 6.7. Between 

brackets the probability of choosing alternative i, given the class c is presented. This table 

indicates that there is a 28% probability that people prefer the intervening situation when 

they are in the group of the more-potential users of automated driving. 
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Table 6.7: Probability of an individual with a certain probability to belong to a class, chooses a driving 

situation 

Probability young males old males young females old females 

Driving situation 1     

 class 1 with ��|� is (97%) 17% 25% 28% 38% 

 class 2 with ��|� is (72%) 59% 53% 51% 43% 

Driving situation 2     

 class 1 with ��|� is   (3%) 1% 1% 1% 1% 

 class 2 with ��|� is (28%) 23% 21% 20% 17% 

 

The Latent class model has provided some insights in the taste heterogeneity among two 

different classes. It can be concluded from this model that within the sample, there is high 

taste heterogeneity and that different user groups prefer different driving circumstances. A 

more flexible model that reveals sources of taste heterogeneity by estimating the range of 

each utility weight in the sample is the Mixed logit model. This model will be elaborated in 

the next section. 

 

 

6.6 Mixed logit model 
Compared to the Multinomial and Latent class model, the Mixed logit model allows the �� to 

be different for each person and therefore reveals taste heterogeneity among the sample. 

The ML model shows insights in the parameters of the distribution of ��, such as the mean 

and standard deviation. 

 

6.6.1 Overall sample 

First, the overall model's parameters are estimated in NLOGIT. As for the LC model, for this 

model the same individual is observed in several choice situations and therefore the data in 

NLOGIT is used as panel data. in addition, 1000 Halton draws were applied in NLOGIT as this 

can reduce simulation time while the effectiveness will not be reduced (Train, 2009). 

According to Borgers, et al., (2010), with this number of Halton draws, the parameters 

become more significant. All standard deviation parameters of all attributes were included, 

applying normal distribution. The standard deviations which were not significant are 

deleted. After the deletion of these standard deviations, the model was estimated again. The 

deletion and model estimation was repeated until a model with significant standard 

deviations was determined. The result can be seen in Appendix IX. This model has an 

adjusted R² of 0,164, a small improvement of the Latent class model. As can be seen in 

Figures 6.3a-f, the estimated standard deviation of the attributes level of released control 

driving tasks and road type are significant. The length of trip has also a significant standard 

deviation. For these attributes it is assumed that there is high heterogeneity.  
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Figures 6.3a-f: Effects of the constant and attributes of ML model for overall sample 

 

The Figures 6.3a-g give the mean of every attribute-level and the standard deviation when 

significant. The attributes with significant standard deviation indicate that the parameters 

vary in the population, i.e. there is random variation across the included respondents (Train, 

2009). It can be seen that for the attribute level of released tasks, there is much taste 

heterogeneity. Within the population, also around one-third is not so positive about 

releasing control of a very low number of driving tasks (half of one standard deviation plus 

the rest that is below the mean). From the road type attribute it appears that around four-

fifth of the population places a negative value on the local road (half of the sample plus 

almost one deviation from the mean).  
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6.6.2 Gender and age 

From literature it seems that males and females have another attitude towards automated 

driving. The same goes for younger and older people. To get insights in preferences and 

taste heterogeneity within combinations of this user characterization, Mixed logit models 

are presented. Again, the deletion of non-significant standard deviations is applied, which 

results in the Figures 6.4a-g. The results in table format can be found in Appendix X and XI. 

The adjusted R²'s for the models with males and females between 18 and 39 years old, 

males and females of 40 year or older, respectively 0,161; 0,165; 0,137; 0,171. This implies 

that the models predict the data quite well. The preferences of the different age and gender 

categories are quite similar. 
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Figures 6.4a-g: Effects of the constant and attributes of ML model for gender and age 
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6.6.3 Different experience levels of ITS  

The experience respondents have with ITS seems to predict the willingness to cede driving 

tasks. The next models should give insights in the preferences of respondents who have 

experience with many ITS and respondents who did not use any or did not use so many ITS. 

The model much experience has an adjusted R² of 0,176 and the model little experience as an 

adjusted R² of 0,159. Hence, both predict the data well. The effects per attribute can be 

found in Figures 6.5a-g (in table format in Appendix XII). 
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Figures 6.5a-g: Effects of the constant and attributes of ML model for ITS experience 

 

The figures show that both user groups have almost the same preferences. However, 

respondents who are more experienced with different ITS are more explicit in their attitude 

towards attributes of automated driving. Although both groups of respondents show on 

average to be positive about a only releasing one or two primary tasks, the standard 

deviation indicates of group with much experience that there are also respondents that are 

negative about only releasing on or two primary tasks. Both groups prefer to drive 

automated on highways and are not willing to perform a secondary task during automated 

driving. Experience ITS vehicle users prefer to use the automated driving possibility when 

they are familiar with the trip they are making.  

 

6.6.4 Different education levels 

Lastly, Mixed logit models are created by differentiating respondents by their education 

level. Rogers (2003) indicated with his theory of Diffusion of Innovations that the successive 

groups adopting new technology, can be described by different characteristics. Vehicle users 

with advance education are assumed to use automated systems more early than vehicle 

users with a lower education level. As the group with no or only elementary education is 

small, this group is joined with the group with only secondary education. For now this 

combined group will be labeled 'basic education'. Results of a Mixed logit analysis are shown 

in Figures 6.6a-g (in table format in Appendix XIII). The model for basic education has an 

adjusted R² of 0,118; the model for lower education an adjusted R² of 0,158; and the model 

for higher education/university has an adjusted R² of 0,176. The predictive power of the 

lower as well as higher education model is therefore quite strong, while the predictive 

power of the basic education model is not so strong. 

 

Also for this characterization, respondents seem to agree on average on the level of release 

tasks, road type, familiarity with route and secondary tasks preferences. However, 

respondents with basic education are only willing to release very little tasks. Respondents 

with higher education are most willing to release control. In contrast with basic and lower 

education, respondents with high education are more willing to cede driving tasks in dense 

traffic circumstances. 
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6.6.5 Scenarios from the Mixed logit model 

The same scenario as used with the Latent class model is shown in Table 6.8 and used to 

calculate the choice probability concerning the overall sample. This is calculated by 

simulating the normal distributions for each parameter drawing random values a 1000 

times. The probability that the intervening driving situation is chosen over the currently 

available alternative is 15%.  

 
Table 6.8: Mean and standard deviation of two driving situations of the ML model 

Driving situation 1  Driving situation 2  

Available on current market Mean St. dev. Intervening sit. Mean St. dev. 

Constant 2,06009 3,78225 Constant 2,06009 3,78225 
Very little tasks released 0,70429 1,46979 All tasks released -1,29570  

Highway 0,37461  Regional way 0,15712  

Trip of 20-100 km 0,13135  Trip of 20-100 km 0,13135  

Low density on road 0,13807  High density on road -0,04094  

Familiar with trip 0,21759  Familiar with trip 0,21759  

No secondary task 0,21778  No secondary task 0,21778  

 

 

6.7 Conclusions 
With an online questionnaire, 673 complete responses from vehicle users with a passenger 

vehicle driver's licenses are collected. This complies with the required sample size. Gender 

and age are quite well distributed over the sample. More than half of the respondents have 

attainted higher education or university. Differences in gender, age, education level, driving 

experience, familiarity and experience with ITS, trust and some personality traits seem to 

determine the differences in willingness to release control. Gender and age are further 

differentiated in the discrete choice models as they are most addressable for stakeholders to 

apply a certain strategy for. Furthermore, models for experience with ITS, and education 

level are examined. User groups within these characterizations are assumed to be the first to 

be willing to cede driving tasks. 

 

The Multinomial model has a low goodness of fit and therefore is not further examined. The 

Latent class model and the Mixed logit model show considerable statistical improvements 

over the Multinomial logit model. The models' fit are comparable and both offer different 

benefits. The Latent class model implies that the class which is most willing to release 

control, finds the road type relatively important. Making automated driving available on 

highways can contribute to user's willingness. The probability that a male belongs to this 

group is slightly higher than the probability that a female belongs to this group. Moreover, 

the probability that an individual between 18 and 39 years old belongs to this group is 

slightly higher than the probability that an individual of 40 year or older belongs to this 

group.  

 

From the Mixed logit model for the total sample, it appears that there is high taste 

heterogeneity among the sample for the attributes level of released driving control, road 

type and length of trip. With Mixed logit models with distinguished user groups it is aimed to 

explain this heterogeneity. However, models for gender, age, ITS experience and education 

level do not seem to clarify the heterogeneity. User groups within these models seem to 
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have comparable preferences. Therefore, first the corresponding results are described. Later 

on, the differences will be explained.  

 

The models indicate that the effect of the level of released driving tasks is very high. It seems 

that on average, .vehicle users are only positive about releasing very little or little control of 

tasks. They do not prefer to release control of all tasks and are neutral about releasing many 

tasks. Moreover, vehicle users want to release control on highways and are neutral to little 

positive about ceding driving tasks on regional roads. They do prefer to use the systems on 

local roads. The length of the trip does not contribute much to the willingness to release 

control. The same is valid for the density on the road. Familiarity of the road and not 

performing a secondary tasks contribute slightly to the willingness of vehicle users to release 

control. 

 

Some striking results can be observed. Firstly, the model with gender and age shows that 

males prefer to release control on dense roads, while female prefer this on open roads. 

Moreover, higher educated people also prefer to cede driving tasks on dense roads, while 

lower or basic educated people prefer this on open roads.  
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Chapter 7  
 

Conclusions and recommendations 
 

 

This chapter presents the results of this research and thereby it answers the research 

questions. In Section 7.1, conclusions are drawn by the first answering the sub-questions and 

thereafter the main question. Section 7.2 presents managerial recommendations.  

 

 

7.1 Conclusions 
Highly beneficial effects for society could be achieved by automated driving. The 

achievement of these societal benefits require usage of automated driving systems. Usage of 

automated driving systems implies that vehicle users release control. However, vehicle users 

have less trust in automated systems than in their own capabilities and therefore it is not 

granted that they are willing to release control in all driving situations. This has impact on 

the transport and market planning of stakeholders who want to improve safety, traffic flow, 

and environmental savings. Therefore this research aims at getting insights in which level of 

automation and which driving circumstances contribute to the willingness of different 

vehicle user groups to release driving control. In order to gain these insights, firstly the 

research sub-questions will be answered.   

 

What is automated driving and what are current and expected 

technological capabilities?  

 

In terms of automated driving, and current and expected technological capabilities, 

literature has provided the following insights. Automated driving is enabled by systems in 

vehicles and infrastructure that can take over control of driving tasks. Information and 

communication technology, as well as sensors, radars, scanners, cameras etc, form the basis 

of a vehicle that can drive without human involvement. Therefore, an automated vehicle 

refers to a vehicle in which control of driving tasks is performed by a machine. Control of 

driving tasks can be taken over to different degrees, from no systems having no active 

control, to systems which have fully automated control. BASt expert group has identified five 

levels: driver only, assisted driving, partial automation, high automation, and fully 

automation. Besides the control systems have over the driving tasks, the levels differ in the 

drivers required monitoring level, and the required readiness to take over control in critical 

situations. Currently, only systems that provide assisted driving or partial automation are 

available on the market, these include systems that allow automated braking and 

accelerating, automated emergency braking, automated steering, automated congestion 

driving, and systems that allow the vehicle to maintain between road lanes. Several well-

known vehicle manufacturers are currently designing and testing systems that enable 

vehicles to drive high or fully automated.   
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What are the benefits of automated driving for society, regarding 

safety, traffic flow and environmental savings? 

 

Furthermore, literature has provided insights in the benefits of automated driving for 

society. Main forecasted benefits are assigned to the increase of traffic safety, improved 

traffic flow, and more environmental savings. Traffic safety by automated driving is 

improved by prevention unsafe traffic participation, prevention of unsafe actions during 

driving and by reduction of the impact of accidents. Secondly, improved traffic flow is 

empowered as automated driving can allow closer headways between vehicles as the 

required reaction distance is much smaller than the distance needed for human reaction. 

Besides, communication with other vehicles and infrastructure can result in smooth braking 

and fine speed adjustments which will reduce destabilized traffic shockwave propagation. 

The third main benefit is the reduction of energy use. This is enabled by more efficient 

driving, lighter and more fuel-efficient vehicles and efficient infrastructure. This will reduce 

C0₂ emission and lower pollution. Although the actual effects depend on the exact actions of 

the system, the penetration rate and possible unintended side effects; some experts have 

made predictions of the level of benefits when collaborative systems take over control of 

primary driving tasks. Dutch experts in the field of automated systems, predict safety 

improvements of 25%, traffic flow improvements of 50%, and a reduction of pollution and 

CO₂ emission with respectively 20% and 10%. Dutch policy makers expect that fully 

automated driving is enabled around 2025. From this point on, effects of fully automated 

driving will be noticeable. Expectations on a global level are that between 2060 and 2080, 

society will highly benefit from fully automated driving opportunities.   

 

How do the level of automation and driving circumstances determine 

the usage rate of automated driving systems? 

 

The rate of usage depends highly on trust vehicle users have. Literature suggests that the 

experience of trust in driving situations depends on the interaction complexity between 

vehicle user, vehicle, and the driving environment. However, automated driving results in 

another role of the vehicle user. Therefore, interaction is changed which could result in 

changed preferences of interaction between vehicle user, vehicle, and driving environment. 

Besides characteristics of the vehicle users and the level of automation, identified driving 

circumstances within this interaction are the level of automation, weather and light 

circumstances, road type, length of the trip, density on the road, familiarity with the route 

and whether or not to perform a secondary task. 

 

When automate driving is enabled in driving situations in which vehicle users experience 

enough trust to release control, usage of automated driving systems grows. Usage by the 

critical user mass is a requirement to achieve full benefit levels. Therefore, market planners 

should recognize that they should appeal the right value proposition to the right markets. 

For this, niches are important. They provide an environment for examining and adjusting 

learning processes such as technology, user preferences, regulations, and driving 

environment. Furthermore, niches offer stakeholders to create collaborations with other 

parties that support automated driving. Later on, widespread usage should be achieved.  
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What are the preferences concerning automated driving for different 

user groups? 

 

Literature indicates that not all people are equally likely to embrace automated driving. 

However, different studies have indicated contradicting results concerning the willingness of 

males and females, and younger and older people to ride with automated vehicles. Results 

of the discrete choice experiment have pointed out that automated driving preferences of 

males and females, and younger and older vehicle users, do not differ that much. It seems 

that although all these user groups are not yet willing to release driving control, males and 

younger vehicle drivers are slightly less negative about ceding all driving tasks. Moreover, 

literature indicates that vehicle users with higher education are assumed to use automated 

driving systems more early than vehicle users with lower education. This is acknowledge by 

the results of the experiment. Further preferences are described below, when answering the 

main question. The main question reads: 

 

Which level of automation and which driving circumstances 

contribute to the willingness of different vehicle user groups to 

release driving control? 

 

An answer to this question is enabled by a discrete choice experiment. With data from this 

experiment, three types of choice models are described. The Mixed logit models give most 

useful insights in the preferences of different users groups and therefore the following 

conclusions are drawn from this model type.  

 

The model for the overall sample indicates that the level of automation is most important 

for vehicle users' choice to release driving control. On average, vehicle users do not yet 

prefer full automation. Vehicle users seem neutral about high automation. Currently, only 

assisted driving or partial automation is preferred. However, there is high heterogeneity 

among the vehicle users concerning the level of automation. This indicates that within the 

sample, there could also be vehicle users that are already willing to cede all driving tasks. 

What the characteristics of these vehicle users are is not explained by their gender, age, 

level of education or experience with ITS.  

 

Also the road type contributes to the willingness to release driving control. Vehicle users are 

most willing to cede driving tasks on highways, but vehicle users are on average also neutral 

to positive about releasing control on regional roads. Again, for this attribute much 

heterogeneity is observed. This heterogeneity is partly explained by the education level.  

 

Familiarity with the route contributes, although in less extent than previous attributes, to 

the willingness of vehicle users to release driving control. Low heterogeneity is observed. 

This indicates that vehicle users do quite agree on the preference to release control on 

familiar routes. In addition, not performing a secondary tasks also contributes to the 

willingness to release control. Again for this attribute, low heterogeneity is observed which 

indicates that vehicle users do quite agree on this. These attributes thus show that vehicle 

users are not willing to release control when they are not familiar with the route and when 

have to perform a secondary task.  
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The length of the trip and the density on the road do not provide a compelling contribution 

to vehicle users' willingness to cede driving tasks.  

 

These insights suggest that the level of complexity of the driving circumstances influence the 

willingness to release driving control. This supports previous research that vehicle users do 

not trust the technology's ability to perform better in safety-critical situations. 

 

In short, it can be concluded that the following level of automations and driving 

circumstances contribute to the willingness of vehicle users to release control: 

 

- Assisted driving or partial automation; 

- Highways; 

- Familiar route; 

- Not performing a secondary task. 

 

 

7.2 Managerial recommendations 
Several stakeholders have high stakes concerning automated driving. Many vehicle 

manufacturers want to gain market share by designing a high or fully automated vehicle. 

Dutch policy makers are aiming to gain a global leadership role concerning knowledge about 

automated driving by implementing full automated driving on Dutch road network. Thereby, 

policy makers and other parties, such as transportation planners, regulators, and consumer 

supporting organizations want to decrease the number of accidents, improve the traffic flow 

and counteract climate change. For this, support from vehicle users is required. This is highly 

dependent on the control vehicle users want to release. The following guidelines are given 

to successfully implement automated driving. 

 

7.2.1 Market planning 

One requirement for market uptake of automated driving systems is that vehicle users trust 

the technology. To achieve the benefits of automated driving, public and private parties 

should work together in order to increase vehicle users' trust in automation. The automated 

systems should be known, understood and believed in, which requires education. However, 

one error of the technology could lead to immediate and widespread rejection of the 

technology. Therefore, it is crucial that vehicle users gain positive experience regarding 

automated driving. To increase trust, most important seems to be that vehicle users have 

understanding of the automated vehicle. This is important to highly important for half or the 

vehicle users. Additionally, the information of the effects and the extent of reliability 

research of the automated vehicle are important to vehicle users (respectively for 37 and 

43%). Therefore, market planners should pay much attention to inform and educate vehicle 

users about automated driving. 

 

Literature assumes that vehicle users with a high education level are to be the first to ride in 

vehicles with automated driving technology. This is also valid for vehicle users with much ITS 

experience. Although the choice models show that higher educated people and people with 

much ITS experience are not yet willing to use full automation, they are most willing to 

release control. Therefore, it is assumed that these user group will be the first to use full 
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automation. They could form the niche users, which provide transport and market planners 

with more insights to stimulate widespread use of automated driving. Therefore, it is advised 

to first adjust the market plans to the preferences of this niche.  

 

7.2.2 Transportation planning 

Most support for automated driving can be found on highways. Therefore this road type 

offers most chance for successful and accepted implementation plans. For this reason it is 

advised to stakeholders to first focus on creating strong collaborations and feasibility studies 

for automated driving on highways. This could include elements such as road design, 

development of infrastructural support systems, regulations, and potentially achievable 

benefits.  Eventually public parties should aim at also enabling automated driving on regional 

roads. On this road type, the highest safety benefit levels could be achieved.  

 

Additionally, it is advised to enable automated driving on dense roads. Here the benefits for 

society are highest. On dense roads, many accidents happen and emissions are high. The 

density on the road does not have much influence on the willingness of vehicle users to 

release control, therefore it is assumed that vehicle users will use automated vehicles on 

within this driving circumstance.  

 

Stakeholders should be careful with implementing partial, and especially high automated 

driving. During driving with these systems, it is expected from the vehicle user that he or she 

will take over control when necessary. Although vehicle users indicate that they prefer not 

to perform a secondary task while driving automated, many accidents have happened 

because drivers were distracted. In addition, vehicle users have indicated to prefer 

automated driving on familiar routes. However, people tend to pay less attention to the 

driving environment when they are familiar with the route. Hence, although highly 

automated technology should provide sufficient lead time to obtain the drivers attention 

when necessary, this is risky. Like in the current situation, small human errors could lead to 

fatal accidents.  
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Chapter 8  
 

Discussion 
 

 

In this chapter, this research findings are discussed. The results in the light of previous 

research are explained. Additionally, this chapter provides limitations of the research and 

opportunities for further research. 

 

Not much research is done regarding vehicle users preferences of automated driving. As 

previously explained, literature disagrees on the gender and age levels of users that are 

often associated with the preference level for automated driving. Reason for this may be the 

different research methods. The models within this research indicate that there is not so 

much difference between these characteristics concerning their preferences. Also, previous 

research indicates that vehicle users use systems that take over the longitudinal task most 

on highways. Thereafter, it is most used on regional roads. These systems are least used on 

local roads. This is in accordance with the results of the experiment.   

 

The first limitation of the research concerns the lack of insights in interaction effects upon 

choice. This is the combined effect on choice of two or more attributes, i.e. the effect 

multiple levels of different attributes could have upon each other. This insight could not be 

gained as the number of treatment combinations were reduced from 432 to 16, by fractional 

factorial design.  

 

There are some limitations of this research concerning respondents sample. Only people 

that possess a passenger vehicle driver's license are taken in account for the experiment. 

This was due to the fact that for people who do not own a driving license it is very hard or 

impossible make a solid choice concerning their driving preferences. However, when fully 

automated driving is enabled on Dutch roads, it may also be possible that people without 

driving experience can use an automated vehicle. Their preferences could influence the 

results.   

 

Additionally, this research aims at providing insights in the preferences of vehicle users 

concerning automated driving. Within the Mixed logit models, much heterogeneity was 

observed within the preferences. This heterogeneity could not be explained by further 

researching the preferences of vehicle users with differentiated gender, age, experience 

with ITS or education level. However, there can also be other user characteristics that could 

explain the heterogeneity. Rogers (2003) indicated that the preferences of different user 

groups could relate with users' social status and financial wealth. These characteristics are 

not incorporated in the research, as it is assumed that respondents are uneager to give 

information about these characteristics. However, they may be obtained with another 

approach. This could give valuable insights in what expected first adopters prefer.  

 

Furthermore, with this research insights are gained in which situation users are willing to 

release control. However, for actual acceptation, also other elements are important. This 

includes elements such as costs, safety effects, liability, and privacy. Moreover, insights in 

more precise safety, traffic flow and environmental implications could lead to 
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implementation plans that are more accurately adjusted to desired benefits. Future research 

should pay attention to the effects of automated driving in different driving situations. Much 

safety potential is attainted to automated driving, but in which driving situations this safety 

potential is achieved is not known yet. Transportation plans should be adapted to this. For 

example, it should be determined if automated driving should be enabled on normal city 

streets, or if automated driving is only enabled on dedicated automation lanes. 

 

This thesis showed how vehicle-users perceived automated driving on different levels and 

with different driving circumstances. The proposed recommendations can be used as 

guidelines to work to a successful implementation of automated driving.  
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Appendix I Analogy between different categorizations of level of automation 
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Appendix II  Functional mapping of intelligent transport applications 

 

 
Source: Working Group Automation in Road Transport, 2013. Roadmap Automation in Road 

Transport, iMobility Forum: iMobility Forum. 
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Appendix III Questionnaire 
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Appendix IV Link between level of familiarity with ITS, and gender and age 

 
 Young male Young female Old male Old female 

Low familiarity 86 137 86 122 

Expected 112,07 113,35 105,67 99,90 

Chi square 6,07 4,93 3,66 4,89 

     

High familiarity 89 40 79 34 

Expected 62,93 63,65 59,33 56,10 

Chi square 10,80 8,79 6,52 8,70 

The chi-square is 54,357, with a p-value of less than 0,001. 
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Appendix V Willingness to release control of driving tasks to automated systems 

 
User group Prefer AD Expected Prefer no AD Expected Chi-square Significant 

at p < 0,05 

Gender       

Male 320 309,69 20 30,31   

Female 293 303,31 40 29,69   

     7,784 * 

Age       

18-24 109 104,75 6 10,25   

25-39 222 215,87 15 21,13   

40-55 157 154,84 13 15,16   

55+ 125 137,54 26 13,46   

     17,045 * 

Education       

Primary education 2 3,64 2 0,36¹   

Secondary education 66 71,05 12 6,95   

Lower education (MBO) 202 208,58 27 20,42   

Higher education/university 343 329,73 19 32,27   

     20,659 * 

Household situation       

Single person household 114 112,57 10 11,43   

Multiple person household  

   with children 

249 243,29 19 24,71   

Multiple person household   

   without children 

218 225,14 30 22,86   

     4,104  

Driving experience       

Less than 5 year 102 97,45 5 9,55   

5-19 year 251 245,89 19 24,11   

20-34 year 152 150,27 13 14,73   

35 or more year 107 118,39 23 11,61   

     16,074 * 

Kilometers per year       

Less than 10.000 223 227,14 25 20,86   

10.000-30.000 290 289,43 26 26,57   

More than 30.000 86 82,43 4 7,57   

     2,750  

ITS familiarity       

Low 378 392,58 53 38,420   

High 235 220,42 7 21,580   

     16,880 * 

ITS experience       

Low 386 398,04 51 38,960   

High 227 214,96 9 21,040   

     11,649 * 

Trust       

Low 94 104,61 19 8,390   

Average 292 291,61 23 23,389   

High 200 189,78 5 15,221   
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Continuation of Table 

 
User group Prefer AD Expected Prefer no AD Expected Chi-square Significant 

at p < 0,05 

 

Personality traits 

      

Self-esteem       

High 113 112,03 10 10,966   

Low 500 500,97 50 49,034   

     0,114  

Need for control       

High 120 112,95 4 11,055   

Low 493 500,05 56 48,945   

     6,059 * 

Sensation seeking       

High 119 121,14 14 11,857   

Low 494 491,86 46 48,143   

     0,530  

Extraversion       

High 216 223,16 29 21,842   

Low 397 389,84 31 38,158   

     4,049 * 

¹ Chi-square condition is violated: expected value is below 1 (Cochran, 1954) 
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Appendix VI Correlation matrix of estimated attribute-levels 
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Appendix VII  Multinomial logit model  

 
Attribute 					IJ P < 0,05 

Constant 0,48607 * 

Level of released driving tasks   

 Release very little tasks 0,39681 * 

 Release little tasks 0,23854 * 

 Release many tasks -0,07387  

 Release all tasks -0,56148  

Road type   

 Local road -0,31523 * 

 Regional road 0,10516 * 

 Highway 0,21007  

Length of trip   

 <20 km 0,03304  

 20-100 km 0,03917  

 >100 km -0,07221  

Density on road   

 Low 0,03819  

 Average -0,05752  

 High 0,01933  

Familiarity with route   

 Familiar 0,02025  

 Unfamiliar -0,02025  

Secondary task   

 Yes  -0,11466 * 

 No 0,11466  

FFG -2806,770  

FFH -2957,464  

R² 0,051  

D 301,389  
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Appendix VIII Latent class model  

 
          Class 1          Class 2  
  IJ P < 0,05 IJ P  < 0,05 

Constant  -2,06937 * 2,11394 * 

Level of released driving tasks    

 Release very little tasks 1,48349 * 0,20433 * 

 Release little tasks 0,43872 * 0,16769  

 Release many tasks -0,01479  0,05413  

 Release all tasks -1,90742  -0,42615  

Road type      

 Local road -0,01355  -0,38263 * 

 Regional road -0,02162  0,10761  

 Highway 0,03517  0,27502  

Length of trip     

 <20 km 0,33395 * 0,06856  

 20-100 km -0,09960  0,07609  

 >100 km -0,23435  -0,14465  

Density on road     

 Low -0,06967  0,14916  

 Average 0,22007  -0,14605  

 High -0,15040  -0,00311  

Familiarity with route     

 Familiar 0,15579  -0,04116  

 Unfamiliar -0,15579  0,04116  

Secondary task     

 Yes  -0,51502 * 0,01954  

 No 0,51502  -0,01954  

 

  θcθcθcθc  θcθcθcθc  

Constant   0  0,97894 * 

Gender  0  0,31131 * 

Age  0  -0,24181 * 
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Appendix IX Mixed logit model for overall sample 

 
         Mean    P < 0,05 Sig. st. dev. 

Constant  2,06009 * 3,78225 

Level of released driving tasks    

 Release very little tasks 0,70429 * 1,46979 

 Release little tasks 0,59185 * 1,12151 

 Release many tasks -0,00044 * 0,48443 

 Release all tasks -1,29570   

Road type    

 Local road -0,53173 * 0,62873 

 Regional road 0,15712 *  

 Highway 0,37461   

Length of trip    

 <20 km -0,17319  0,74229 

 20-100 km 0,13135 *  

 >100 km 0,04184   

Density on road    

 Low 0,13807   

 Average -0,09713   

 High -0,04094   

Familiarity with route    

 Familiar 0,21759 *  

 Unfamiliar -0,21759   

Secondary task    

 Yes  -0,21778 *  

 No 0,21778   

FFG  -2455,546   

FFH  -2957,464   

ajd. R²  0,164   
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Appendix X Mixed logit models for males and females between 18 and 39 years old 

 
  Male, 18-39  Female, 18-39 

  Mean P < 

0,05 

Sig. st. dev. Mean P < 0,05 Sig. St. dev. 

Constant  3,26002 * 3,33767 1,67312 * 3,57065 

Level of released driving tasks     

 Release very little tasks 0,41901  1,35176 0,90532 * 1,37209 

 Release little tasks 0,66220 * 1,05992 0,66845 * 1,25007 

 Release many tasks -0,10211   0,03965   

 Release all tasks -0,97910   -1,61342   

Road type       

 Local road -0,37251 * 0,61274 -0,61759 *  

 Regional road 0,10663   0,28938 *  

 Highway 0,26588   0,32821   

Length of trip      

 <20 km -0,07314   -0,28076   

 20-100 km 0,10204  0,63831 0,20390  0,53041 

 >100 km -0,02890   0,07686   

Density on road      

 Low -0,29214   0,51221 *  

 Average 0,09381   -0,24598   

 High 0,19833   -0,26623   

Familiarity with route      

 Familiar 0,15566  0,47547 0,26919 *  

 Unfamiliar -0,15566   -0,26919   

Secondary task      

 Yes  -0,30447 *  -0,20195 *  

 No 0,30447   0,20195   

FFG  -626,882   -633,585   

FFH  -769,029   -777,818   

ajd. R² 0,161   0,165   
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Appendix XI Mixed logit models for males and females of 40 year or older 

 
  Male, 40+     Female, 40+  

  Mean P < 0,05 Sig. st. dev.      Mean P < 0,05 St. dev. 

Constant 1,86616 * 3,48762 1,01351 * 3,57065 

Level of released driving tasks     

 Release very little tasks  0,59946 * 1,71602 0,93148 *  

 Release little tasks  0,20410   0,50725 *  

 Release many tasks  0,06317   -0,18843   

 Release all tasks -0,86673   -1,25030   

Road type       

 Local road -0,50133 * 0,77471 -0,45350 * 0,82896 

 Regional road  0,14714   0,05998   

 Highway  0,35419   0,39352   

Length of trip      

 <20 km -0,18143  0,92204 0,18886   

 20-100 km  0,17720   -0,17085   

 >100 km  0,00423   -0,01801   

Density on road      

 Low  0,14608   -0,15834   

 Average -0,24778   0,09333   

 High  0,10170   0,06501   

Familiarity with route      

 Familiar  0,13733   0,11317   

 Unfamiliar -0,13733   -0,11317   

Secondary task      

 Yes  -0,12707 *  -0,44077 *  

 No  0,12707   0,44077   

FFG -610,086    -554,475 

FFH  -725,084   -685,534   

ajd. R² 0,137   0,171   
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Appendix XII Mixed logit models for ITS experience 

 
  Much    Little   

  Mean p < 0,05 Sig. St. dev. Mean p < 0,05 St. dev. 

Constant 3,20559 * 3,91238 1,56576 * 3,65657 

Level of released driving tasks      

 Release very little tasks  0,95023 * 1,89093  0,60795 * 1,22810 

 Release little tasks  0,68683 * 2,09099  0,47027 *  

 Release many tasks -0,15759    0,05451   

 Release all tasks -1,47947   -1,13273   

Road type       

 Local road -0,97142 * 0,88129 -0,39845 * 0,57892 

 Regional road  0,29871    0,13185   

 Highway  0,67271    0,26660   

Length of trip       

 <20 km -0,36844  0,86310  0,00887  0,57197 

 20-100 km  0,16302  0,63634  0,09722   

 >100 km  0,20542   -0,10609   

Density on road       

 Low  0,09950    0,16420   

 Average -0,31712   -0,04399   

 High  0,21762   -0,12021   

Familiarity with route       

 Familiar 0,36873 * 0,75831  0,09986   

 Unfamiliar -0,36873   -0,09986   

Secondary task       

 Yes  -0,29061 *  -0,19485 *  

 No 0,29061   0,19485   

FFG  -835,226       -1598,140  

FFH  -1037,090   -1920,374   

ajd. R² 0,176   0,159   
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Appendix XIII Mixed logit models for education level 

 
   Basic   Lower   Higher    
   Mean p<0,05 Sig. st. 

dev. 

Mean P<0,05 Sig. st. 

dev. 

Mean p<0,05 Sig. st. 

dev. 

Constant 0,59093 * 3,56747 1,71961 * 3,73352 2,54041 * 3,46363 

Level of released driving tasks          

 Release very little tasks 0,78758 *  0,63433 * 1,05750 0,68601 * 1,81436 

 Release little tasks 0,10316 * 1,26888 0,56615 * 0,82881 0,72869 * 1,28236 

 Release many tasks 0,00979   0,06940   -0,11385   

 Release all tasks -0,90053   -1,26988   -1,30085   

Road type          

 Local road -0,58114 * 0,82595 -0,31022 *  -0,59518 *  

 Regional road -0,01474   0,05292   0,23170 *  

 Highway 0,59588   0,25730   0,36348   

Length of trip          

 <20 km -0,00076   -0,10164   -0,19696  0,90051 

 20-100 km -0,05172   0,03594   0,27025 * 0,61384 

 >100 km 0,05248   0,06570   -0,07329   

Density on road          

 Low 0,23845   0,20923   -0,08230   

 Average -0,00882   -0,14898   -0,08986   

 High -0,22963   -0,06025   0,17216   

Familiarity with route          

 Familiar 0,17191 * 0,54037 0,16310   0,19734 *  

 Unfamiliar -0,17191   -0,16310   -0,19734   

Secondary task          

 Yes  -0,32847 *  -0,14217   -0,21130 *  

 No 0,32847   0,14217   0,21130   

FFG  -301,863   -832,659  -1294,060   

FFH  -360,345  -1006,329  -1590,791   

ajd. R² 0,118   0,158   0,176   
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ABSTRACT 

Automated driving could highly benefit society by improved safety, traffic flow and increased 

environmental savings. To enable this, vehicle users should release their driving control to 

automated driving systems. However, it is not granted that vehicle users are willing to 

release control in all driving circumstances. Results from a discrete choice experiment show 

that vehicle users willingness to release control is highly dependent of the level of 

automation, as users strongly only prefer a low level of automation. Furthermore, vehicle 

users only want to release control on highways, on roads they are familiar with and only 

when they do not perform a secondary task. 

 

Keywords: automated driving, passenger vehicle mobility, driving circumstances, stated 

choice, discrete choice models. 

 

INTRODUCTION 

Passenger vehicle mobility provides economical and personal growth by enabling daily 

activities. However, mobility also exposes society to some dangers. These are the results of 

the everlasting demand for mobility. This leads to three key societal challenges.  

 

Societal challenges concerning passenger vehicle mobility 

Firstly, every year, accidents cost Dutch society around 12,5 billion euro. Motorized vehicles 

have a high share in this. They are involved in half of the traffic accidents. These accidents 

mainly occur due to human errors. Secondly, the distance vehicle users travel, as well as the 

amount of vehicles on the road is expanded. This results in increased congestion and 

delayed traffic flow. Total congestions costs were between 1,8 and 2,4 billion euro in 2009. 

More than two-third of these costs are on account of passenger driving. Thirdly, vehicles 

emit greenhouse gasses, which have negative influence on people's health and cause 

damages to the environment. One-fifth of the total CO₂ emissions in the Netherlands is 

caused by traffic, of which more than half is due to passenger vehicles. In total, the costs of 

emissions and pollution by traffic were around 5,1 billion euro in 2012 (Kennisinstituut voor 

Mobiliteitsbeleid, 2013).  
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Technological solution 

One of the solutions for the above mentioned challenges are Intelligent Transportation 

Systems (ITS). These benefits have been recognized by different Dutch platforms. ITS 

systems are based on information and communication technologies and enable a flexible 

and dynamic traffic system. A successive step different stakeholders are working on to 

further aid society is the implementation of automated driving. An automated driving 

experience is enabled by systems that take over driving control from humans. The 

introduction of automated driving results in a new role division between the vehicle user, 

the vehicle and the driving environment. Within this new role division, vehicle users have to 

release control. However, literature indicates that vehicle users are not always eager to do 

this. They seem to trust themselves more in correctly carrying out control than they trust 

automated systems in doing this. Therefore, no matter how intelligent the technology may 

be, not trusting the system may be rejected. Hence, the vehicle user's willingness to release 

control regarding the level of automation and the driving circumstances, determine the 

benefits levels of automated driving for society (Muir, 1987; Secretary Schultz van Haegen, 

2014; SWOV, 2010).  

 

Research questions 

Literature lacks insights in the preferences concerning automated driving. Therefore this 

research aims to answer the following main question:  

Which level of automation and which driving circumstances contribute to 

the willingness of different vehicle user groups to release driving control? 

 

To support the main question, four sub-questions are defined: 

- What is automated driving and what are current and expected technological 

capabilities?  

- What are the benefits of automated driving for society, regarding safety, traffic flow 

and environmental savings? 

- How do the level of automation and driving circumstances determine usage rate of 

automated driving systems? 

- What are the preferences concerning automated driving for different user groups? 

 

Besides theoretical insights in the preferences of vehicle users, answering these questions 

offers insights which provide managerial guidelines for successful implementation of 

automated driving. Transportation and market planners can take measures that are in 

accordance with preferences of vehicle-users and hence maximize the potential benefits of 

automated driving. 

 

This research provides insights concerning automated passenger driving. It does not involve 

freight traffic or automated parking. Furthermore, it only explains how automated driving 

could benefit society, and does not pay attention to the benefits for individuals. In addition, 

it does not describe how individual motives such as costs, liability and privacy have influence 

on the willingness to use automated systems. The research focuses on the Netherlands as 

the Dutch road network copes with very dense traffic conditions and automated driving can 

have high benefit levels. Additionally, Dutch government is aiming at a leading role in 

implementation of automated driving and therefore will stimulate the use of automated 

driving systems (Secretary Schultz van Haegen, 2014). 



 

 

 

Outline 

The thesis will firstly provide answers to the first three sub-questions by obtaining 

knowledge from literature. Next, a discrete choice experiment aims to answer the main 

question and the last sub-question. Therefore, first theory on discrete choices is described, 

after which the design of the experiment is explained. From the experiment, preferences of 

vehicle users are identified, which leads to conclusions and recommendations for 

stakeholders. The thesis is finalized with a discussion of the results . 

 

AUTOMATED DRIVING 

In recent years, vehicle manufacturers seem to have developed a technologies that can 

enable people to travel without being constantly attentive. The development of these kinds 

of technology started with systems that could sense and react with an appropriate 

movement. Later on, technological developments accelerated and then also the outside 

driving environment could be managed. Between 2003 and 2008, several automated driving 

challenges were embraced that resulted in vehicles that could drive with automated systems 

in a mock city environment. Currently, many well-known vehicle manufacturers are working 

on fully automated vehicles and have started test drives on real roads (Anderson, et al., 

2014).  

 

Technological developments  

Technologies behind automated driving depend on three factors. Firstly, in-car systems 

provide information. Secondly, applications that allow communications between other 

vehicles and with infrastructure. Thirdly, autonomous systems that independently respond 

to situations, by sensors, scanners, etc. Therefore, the term 'automated' refers to vehicle 

being operated by a machine, by using communication as well as own sensors (Timmer, et 

al., 2013). Automated control can be split up to different levels. BASt expert group has 

categorized these levels as shown in Table 1. Currently only assisted driving and partial 

automation are available to public. 

 
Table 1. Concise description of levels of automation (Gasser, et al., 2013) 

Levels of automation Role-divsion of driver and system 

Driver only The driver continuously (throughout the complete trip) accomplishes longitudinal 

(accelerating/ braking) and lateral (steering) control. 

Assisted The driver continuously accomplishes either lateral or longitudinal control. The 

other/remaining task is – within certain limits - performed by the system. 

Partial automation The system takes over the lateral and longitudinal control (for a certain period of time 

and/or in specific situations). 

High automation The system takes over lateral and longitudinal control for a certain period of time in 

specific situations. 

Full automation The system takes over lateral and longitudinal control completely within the 

specification of the application.  

 

 

Implications for society 

Main benefits of automated driving are increased traffic safety, improvement of traffic flow, 

and increased environmental savings. Traffic safety can be improved as automated systems 

can detect and neutralize safety-critical events more adequately than human drivers. The 

systems prevent unsafe traffic participation, unsafe actions during traffic participation, and 

reduce the impact of accidents (SWOV, 2010). The number of road fatalities could decline 
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with 25% when ITS work together (Arem, et al., 2008). However, as 90% of the accidents 

occur due to human errors, some experts predict that the safety benefits could eventually be 

higher. The second main benefit concerns an improved traffic flow. Automation in following 

vehicles can communicate and therefore respond on each other by smooth braking and fine 

speed adjustments. This leads to reductions in destabilized traffic shockwave propagation. 

Additionally, automation enables existing roads to be more efficiently used. Collaborating 

ITS could reduce congestion with 50% (Arem, et al., 2008). The third main benefit is the 

reduction of energy use and emissions. Energy use can be decreased by more efficient 

driving, lighter and more fuel-efficient vehicles and efficient infrastructure. CO₂ is reduced by 

an improved composition of the fleet and less influence of negative human driving behavior. 

This could result in 20% less pollution and 10% less CO₂ when ITS work together (Arem, et 

al., 2008). 

 

Future planning and challenges 

A roadmap concerning automated driving implementation is set up by Secretary Schultz van 

Haegen (2014). The Secretary's aim at testing highly automated driving between 2015 and 

2020. Around 2025, highly and fully automated driving is assumed to be enabled. Litman 

(2014) predicts that between 2040 and 2060 the level of the exact benefits are tangible. 

Additionally, between 2060 and 2080 most vehicles will be fully automated and society will 

highly profit from the benefits. However, still many issues need to be addressed before this 

can become reality. 

 

INFLUENCING USAGE RATE OF AUTOMATED DRIVING SYSTEMS  

Vehicle user, vehicle, driving environment 

Driving is a cohesion between the user, the vehicle, and the driving environment, which is 

depicted in Figure 1. For a large extent, these elements determine the task requirements for 

vehicle users. Automated driving changes the role of the vehicle user within this interaction 

framework. Under high influence of trust in automation, the preferred interaction with the 

vehicle and driving environment is determined. 

 

 

 

 

 

 

 

 

 

 

 

    

 

There is a strong relationship between trust and automated systems. Driving does not allow 

a margin of error as vehicles pass humans on little distance. Therefore indicates that people 

will only release driving control when they experience sufficient trust in the driving 

circumstances (Muir, 1987). Seven different attributes are identified from literature which 

have influence on how vehicle users experience driving. These are shortly explained below. 

Figure 1: Traffic interaction framework 



 

 

 

Weather and light circumstances - Driving risks increase when it is dark, rainy, snowy or 

foggy. Vehicle users will adapt their driving behavior to this (Mesken, 2012). 

Road type - The uniformity of the road type influence vehicle users perception of safety. 

Therefore, the task requirement is higher when driving in urban areas, than on regional 

roads, or even more higher when driving on highways (Mesken, 2012). 

Density of traffic on the road - The higher the density on the road, the more task 

requirements vehicle users experience. However, also the more advanced the automated 

driving systems should be (Mesken, 2012). 

Length of the trip - During long distance driving, vehicle users have to be concentrated for a 

longer time, therefore they experience long trips different than short trips (Sanchez, et al, 

2012). 

Familiarity with the route - Vehicle users pay less attention to the driving environment 

when they are familiar with the route. The difficulty level of driving which is experienced 

decreases when familiarity increases (Yanko & Spalek, 2013).  

Secondary task - Besides maintaining safety while driving, vehicle users are also often 

involved in more comfort related tasks, such as making phone calls or talking to a fellow 

passenger. 

 

Implementing automated driving in line with users' preferences 

Achievement of potential benefit levels depends on whether or not a critical user mass is 

willing to release control. Therefore, the use of automated driving systems should spread 

among vehicle users. This usage is expected to gradually happen over an S-curved line, and is 

explained as a diffusion process. The uptake by vehicle users can be divided in different user 

categories. First a certain niche will use automated driving systems. Within this niche, often 

people with high education, high social status, and high financial means are found. This niche 

will provide stakeholders with knowledge to improve transportation and market plans. 

Identified stakeholders that have influence on transport and/or market plans are policy 

makers, regulators, transportation planners, consumer supporting organizations, vehicle 

manufacturers, and vehicle users.  

 

Choice process 

Insights in which driving situation vehicle users would choose to release control, can be 

obtained by discrete choice modeling. A discrete choice model can describe the decision 

process of a vehicle user in a particular driving situation. Compared to more traditional 

approaches, an advantage of a choice-approach is that individuals will less overestimate the 

importance of unimportant attributes, as well as underestimate the important attributes 

(Hensher, et al., 2005). For this research, the driving situation is determined by the level of 

automation and different driving circumstances. The level of automation and the driving 

circumstances are referred to as the attributes, the individual is represented by the vehicle 

user, and a driving situation is the alternative context.  

 

MEASURING DISCRETE CHOICES 

According to the random utility theory, individuals will base the preferred choice amongst 

alternatives, on the alternative with the highest utility. The utility of an alternative, and part-

worth utilities per attribute can be derived with discrete choice models. The Multinomial 

logit (MNL) model is the most basic and widely used model. It has a short estimation time, 

computation is simple, and it is easy to measure how well it predicts the data. Additionally, it 
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gives one set of globally optimal parameters and is therefore easy to interpret. However, the 

MNL model is homogeneous of degree zero in attributes. Therefore it could be useful to 

(also) model the data with a Latent class (LC) model. Compared to the MNL model, 

heterogeneity can be observed by discrete parameter variation. Respondents who have 

similar observed variable distributions are implicitly grouped into the same latent class with 

parameters to be estimated. The drawbacks of this model are that it is not known by the 

researcher which particular individual contains which class, Additionally, an extra analysis is 

needed to decide the number of classes (Greene & Hensher, 2003). A more adequate model 

than the LC model is the Mixed logit model. This model is more useful in terms of its overall 

flexibility and range of choice behavior it can accommodate. It can explain individual 

differences in the mean of the attribute levels (Greene & Hensher, 2003). It differs with MNL 

as Mixed logit does also not require to make specific assumptions about the distribution of 

parameters across individuals. The disadvantage is that the application of this model is not 

easy. Estimating the parameters is time consuming and parameters are difficult to interpret 

(Hensher, et al., 2005). 

 

EXPERIMENT DESIGN 

To obtain data for the choice models, a discrete choice experiment is done by the 

distribution of an online survey throughout Dutch speaking people that possess a passenger 

drivers license. The experiment construction is based on guidelines of Hensher, et al. (2005). 

The survey consists of four parts. The first part aims to get insights in the respondent's 

driving experience and personality traits regarding driving. Next, the following part pays 

attention to the respondent's view on Intelligent Transportation Systems. It will invite 

respondents to give importation about their familiarity and experience with ITS, and 

measures how important three trust aspects are to respondent. The third part uses stated 

choice response to find the automated driving preferences of respondents. Stated choice 

data derives choices that are made in given hypothetical situations (Hensher, et al., 2005). It 

allows robust understanding of how individuals make choices by observing multiple choices 

from individuals. Within these hypothetical situations, six attributes with associated levels 

are presented to the respondent. The six attributes with associated levels can be found in 

Table 2. For only the experiment, the level of automation correspondents with the level of 

released driving tasks, as this label is more easy to interpret for respondents. The 

respondents are asked to choose the situation that have their preference. In the last part, 

socio-demographic and psychographic factors are asked. Socio-demographic factors include 

gender, age, education level and household situation. Insights in psychographic factors are 

based on a division of lifestyles, to which consumption behavior is often closely linked.  

 

 
Table 2. Selected attributes and corresponding levels 

Attribute Level    

Level of released driving tasks Very little tasks Little tasks Many tasks All tasks 

Road type Local road  Regional road Highway  

Length of trip <20 km 20-100 km >100 km  

Density on road Low Average High  

Familiarity with route Familiar Unfamiliar   

Secondary task Yes  No   

 



 

 

 

IDENTIFYING VEHICLE USERS' PREFERENCES 

Description respondents 

With the survey, data from 673 respondents is collected. A concise description of the 

respondents can be seen in Table 3.  

 
Table 3. Characteristics of the sample 

User group Research sample 

Gender  

Male 51% 

Female 49% 

  

Age¹  

18-24 17% 

25-39 35% 

40-54   47% 

55 +   

  

Education  

Primary education 1% 

Secondary education 12% 

Lower education (MBO) 34% 

Higher education/university 54% 

¹ The total sample of the different characteristics is not always 100%. This is caused by rounding-off. 

 

From further descriptive analyses it appears that several user characteristics are found to 

explain possible differences in the willingness to release control of driving tasks. These 

characteristics are gender, age, education, driving experience, familiarity and experience 

with ITS, trust and two personality traits. Because of time constraints, only gender, age, 

education level and experience with ITS are taken in account for the model analysis. The 

Multinomial logit model appears to have a very weak model fit. Therefore, this model will 

not be further examined. The results of the Latent class model show to have a better fit.  The 

Latent class model includes two classes that take in account gender and age. This results in 

one class that is negative about automated driving, and a second class that is positive about 

automated driving. The level of released tasks and whether or not to perform a secondary 

task are very important to the first class. The second class emphasizes the importance of 

level of released control and road type.  

 

To get more insights in taste heterogeneity with different user groups, Mixed logit is applied. 

Mixed logit models are described for the total sample and for respondents with different 

gender, age, ITS experience and education level. The means of all attribute-levels of the 

model for the total sample are shown in Figures 2a-f. The means of other described model 

quite overlap with the presented model. The figures show that the level of released driving 

tasks, road type, familiarity with the route and whether or not to perform a secondary task 

contribute to vehicle users willingness to release control to automated systems. The Mixed 

logit models are further described in the conclusions. 
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CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

With a discrete choice experiment, insights have been gained concerning which level of 

automation and which driving circumstances contribute to the willingness of vehicle users to 

release driving control. Vehicle users' choice process is eventually described by two choice 

models: Latent class model and Mixed logit model. The Mixed logit model gives most useful 

insights in the preferences of different users groups and therefore the following conclusions 

are drawn from this model. The model for the overall sample indicates that the level of 

automation is most important for vehicle users' choice to release driving control. On 

average, vehicle users do not yet prefer full automation, only assisted driving or partial 

automation is preferred. High heterogeneity is observed which indicates that there could 

also be users that are already willing to release full control. What the characteristics of these 

vehicle users are that are willing to release full control is not explained by their gender, age, 

level of education or experience with ITS. Furthermore, also the road type contributes to the 

willingness to release driving control. Vehicle users are most willing to cede driving tasks on 

highways, but vehicle users are on average also neutral to positive about releasing control 

on regional roads. Again, for this attribute much heterogeneity is observed. This 

heterogeneity is partly explained by the education level. Moreover, familiarity with the route 

as well as not performing a secondary task contribute, although in less extent than previous 

attributes, to the willingness of vehicle users to release driving control. Low heterogeneity is 

observed for both attributes. This indicates that vehicle users do quite agree that they are 

not willing to release control when they are not familiar with the route and when have to 

perform a secondary task. Lastly, the length of the trip and the density on the road do not 

provide a compelling contribution to vehicle users' willingness to cede driving tasks.  

a. Level of released driving 

tasks 

b. Road type c. Length of trip 

d. Density on road e. Familiarity with route f. Secondary task 

Figures 2a-f: Means of the attribute-levels 



 

 

 

Managerial recommendations 

Several stakeholders have high stakes concerning automated driving. Therefore, the 

following guidelines are given to successfully implement automated driving. Vehicle users 

with a high education level or much ITS experience are most willing to release driving tasks. 

Therefore, it is recommended to focus marketing plans on vehicle users with high education 

and with much ITS experience.  

 

The following recommendations concern transportation planning. Most support to release 

control can be found on highways. For this reason it is advised to stakeholders to first focus 

on creating strong collaborations and feasibility studies for automated driving on highways. 

Eventually public parties should aim at also enabling automated driving on regional roads, 

because this could offer highest safety benefit levels. Additionally, it is advised to enable 

automated driving on dense roads. Here the benefits for society are highest. The density on 

the road does not have much influence on the willingness of vehicle users to release control, 

therefore vehicle drivers will agree with this implementation plan. Stakeholders should be 

careful with implementing partial and high automated driving. Although vehicle users 

indicate that they prefer not to perform a secondary task while driving automated, many 

accidents have happened because drivers were distracted. In addition, vehicle users have 

indicated to prefer automated driving on familiar routes. However, people tend to pay less 

attention to the driving environment when they are familiar with the route. Hence, although 

highly automated technology should provide sufficient lead time to obtain the drivers 

attention when necessary, this is risky as small human errors could lead to fatal accidents.  

 

DISCUSSION 

This thesis adds insights in vehicle users preferences to current research. However, it has 

some limitations which offer opportunities for further research. Not much research is done 

regarding vehicle users preferences of automated driving. Literature disagrees on the gender 

and age levels of users that are often associated with the preference level for automated 

driving. The models within this research indicate that there is not so much difference 

between these characteristics concerning their preferences. The first limitation of the 

research concerns the lack of insights in interaction effects upon choice. Interaction effect 

could show the effect multiple levels of different attributes could have upon each other. 

Moreover, only people that possess a passenger vehicle driving license are taken in account. 

However, when fully automated driving is enabled on Dutch roads, it may also be possible 

that people without a driver's license can use an automated vehicle. Their preferences could 

influence the recommendations. Additionally, the heterogeneity within the Mixed logit 

models could not be explained by researching the preferences of vehicle users with 

differentiated gender, age, experience with ITS or education level. However, literature 

suggests that users' social status and financial wealth could explain the differences in 

preferences. Furthermore, with this research insights are gained in which situation users are 

willing to release control. However, for actual acceptation, also other elements are 

important. This includes elements such as costs, safety effects, liability, and privacy. 

Moreover, insights in more precise safety, traffic flow and environmental implications could 

lead to implementation plans that are more accurately adjusted to desired benefits.  
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INLEIDING 

Automobiliteit zorgt voor economische en persoonlijke groei door het mogelijk maken van 

dagelijkse activiteiten. Echter blijkt dat mobiliteit ook gevaren meebrengt voor de 

maatschappij. Dit leidt tot drie grote uitdagingen op het gebied van veiligheid, 

bereikbaarheid en milieu. Deze uitdagingen worden onder andere aangegaan door het 

gebruik van intelligente transportsystemen gebruiken. Deze systemen werken op basis van 

informatie en communicatie technologieën en zorgen voor een flexibeler en dynamischer 

verkeersysteem (SWOV, 2010). Een verder ontwikkeling om de maatschappelijke 

uitdagingen aan te gaan door middel van technologie, is het geautomatiseerd rijden. Dit is 

mogelijk gemaakt door system die de rijcontrole overnemen van de autogebruiker (Minister 

Schultz van Haegen, 2014). Dit resulteert in een nieuwe rolverdeling tussen de gebruiker, het 

voertuig en de rijomgeving. Echter, uit de literatuur blijkt dat autogebruikers niet altijd 

bereid zijn om controle af te geven. Ze achten zichzelf meer capabel dan technologie in het 

behouden van controle. Daarom is het niet zeker in welke rijsituaties autogebruikers 

controle willen afstaan aan systemen, en hoeveel (Muir, 1987). Echter, de bereidheid van 

autogebruikers om rijcontrole af te staan is een voorwaarde voor het bereiken van 

potentiële effecten van geautomatiseerd rijden. Daarom richt dit rapport zich op het 

verkrijgen van inzichten in welk niveau van automatisering en welke rijomstandigheden 

bijdragen aan de bereidheid van verschillende autogebruikersgroepen om rijcontrole af te 

staan. Dit inzicht kan gebruikt worden door transport- en marktplanners als richtlijnen voor 

succesvolle implementatie van geautomatiseerd rijden. Dit inzicht is verkregen door middel 

van het gebruik van bestaande literatuur die zich richt op geautomatiseerd rijden en hoe het 

gebruik van geautomatiseerde rijsystemen kan worden beïnvloed. Daarna wordt door 

middel van een discreet keuze-experiment bepaald welke keuzes autogebruikers maken in 

verschillende hypothetische rijsituaties. De verspreiding van een vragenlijst voorziet dit 

onderzoek van de benodigde data. Deze data wordt gemodelleerd door drie typen modellen: 

Multinomiaal logit model, Latenteklassemodel en het Mixed logit model.   

 

 

 



 

 

 

GEAUTOMATISEERD RIJDEN 

De technologie rondom geautomatiseerd rijden is gebaseerd op drie componenten. Ten 

eerste verschaffen in-car systemen informatie. Ten tweede voorzien applicaties voertuigen 

en infrastructuur van communicatiemogelijkheden. Ten derde kunnen sensoren en scanners, 

zonder tussenkomst van externe systemen, reageren op hun rijomgeving. Deze systemen 

werken samen op verschillende niveaus. Dit is getoond in Tabel 1. Op dit moment zijn alleen 

assisterende systemen en systemen die zorgen voor gedeeltelijk automatisering beschikbaar 

voor het grote publiek (Timmer, et al., 2013). 
 

Tabel 1. Beknopte beschrijving van niveaus van automatisering (Gasser, et al., 2013) 

Niveaus van 

automatisering 

Rolverdeling van bestuurder en systemen 

Alleen bestuurder De bestuurder heeft gedurende de hele reis controle over longitudinale (versnellen/ 

remmen) en laterale (sturen) taken.  

Geassisteerd rijden De bestuurder heeft gedurende de hele reis controle over of de longitudinale of the 

laterale taken. De andere taken zijn, binnen bepaalde grenzen, uitgevoerd door het 

systeem.  

Gedeeltelijk 

geautomatiseerd 

Het systeem neemt controle over voor longitudinale en laterale taken (voor een 

bepaalde periode en/of in bepaalde situaties). 

Zeer 

geautomatiseerd 

Het systeem neemt controle over voor longitudinale en laterale taken voor een 

bepaalde periode en/of in bepaalde situaties. 

Volledig 

geautomatiseerd 

Het systeem neemt controle over voor longitudinale en laterale taken binnen de 

specificaties van de applicatie.  

 

Geautomatiseerd rijden kan grote voordelen hebben voor veiligheid, doorstroming en 

milieu. Veiligheid wordt verhoog doordat systemen onveilige verkeersparticipatie 

voorkomen, onveilige acties tijdens het rijden voorkomen, en doordat ze de impact van een 

verkeersongelukken verminderen (SWOV, 2010). Dit zal voornamelijk veel effect kunnen 

hebben op regionale wegen, aangezien daar het aantal ongelukken het hoogst is. Ten 

tweede zal de doorstroming verbeterend worden doordat voertuigen geleidelijker op elkaar 

kunnen reageren. Ten derde zullen efficiëntere voertuigen en een efficiëntere rijomgeving, 

inclusief minder invloed van negatief menselijk rijgedrag, zorgen voor minder energiegebruik 

en uitstoot (Timmer, et al., 2013). De minister van Infrastructuur en Milieu heeft de baten 

van geautomatiseerd rijden erkent. Met haar voorgestelde beleid wil ze bereiken dat rond 

2025, zeer geautomatiseerd en/of volledig geautomatiseerd rijden mogelijk is op het 

Nederlandse wegennet (Minister Schultz van Haegen, 2014). 

 

Autorijden is een samenkomst van de bestuurder, het voertuig en de rijomgeving. Tijdens 

het rijden passeren voertuigen andere weggebruikers op kleine afstand. Hierdoor is er geen 

foutmarge en daardoor willen autogebruikers alleen controle afstaan als ze genoeg 

vertrouwen hebben in de geautomatiseerde systemen. Vanuit de literatuur zijn zes 

verschillende rijomstandigheden geïdentificeerd die invloed hebben op hoe autogebruikers 

het rijden ervaren. Dit zijn de weer- en lichtomstandigheden, het type weg, de drukte op de 

weg, de lengte van de reis, de bekendheid met de route en het wel of niet uitvoeren van een 

secondaire taak tijdens het rijden. Indien geautomatiseerd rijden geïmplementeerd wordt 

aan de hand van de voorkeuren van autogebruikers, dan het draagvlak toenemen. Dit zorgt 

voor meer voordelen voor veiligheid, doorstroming en milieu.  
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ONDERZOEKSMETHODE 

Door middel van het verspreiden van een vragenlijst, kan inzicht worden verkregen in welke 

keuzes autogebruikers maken in de hypothetische situatie dat alle niveaus van 

geautomatiseerd rijden mogelijk zijn in alle rijomstandigheden. Volgens theorie zullen 

respondenten hun keuze tussen verschillende rijsituaties baseren op het alternatief met het 

hoogste nut. Deze utiliteit kan worden gemodelleerd met discrete keuze modellen.  Deze 

modellen hebben allen hun eigen voor- en nadelen. Het Multinomiaal logit model is relatief 

gezien simpel, maar het houdt geen rekening met uiteenlopende voorkeuren tussen 

individuen of groepen van individuen. Het Latenteklassemodel houdt rekening met deze 

verschillen door individuen met dezelfde voorkeuren in te delen in dezelfde klas. Het Mixed 

logit model is nog flexibeler, deze houdt rekening met individuele voorkeuren (Greene & 

Hensher, 2003; Hensher, et al., 2005). De vragenlijst is verspreid mensen met een autorijbewijs 

in Nederland. In de vragenlijst werden de respondenten gevraagd naar hun rijervaring en 

rijgedrag, hun bekendheid en ervaring met intelligente systemen in de auto, hun voorkeur 

betreft het afstaan van rijtaken in verschillende rijsituaties door middel van stated choice 

antwoorden, en een aantal persoonlijke kenmerken. De vragenlijst is volledig ingevuld door 

673 respondenten.  

 

BEVINDINGEN 

Het blijkt dat Mixed logit modellen de meest bruikbare inzichten geeft in de voorkeuren van 

verschillende gebruikersgroepen. Daarom zijn onderstaande conclusies getrokken vanuit dit 

type model. De resultaten laten zien dat het niveau van automatisering, het meest belangrijk 

is voor hun keuze om rijcontrole af te staan. Het blijkt dat alleen geassisteerd rijden of 

gedeeltelijk geautomatiseerd rijden de voorkeur heeft. De autogebruikers zijn neutraal over 

zeer geautomatiseerd rijden, maar negatief over het volledig geautomatiseerd rijden. 

Autogebruikers geven het liefst controle af op de snelweg, maar zijn ook niet negatief over 

rijden met deze systemen op een regionale weg. Daarentegen willen ze geen controle 

afstaan op locale wegen. Autogebruikers willen alleen geautomatiseerd rijden wanneer ze 

bekend zijn met de route en wanneer ze geen secondaire taak hoeven uit te voeren. De 

lengte van de reis en de drukte op de weg vormen vrijwel geen bijdrage aan de bereidheid 

van autogebruikers om rijcontrole af te staan. Er zijn grote individuele verschillen betreft de 

voorkeur voor het niveau van automatisering, het wegtype en de lengte van de reis. Uit de 

beschrijvende analyse blijkt dat de verschillen in de voorkeur om controle af te staan aan 

geautomatiseerde systemen, groot zijn bij verschillende geslachten, leeftijden, ervaring met 

verschillende intelligente systemen en bij autogebruikers met verschillende 

opleidingniveaus. Echter blijkt na analyse dat de onderverdeling binnen deze groepen niet 

de grote verschillen betreft de voorkeuren voor niveau van automatisering en 

rijomstandigheden verklaren.  

 

De belangen betreft het implementeren van volledig geautomatiseerd rijden zijn hoog. 

Daarom zijn de volgende aanbevelingen opgesteld om bij te dragen aan succesvolle 

implementatie van volledig geautomatiseerd rijden. De bereidheid om gebruik te maken van 

volledige automatisering is erg laag. Echter, wordt aanbevolen om marktplannen te focussen 

op autogebruikers met een hoog opleidingsniveau en/of veel ervaring met intelligente 

systemen. Deze autogebruikers zijn het meest bereid om controle af te staan.  

 



 

 

 

De volgende aanbevelingen hebben betrekking op de transportplanning. Het meeste 

draagvlak om controle af te staan is gevonden op snelwegen. Om deze reden wordt 

aanbevolen om sterkte samenwerkingsverbanden en haalbaarheidsstudies te creëren 

betreft implementatie op snelwegen. In een later stadium zou gericht moeten worden op 

implementatie op regionale wegen. Hier zijn de hoogste veiligheidsbaten te behalen. Verder 

zou gericht moeten worden op het mogelijk maken van geautomatiseerd rijden op drukke 

wegen, gezien hier de maatschappelijke baten het hoogst zijn. Deze rijomstandigheid heeft 

niet veel invloed op de bereidheid van autogebruikers om controle af te staan, daarom is 

aangenomen dat  autogebruikers de implementatie van geautomatiseerd rijden op drukke 

wegen zullen accepteren. Belanghebbenden wordt aanbevolen om voorzichtig te zijn met 

het implementeren van gedeeltelijk en zeer geautomatiseerd rijden. Autogebruikers geven 

aan dat ze niet op een onbekende routes willen rijden en geen secondaire taak willen 

uitvoeren terwijl ze controle hebben afgegeven. Echter, literatuur geeft aan dat mensen snel 

afgeleid zijn op bekende routes. Ook blijkt dat mensen toch snel afgeleid zijn door een 

secondaire omstandigheid. Ondanks dat zeer geautomatiseerd rijden zou moeten zorgen 

voor genoeg tijd om de aandacht van autogebruikers te krijgen, is dit zeer riskant aangezien 

menselijke fouten in een klein hoekje zitten.  

 

Dit rapport is een toevoeging aan het bestaand onderzoek. Echter zijn er een aantal 

beperkingen aan dit onderzoek die kunnen dienen voor nieuw onderzoek. Het blijkt dat 

literatuur niet overeenkomt betreffende de gebruikersgroepen die de meeste voorkeur 

hebben om gebruik te maken van geautomatiseerde systemen. Dit onderzoek wijst uit dat 

de voorkeuren niet veel verschillen. De eerste beperking van dit onderzoek is dat er geen 

inzicht is in de interactie-effecten van verschillende attribuut-levels. Daarnaast zijn alleen 

autogebruikers in bezit van een rijbewijs meegenomen in de resultaten. Echter, wanneer 

volledig geautomatiseerd rijden mogelijk is, is het ook mogelijk dat mensen zonder 

rijervaring zich kunnen laten rijden. Hun voorkeuren kunnen de resultaten beïnvloeden. 

Bovendien zijn de individuele verschillen binnen de Mixed logit modellen niet verklaard door 

het onderzoeken van mensen met verschillende geslachten, leeftijden, ervaring met 

intelligente systemen of opleidingsniveau. Literatuur geeft aan dat de verschillend wel 

verklaard zouden kunnen worden door sociale status en de financiële situatie. Daarnaast, 

met dit onderzoek is inzicht verkregen in welke situatie autogebruikers bereid zijn om 

rijcontrole los te laten. Voor werkelijke acceptatie, zijn ook andere elementen van belang. 

Dit omvat elementen zoals kosten, aansprakelijkheid en privacy. Bovendien zouden 

nauwkeurigere inzichten in veiligheid-, doorstroming- en milieueffecten kunnen leiden tot 

implementatieplannen die beter zijn aangepast aan de gewenste voordelen. 
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